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The most important and interesting question in fundamental physics is how quantum mechanics and general relativity
can be reconciled in a theory of ‘quantum gravity’ (for review see e.g. [1, 2]). It is well-known that the classical physics is
based on the continuum concept of space-time, on the contrary the quantum gravity needs a discrete concept of space-time.
The concept of smooth manifolds, points and coordinate systems are fundamental objects of classical theories. Quantum
physics involve objects of quite different nature, namely operators acting on Hilbert space.

Unified description of classical gauge theories and general relativity and the corresponding space-time quantization
leads to some generalization of physical ideas and corresponding mathematical structures. In physics, it is the sudden
changes in viewpoint that go on to inspire progress shifting usually generalizations not involving total abandonment of
the original ideas. The mathematically motivated shift from the use of the magnetic field to the more commonly discussed
vector potential was one such change. Another was the decision of the earlier natural philosophers to accept the use of
the number zero in physics. Such changes in viewpoint are often resisted by aficionados of the old ways. First, working
with a new viewpoint may slow the prediction process of observed phenomena (ask an engineer to work with the full
relativistic vector potential when using magnets). Second, the new viewpoint may predict exactly the same set of results for
any experiment. Thirdly, the new viewpoint requires a greater repertoire of concepts, not all of which immediately sound
physically plausible (how does one observe no bananas? Or empty space?). Those trained to think in the old reliable ways
see little point in learning a new way to think, a way that simply slows one’s ability to predict merely the same results.
The development of gauge field theory threw new physical fields into the picture. Fields that were not directly observable.
Physicists now treat these fields as more real than their more accessible predecessors. The real gain in having more than
one viewpoint is that a more general feel for physics is obtained. It is this which inspires new ideas. There are various
approaches to the notion of a topos [3], but we will focus here on one that emphasizes the underlying logical structure and
we will only discuss one, albeit crucial, clause of the definition of a topos: the requirement that a topos contain a ‘subobject
classifier’. This is a generalization of the idea, familiar in set-theory, of characteristic functions. The generalization will
turn out to have a particularly interesting logical structure in the case of the kind of topos: a topos of presheaves [4, 5].

A topos is a particular type of category. Very roughly, it is a category that behaves much like the category of sets;
indeed, this category, which we will callSet, is itself a topos.

The goal of the paper is to discuss the topos theory from physical point of view (see e.g. [2, 6, 5]). We give some
basic ideas of topos [3, 7, 8, 4] and concentrate our attention on the connection with algebras of classical and quantum
observables, alternative concept of space-time, theory of relativity and quantum gravity, the generalized histories approach
[9, 10, 11] to a quantum theory of the whole universe [12, 13, 14]. Then using formalism ofn-regular obstructed categories
[15, 16] we generalize the concept of a topos in a similar way.

TOPOSES AND CATEGORIES

We recall that a category (see e.g. [17]) consists of a collection ofobjects, and a collection ofarrows(or morphisms),
with the following three properties. (1) Each arrowf is associated with a pair of objects, known as itsdomain(dom f )
and thecodomain(cod f ), and is written in the formf : B → A whereB = domf andA = codf . (2) Given two arrows
f : B→ A andg : C→ B (so that the codomain ofg is equal to the domain off ), there is a composite arrowf ◦g : C→ A;
and this composition of arrows obeys the associative law. (3) Each objectA has an identity arrow,idA : A→ A, with the
properties that for allf : B→ A and allg : A→ C, idA ◦ f = f andg ◦ idA = g.

We have already mentioned the prototype category (indeed, topos)Set, in which the objects are sets and the arrows are
ordinary functions between them (set-maps). In many categories, the objects are sets equipped with some type of additional



structure, and the arrows are functions that preserve this structure (hence the word ‘morphism’). An obvious algebraic
example is the category of groups, where an object is a group, and an arrowf : G1 → G2 is a group homomorphism
from G1 to G2. (More generally, one often defines one category in terms of another; and in such a case, there is often only
one obvious way of defining composition and identity maps for the new category.) However, a category need not have
‘structured sets’ as its objects. An example is given by any partially-ordered set (‘poset’)P. It can be regarded as a category
in which (i) the objects are the elements ofP; and (ii) if p,q ∈ P, an arrow fromp to q is defined to exist if, and only if,
p ≤ q in the poset structure. Thus, in a poset regarded as a category, there is at most one arrow between any pair of objects
p,q ∈ P.

In any category, an objectT is calleda terminal(resp.initial ) object if for every objectA there is exactly one arrow
f : A→ T (resp. f : T → A). Any two terminal (resp. initial) objects are isomorphic (two objectsA andB in a category
are said to beisomorphicif there exists arrowsf : A→ B andg : B→ A such thatf ◦ g = idB andg ◦ f = idA). So we
normally fix on one such object; and we write ‘the’ terminal (resp. initial) object as1 (resp.0). An arrow1→ A is called a
point, or aglobal element, of A. For example, applying these definitions to our exampleSetof a category, we find that (i)
each singleton set is a terminal object; (ii) the empty set∅ is initial; and (iii) the points ofA give a ‘listing’ of the elements
of A.

We now introduce a very special kind of category called a ‘topos’ [7, 8]. We will discuss only one clause of the
definition of a topos: the requirement that a topos contain a generalization of the set-theoretic concept of a characteristic
function; this generalization is closely related to what is called a ‘subobject classifier’.

Recall that characteristic functions classify whether an elementx is in a given subsetA of a setX by mappingx to 1 if
x ∈ A, and to0 if x < A. More fully: for any setX, and any subsetA ⊆ X, there is a characteristic functionχA : X→ {0,1},
with χA(x) = 1 or 0 according asx ∈ A or x < A. One thinks of{0,1} as the truth-values; andχA classifies the variousx
for the set-theoretically natural question, “x ∈ A?”. Furthermore, the structure ofSet—the category of sets—secures the
existence of this set of truth-values and the various functionsχA: in particular,{0,1} is itself a set,i.e. an object in the
categorySet, and for eachA,X with A ⊆ X, χA is an arrow fromX to {0,1}. It is possible to formulate this ‘classifying
action’ of the variousχA in general category-theoretic terms, so as to give a fruitful generalization.

In any category, one can define a categorical analogue of the set-theoretic idea of subset: it is called a ‘subobject’.
More precisely, one generalizes the idea that a subsetA of X has a preferred injective (i.e., one-to-one) mapA→ X sending
x ∈ A to x ∈ X. For category theory provides a generalization of injective maps, called ‘monic arrows’ or ‘monics’; so that
in any category one defines a subobject of any objectX to be a monic with codomainX.

Any topos is required to have an analogue, writtenΩ, of the set{0,1} of truth-values. That is to say: just as{0,1} is
itself a set—i.e., an object in the categorySetof sets—so also in any topos,Ω is an object in the topos. And just as the set
of subsets of a given setX corresponds to the set of characteristic functions from subsets ofX to {0,1}; so also in any topos,
there is a one-to-one correspondence between subobjects of an objectX, and arrows fromX to Ω. In a topos,Ω acts as an
object of generalized truth-values, just as{0,1} does in set-theory; (thoughΩ typically has more than two global elements).
Intuitively, the elements ofΩ are the answers to a natural ‘multiple-choice question’ about the objects in the topos, just
as “x ∈ X?” is natural for sets. An example: A setX equipped with a given functionα : X → X is called anendomap,
written (X;α); and the family of all endomaps forms a category—indeed, a topos—when one defines an arrow from(X;α)
to (Y; β) to be an ordinary set-functionf between the underlying sets, fromX to Y, that preserves the endomap structure,
i.e., f ◦ α = β ◦ f . Applying the definition of a subobject, it turns out that a subobject of(X;α) is a subset ofX that is
closed underα, equipped with the restriction ofα: i.e., a subobject is(Z, α |Z), with Z ⊆ X and such thatα(Z) ⊂ Z. So a
natural question, givenx ∈ X and a subendomap(Z, α |Z), is: “How many iterations ofα are needed to sendx (or rather
its descendant,α(x) or α2(x) or α3(x) . . . ) intoZ?” The possible answers are ‘0 (i.e., x ∈ Z)’, ‘ 1’, ‘ 2’,. . . , and ‘infinity (i.e.,
the descendants never enterZ)’; and if the answer forx is some natural numberN (resp.0, infinity), then the answer for
α(x) is N − 1 (resp.0, infinity). So the possible answers can be presented as an endomap, with the elements of the base-set
labelled as ‘0’, ‘1’, ‘2’, ..., and ‘∞’, and with the mapα acting as follows:α : N 7→ N − 1 for N = 1,2, ..., andα : 0 7→ 0,
α : ∞ 7→ ∞. And it turns out that this endomap is exactly the objectΩ in the category of endomaps! Recall that in any topos
Ω is an object in the topos, so that hereΩ must itself be an endomap, a set equipped with a function to itself. This example
suggests thatΩ is fixed by the structure of the topos concerned. And indeed, this is so in the precise sense that, although
the clause in the definition of a topos that postulates the existence ofΩ characterizesΩ solely in terms of conditions on the
topos’ objects and arrows,Ω is provably unique (up to isomorphism).

In any topos,Ω has a natural logical structure. More exactly,Ω has the internal structure of a Heyting algebra object:
the algebraic structure appropriate for intuitionistic logic [18]. In addition, in any topos, the collection of subobjects of any
given objectX is a complete Heyting algebra (a locale). This sort of Heyting algebra structure in more detail below, for
the case that concerns us—presheaves. For the moment we note only the general point, valid for any topos, that because
Ω is fixed by the structure of the topos concerned, and has a natural Heyting structure, a major traditional objection to
multi-valued logics—that the exact structure of the logic, or associated algebras, seems arbitrary—does not apply here.



TOPOSES IN QUANTUM THEORY

Quantum theory has several interpretative problems, about such topics as measurement and non-locality; each of
which can be formulated in several ways. But workers in the field would probably agree that all the problems center around
the relation between—on the one hand—the values of physical quantities, and—on the other—the results of measurement.
For our purposes, it will be helpful to put this in terms of statements: so the issue is the relation between “The quantityA
has a value, and that value isr”, (wherer is a real number) and “If a measurement ofA is made, the result will ber”.

In classical physics, this relation is seen as unproblematic. One assumes that, at each moment of time:

(i) every physical quantity has a real number as a value (relative to an appropriate choice of units); and

(ii) one can measure any quantityA ‘ideally’, i.e. in such a way that the result obtained is the value thatA possessed before
the measurement was made; thus “epistemology models ontology”.

Assumption(i) is implemented mathematically by the representation of quantities as real-valued functions on a state
spaceΓ; so that, in particular, the statement “the value ofA is r” ( r ∈ IR) corresponds tōA−1{r}, the subset ofΓ that is the
inverse image of the singleton set{r} ⊂ IR under the function̄A : Γ → IR that represents the physical quantityA. Thus, in
particular, to any states ∈ Γ there is associated a ‘valuation’ (an assignment of values) on all quantities, defined by:

Vs(A) := Ā(s). (1)

More generally, the proposition “the value ofA is in ∆” (where∆ ⊂ IR) corresponds to the subsetĀ−1(∆) of Γ; these
subsets form a Boolean lattice, which thus provides a natural representation of the ‘logic’ of propositions about the system.
In particular, corresponding to the real-numbered valuationVs on quantities, defined by a states ∈ Γ, we have a{0,1}-valued
valuation (a truth-value assignment) to propositions:

Vs(A ∈ ∆) := 1 if Ā(s) ∈ ∆; otherwiseVs(A ∈ ∆) = 0. (2)

Thus, in particular, in classical physics each proposition about the system at some fixed time is regarded as being either
true or false.

Note that assumption(ii) is incorporated implicitly in the formalism—namely, in the absence of any explicit representation
of measurement—by the fact that the functionĀ : Γ→ IR suffices to represent the quantityA, since its values (in the sense
of ‘values of a function’) are the possessed values (in the sense of ‘values of a physical quantity’), and these would be
revealed by an (ideal) measurement.

In quantum theory, on the other hand, the relation between values and results, and in particular assumptions(i) and
(ii) , are notoriously problematic. The state-space is a Hilbert spaceH ; a quantityA is represented by a self-adjoint operator
Â (which, with no significant loss of generality, we can assume throughout to be bounded), and a statement about values
“A ∈ ∆” corresponds naturally to a linear subspace ofH (or, equivalently, to a spectral projector,Ê[A ∈ ∆], of Â).

Assumption(i) above (the existence of possessed values for all quantities) now fails by virtue of the famous Kochen-
Specker theorem [19]; which says, roughly speaking, that provideddim(H) > 2, one cannot assign real numbers as values
to all quantum-theory operators in such a way that for any operatorÂand any function of itf (Â) ( f a function fromIR to IR),
the value off (Â) is the corresponding function of the value ofÂ. (On the other hand, in classical physics, this constraint,
calledFUNC, is trivially satisfied by the valuationsVs.) In particular, it is no longer possible to assign an unequivocal
true-false value to each proposition of the form “A ∈ ∆”. In a strict instrumentalist approach to quantum theory, the non-
existence of such valuations is of no great import, since this interpretation of the theory deals only with the counterfactual
assertion of the probabilities of what values would be obtainedif suitable measurements are made.

However, strict instrumentalism faces severe problems (not least in quantum gravity); and the question arises therefore
of whether it may not after all be possible to retain some ‘realist flavor’ in the theory by, for example, changing the logical
structure with which propositions about the values of physical quantities are handled. One of our claims is that this can
indeed be done by introducing a certain topos perspective on the Kochen-Specker theorem. For the moment, we just remark
that no-go theorems like that of Kochen and Specker depend upon the fact that the set of all spectral projectors ofH form
a non-Boolean, indeed non-distributive, lattice; suggesting a non-Boolean, indeed non-distributive, ‘quantum logic’. This
alluring idea, originated by Birkhoff and von Neumann [20], has been greatly developed in various directions. The Dalla
Chiara and Giuntini’s masterly recent survey [21] includes recent developments that generalize the basic correspondence
between subspaces and propositions about values, so as to treat so-called ‘unsharp’ (‘operational’) quantum physics; on
this see also [22] and other papers in this issue. The logic associated with the topos-theoretic proposals here is not non-
distributive. On the contrary,anytopos has an associated internal logical structure thatis distributive. This retention of the
distributive law marks a major departure from the dominant tradition of quantum logic stemming from Birkhoff and von
Neumann.



On the other hand, the proposals do involve non-Boolean structure since the internal logic of a topos is ‘intuitionistic’,
in the sense that the law of excluded middle may not hold (although for some toposes, such as the category of sets, it does
apply). Some intuitionistic structures also arise in the dominant ‘non-distributive’ tradition in quantum logic; for example,
in the Brouwer-Zadeh approach to unsharp quantum theory, cf. [23].

TOPOSES IN QUANTUM GRAVITY

The problem of realism becomes particularly acute in the case of quantum gravity. This field is notoriously problematic
in comparison with other branches of theoretical physics, not just technically but also conceptually. In the first place, there
is no clear agreement about what the aim of a quantum theory of gravity should be, apart from the broad goal of in some
way unifying, or reconciling, quantum theory and general relativity. That these theories do indeed conflict is clear enough:
general relativity is a highly successful theory of gravity and spacetime, which treats matter classically (both as a source
of the gravitational field, and as influenced by it) and treats the structure of spacetime as dynamical; while quantum theory
provides our successful theories of matter, and treats spacetime as a fixed, background structure.

Much has been written about the conceptual problems that arise in quantum gravity; (for review see [14]). But in the
present context it suffices to say that these are sufficiently severe to cause a number of workers in the field to question many
of the basic ideas that are implicit in most, if not all, of the existing programs. For example, there have been a number
of suggestions that spatio-temporal ideas of classical general relativity such as topological spaces, continuum manifolds,
space-time geometry, micro-causality, etc. are inapplicable in quantum gravity.

More iconoclastically, one may doubt the applicability of quantum theory itself, notwithstanding the fact that all
current research programs in quantum gravity do adopt a more-or-less standard approach to quantum theory. In particular,
as we shall discuss shortly, there is a danger of certaina priori, classical ideas about space and time being used unthinkingly
in the very formulation of quantum theory; thus leading to a type of category error when attempts are made to apply this
theory to domains in quantum gravity where such concepts may be inappropriate.

CONTINUUM IN PHYSICAL THEORY

We will now consider the use of the continuum—i.e., of real and complex numbers—in the formulation of our physical
theories in general. There are two natural alternative conceptions of space and time, which will involve the use of topos
theory. We give this discussion before introducing toposes, since: (i) it is independent of the logical issues that will be
emphasized in the rest of this paper; and accordingly, (ii) it can be understood without using details of the notion of a topos.
So let us ask: why do we use the continuum,i.e., the real numbers, in our physical theories? The three obvious answers are:
(i) to be the values of physical quantities; (ii) to model space and time; and (iii) to be the values of probabilities. But let us
pursue a little the question of what justifies these answers: we will discuss them in turn.

As to (i), the first point to recognize is of course that the whole edifice of physics, both classical and quantum, depends
upon applying calculus and its higher developments (for example, functional analysis and differential geometry) to the
values of physical quantities. But in the face of this, one could still take the view that the success of these physical theories
only shows the ‘instrumental utility’ of the continuum—and not that physical quantities really have real-number values. This
is not the place to enter the general philosophical debate between instrumentalist and realist views of scientific theories; or
even the more specific question of whether an instrumentalist view about the continuum is committed to somehow rewriting
all our physical theories without use ofIR: for example, in terms of rational numbers (and if so, how he should do it!). Suffice
it to say here that the issue whether physical quantities have real-number values leads into the issue whether space itself
is modelled usingIR. For not only is length one (obviously very important!) quantity in physics; also, one main, if not
compelling, reason for taking other quantities to have real-number values is that results of measuring them can apparently
always be reduced to the position of some sort of pointer in space—and space is modelled usingIR.

We note that the formalism of elementary wave mechanics affords a good example of ana priori adoption of the idea
of a continuum model of space: indeed, thex in ψ(x) represents space, and in the theory this observable is modelled as
having a continuous spectrum; in turn, this requires the underlying Hilbert space to be defined over the real or complex
field.

So we turn to (ii): why should space be modelled usingIR? More specifically, we ask, in the light of our remarks about
(i): Can any reason be given apart from the (admittedly, immense) ‘instrumental utility’ of doing so, in the physical theories
we have so far developed? In short, our answer is No. In particular, we believe there is no gooda priori reason why space
should be a continuum; similarly,mutatis mutandisfor time. But then the crucial question arises of how this possibility of
a non-continuum space should be reflected in our basic theories, in particular in quantum theory itself, which is one of the
central ingredients of quantum gravity.

As to (iii), why should probabilities be real numbers? Admittedly, if probability is construed in terms of the relative
frequency of a result in a sequence of measurements, then real numbers do arise as the limits of infinite sequences of finite
relative frequencies (which are all rational numbers). But this limiting relative frequency interpretation of probability is



disputable. In particular, it seems problematic in the quantum gravity regime where standard ideas of space and time might
break down in such a way that the idea of spatial or temporal ‘ensembles’ is inappropriate.

On the other hand, for the other main interpretations of probability—subjective, logical, or propensity—there seems
to us to be no compellinga priori reason why probabilities should be real numbers. For subjective probability (roughly:
what a rational agent’s minimum acceptable odds, for betting on a proposition, are or should be): many authors point out
that the use ofIR as the values of probabilities is questionable, whether as an idealization of the psychological facts, or as
a norm of rationality. For the logical and propensity interpretations—which are arguably more likely to be appropriate for
the quantum gravity regime—the use ofIR as the values of probabilities is less discussed. But again, we see noa priori
reason forIR.It seems to us that in the literature, the principal ‘justification’ given forIR is the mathematical desideratum
of securing a uniqueness claim in a representation theorem about axiom systems for qualitative probability; the claim is
secured by imposing a continuity axiom that excludes number-fields other thanIR as the codomain of the representing
probability-function. Indeed, we would claim that while no doubt in some cases, one ‘degree of entailment’ or ‘propensity’
is ‘larger’ than another, it also seems possible that in other cases two degrees of entailment, or two propensities, might
be incomparable–so that the codomain of the probability-function should be, not a linear order, but some sort of partially
ordered set (equipped with a sum-operation, so as to make sense of the additivity axiom for probabilities).

ALTERNATIVE CONCEPTIONS OF SPACETIME

Here we turn to briefly sketch two alternative conceptions of space and time. Both involve topos theory, and indeed
raise the idea—even more iconoclastic than scepticism about the continuum— that the use of set theory itself may be
inappropriate for modelling space and time.

In standard general relativity—and, indeed, in all classical physics—space (and similarly time) is modelled by a set,
and the elements of that set are viewed as corresponding to points in space. However, if one is ‘suspicious of points’—
whether of spacetime, of space or of time (i.e. instants)—it is natural to try and construct a theory based on ‘regions’ as
the primary concept; with ‘points’—if they exist at all—being relegated to a secondary role in which they are determined
by the ‘regions’ in some way (rather than regions being sets of points, as in the standard theories). For time, the natural
word is ‘intervals’, not ‘regions’; but we shall use only ‘regions’, though the discussion to follow applies equally to the
one-dimensional case—and so to time—as it does to higher-dimensional cases, and so to space and spacetime.

So far as we know, the first rigorous development of this idea was made in the context of foundational studies in
the 1920s and 1930s, by authors such as Tarski. The idea was to write down axioms for regions from which one could
construct points, with the properties they enjoyed in some familiar theory such as three-dimensional Euclidean geometry.
For example, the points were constructed in terms of sequences of regions, each contained in its predecessor, and whose
‘widths’ tended to zero; (more precisely, the point might be identified with an equivalence class of such sequences). The
success of such a construction was embodied in a representation theorem, that any model of the given axiom system for
regions was isomorphic to, for example,IR3 equipped with a structured family of subsets, which corresponded to the axiom
system’s regions. In this sense, this line of work was ‘conservative’: one recovered the familiar theory with its points, from
a new axiom system with regions as primitives. From the pure mathematical point of view, Stone’s representation theorem
for Boolean algebras of 1936 was a landmark for this sort of work.

The use of regions in place of points need not be ‘conservative’: one can imagine axiom systems for regions, whose
models (or some of whose models) do not contain anything corresponding to points of which the regions are composed.
Indeed, for any topological spaceZ, the family of all open sets can have algebraic operations of ‘conjunction’, ‘disjunction’
and ‘negation’ defined on them by:O1 ∧ O2 := O1 ∩ O2; O1 ∨ O2 := O1 ∪ O2; and¬O := int(Z − O); and with these
operations, the open sets form a complete Heyting algebra, also known as alocale. Here, a Heyting algebra is defined to be
a distributive latticeH, with null and unit elements, that isrelatively complemented, which means that to any pairS1,S2 in
H, there exists an elementS1⇒ S2 of H with the property that, for allS∈ H,

S≤ (S1⇒ S2) if and only if S∧ S1 ≤ S2 . (3)

Heyting algebras are thus a generalization of Boolean algebras; they need not obey the law of excluded middle, and so
provide natural algebraic structures for intuitionistic logic. A Heyting algebra is said to becompleteif every family of
elements has a least upper bound. Summing up: the open sets of any topological space form a Heyting algebra, when
partially ordered by set-inclusion; indeed a complete Heyting algebra (a locale), since arbitrary unions of open sets are open.
However, it turns out that not every locale is isomorphic to the Heyting algebra of open sets of some topological space; and
in this sense, the theory of regions given by the definition of a locale is not ‘conservative’—it genuinely generalizes the
idea of a topological space, allowing families of regions that are not composed of underlying points.

A far-reaching generalization of this idea is given by topos theory: (i) in any topos, there is an analogue of the set-
theoretic idea of the family of subsets of a given set—called the family of subobjects of a given objectX; (ii) for any object
X in any topos, the family of subobjects ofX is a locale.



The idea of infinitesimals was heuristically valuable in the discovery and development of the calculus, and it was
expunged in the nineteenth-century rigorization of analysis by authors such as Cauchy and Weierstrass—for surely no
sense could be made of the idea of nilpotent real numbers,i.e., d such thatd2 = 0, apart from the trivial cased = 0? But it
turns out that sensecanbe made of this: indeed in two somewhat different ways.

In the first approach, called ‘non-standard analysis’, every infinitesimal (i.e., every nilpotentd , 0) has a reciprocal,
so that there are different infinite numbers corresponding to the different infinitesimals. There were attempts in the 1970s
to apply this idea to quantum field theory: in particular, it was shown how the different orders of ultra-violet divergences
that arise correspond to different types of infinite number in the sense of non-standard analysis [24]. However, we wish
here to focus on the alternative approach in which we have infinitesimals, but without the corresponding infinite numbers.
It transpires that this is possible provided we work within the context of a topos; for example, a careful study of the proof
that the only real numberd such thatd2 = 0 is 0, shows that it involves the principle of excluded middle, which in general
does not hold in the characteristic intuitionistic logic of a topos [25].

So in this second approach, called ‘synthetic differential geometry’, infinitesimals do not have reciprocals. Applying
this approach to elementary real analysis, ‘all goes smoothly’. For example, all functions are differentiable, with the linear
approximation familiar from Taylor’s theorem,f (x + d) = f (x) + d f ′(x), being exact. And in the context of synthetic
differential geometry, a tangent vector on a manifoldM is a map (more precisely, a ‘morphism’) from the objectD :=
{d | d2 = 0} toM. Furthermore, one can go on to apply this approach to the higher developments of calculus. The crucial
question is whether or not there are anyphysicallynatural applications of synthetic differential geometry to physics; (as
against ‘merely rewriting’ standard theories in synthetic terms).

PRESHEAVES FROM TOPOS THEORY

We recall the idea of a ‘functor’ between a pair of categoriesC andD: this is a arrow-preserving function from one
category to the other. The precise definition is as follows: acovariant functorF from a categoryC to a categoryD is a
function that assigns to eachC-objectA, aD-objectF(A); to eachC-arrow f : B → A, aD-arrowF( f ) : F(B) → F(A)
such thatF(idA) = idF(A); and, ifg : C→ B, and f : B→ A then

F( f ◦ g) = F( f ) ◦ F(g). (4)

A presheaf(also known as avarying set) on the categoryC is defined to be a covariant functorX from the categoryC to the
category ‘Set’ of normal sets. We want to make the collection of presheaves onC into a category, and therefore we need
to define what is meant by an ‘arrow’ between two presheavesX andY. The intuitive idea is that such an arrow fromX to
Y must give a ‘picture’ ofX within Y. Formally, such an arrow is defined to be anatural transformationN : X → Y, by
which is meant a family of maps (called thecomponentsof N) NA : X(A)→ Y(A), A an object inC, such that iff : A→ B

is an arrow inC, then the composite mapX(A)
NA−→ Y(A)

Y( f )−→ Y(B) is equal toX(A)
X( f )−→ X(B)

NB−→ Y(B). The category of
presheaves onC equipped with these arrows is denotedSetC.

We say thatK is a subobjectof X if there is an arrow in the category of presheaves (i.e., a natural transformation)
i : K → X with the property that, for eachA, the component mapiA : K (A) → X(A) is a subset embedding,i.e.,
K (A) ⊆ X(A). The category of presheaves onC, SetC, forms a topos. We will not need the full definition of a topos, but we
do need the idea that a topos has a subobject classifierΩ, to which we now turn.

Among the key concepts in presheaf theory is that of a ‘sieve’, which plays a central role in the construction of the
subobject classifier in the topos of presheaves on a categoryC [4]. A sieveon an objectA in C is defined to be a collection
S of arrows f : A → B in C with the property that iff : A → B belongs toS, and if g : B → C is any arrow, then
g ◦ f : A→ C also belongs toS. In the simple case whereC is a poset, a sieve onp ∈ C is any subsetSof C such that if
r ∈ S then (i) p ≤ r, and (ii) r ′ ∈ S for all r ≤ r ′; in other words, a sieve is nothing but aupperset in the poset.

The presheafΩ : C → Setis now defined as follows. IfA is an object inC, thenΩ(A) is defined to be the set of all
sieves onA; and if f : A→ B, thenΩ( f ) : Ω(A)→ Ω(B) is defined as

Ω( f )(S) := {h : B→ C | h ◦ f ∈ S} (5)

for all S∈ Ω(A). For our purposes in what follows, it is important to note that ifSis a sieve onA, and if f : A→ B belongs
to S, then from the defining property of a sieve we have

Ω( f )(S) := {h : B→ C | h ◦ f ∈ S} = {h : B→ C} =: ↑B, (6)

where↑B denotes theprincipal sieve onB, defined to be the set of all arrows inC whose domain isB. If C is a poset, the
associated operation on sieves corresponds to a family of mapsΩqp : Ωp → Ωq (whereΩp denotes the set of all sieves on
p in the poset) defined byΩqp = Ω(i pq) if i pq : p→ q (i.e., p ≤ q). It is straightforward to check that ifS∈ Ωq, then

Ωqp(S) :=↑ p∩ S (7)



where↑ p := {r ∈ C | p ≤ r}.
A crucial property of sieves is that the setΩ(A) of sieves onA has the structure of a Heyting algebra. Recall that this

is defined to be a distributive lattice, with null and unit elements, that is relatively complemented—which means that for
any pairS1,S2 in Ω(A), there exists an elementS1⇒ S2 of Ω(A) with the property that, for allS∈ Ω(A),

S≤ (S1⇒ S2) if and only if S∧ S1 ≤ S2 . (8)

Specifically,Ω(A) is a Heyting algebra where the unit element1Ω(A) in Ω(A) is the principal sieve↑A, and the null element
0Ω(A) is the empty sieve∅. The partial ordering inΩ(A) is defined byS1 ≤ S2 if, and only if, S1 ⊆ S2; and the logical
connectives are defined as:

S1 ∧ S2 := S1 ∩ S2 (9)

S1 ∨ S2 := S1 ∪ S2 (10)

S1⇒ S2 := { f : A→ B | for all g : B→ C if g ◦ f ∈ S1 theng ◦ f ∈ S2 }. (11)

As in any Heyting algebra, the negation of an elementS(called thepseudo-complementof S) is defined as¬S := S⇒ 0;
so that

¬S := { f : A→ B | for all g : B→ C, g ◦ f < S }. (12)

The main distinction between a Heyting algebra and a Boolean algebra is that, in the former, the negation operation does
not necessarily obey the law of excluded middle: instead, all that be can said is that, for any elementS,

S∨ ¬S≤ 1. (13)

It can be shown that the presheafΩ is a subobject classifier for the toposSetC. That is to say, subobjects of any
objectX in this topos (i.e., any presheaf onC) are in one-to-one correspondence with arrowsχ : X → Ω. This works as
follows. First, letK be a subobject ofX. Then there is an associatedcharacteristicarrowχK : X → Ω, whose ‘component’
χK

A : X(A)→ Ω(A) at each ‘stage of truth’A in C is defined as

χK
A (x) := { f : A→ B | X( f )(x) ∈ K (B)} (14)

for all x ∈ X(A). That the right hand side of (14) actuallyis a sieve onA follows from the defining properties of a subobject.
Thus, in each ‘branch’ of the categoryC going ‘upstream’ from the stageA, χK

A (x) picks out the first memberB in that
branch for whichX( f )(x) lies in the subsetK (B), then guarantees thatX(h ◦ f )(x) will lie in K (C) for all h : B→ C. Thus
each ‘stage of truth’A in C serves as a possible context for an assignment to eachx ∈ X(A) of a generalized truth-value:
which is a sieve, belonging to the Heyting algebraΩ(A), rather than an element of the Boolean algebra{0,1} of normal set
theory. This is the sense in which contextual, generalized truth-values arise naturally in a topos of presheaves.

There is a converse to (14): namely, each arrowχ : X → Ω (i.e., a natural transformation between the presheavesX
andΩ) defines a subobjectKχ of X via

Kχ(A) := χ−1
A {1Ω(A)} (15)

at each stage of truthA. For the category of presheaves onC, a terminal object1 : C → Setcan be defined by1(A) := {∗}
at all stagesA in C; if f : A → B is an arrow inC then1( f ) : {∗} → {∗} is defined to be the map∗ 7→ ∗. This is indeed
a terminal object since, for any presheafX, we can define a unique natural transformationN : X → 1 whose components
NA : X(A)→ 1(A) = {∗} are the constant mapsx 7→ ∗ for all x ∈ X(A).

A global element (or point) of a presheafX is also called aglobal section. As an arrowγ : 1→ X in the toposSetC, a
global section corresponds to a choice of an elementγA ∈ X(A) for each stage of truthA in C, such that, iff : A→ B, the
‘matching condition’

X( f )(γA) = γB (16)

is satisfied. As we shall see, the Kochen-Specher theorem can be read as asserting the non-existence of any global sections
of certain presheaves that arises naturally in any quantum theory.

PRESHEAVES IN QUANTUM THEORY AND QUANTUM GRAVITY

We wish now to consider some possible applications of the idea of a topos in quantum physics. There are several
natural orders in which to present these examples, but we will in fact proceed by first giving several examples involving
space, time or spacetime, since: (i) in these examples, it is especially natural to think of the objects of the presheaf’s base-
categoryC as ‘contexts’ or ‘stages’ relative to which generalized truth-values are assigned; and (ii) these examples will
serve as prototypes, in various ways, for later examples.



Throughout classical and quantum physics, we are often concerned with reference frames (or coordinate systems),
the transformations between them, and the corresponding transformations on states of a physical system, and on physical
quantities. Our first example will present in terms of presheaves some familiar material about reference frames in the context
of non-relativistic wave mechanics.

Define the category of contextsC to have as its objects global Cartesian reference framese := {e1,e2,e3} (where
ei , i = 1,2,3, are vectors in Euclidean 3-spaceE3 such thatei · ej = δi j ), all sharing a common origin; and defineC to
have as its arrows the orthogonal transformationsO(e,e′) from one reference frame{ei} to another{e′ i}, i.e., with a matrix
representatione′ i =

∑3
j=1 ejO(e,e′)i

j ; (so that between any two objects, there is a unique arrow). Define a presheafH
as assigning to each objecte in C, a copyH(e) of the Hilbert spaceL2(IR3); and to each arrowO(e,e′), the unitary map
U(e,e′) : H(e) → H(e′) defined by(U(e,e′)ψ)(x) := ψ(O(e,e′)−1(x)) (so thatU(e,e′) represents the action ofO(e,e′) as a
map from one copy,H(e), of the (pure) state-spaceL2(IR3), to the other copyH(e′)). Any givenψ ∈ L2(IR3), together with
its transforms under the various unitary mapsU(e,e′), defines a global section ofH. Discussions of the transformation of
the wave-function under spatial rotations etc. normally identify the different copies of the state-spaceL2(IR3); and from
the viewpoint of those discussions, the above definition ofH may seem at first sight to make a mountain out of a molehill,
particularly since the category of contexts in this example is so trivial (for example, the internal logic is just the standard
‘true-false’ logic). But it is a helpful prototype to have in mind when we come to more complex or subtle examples. This
definition has the advantage of clearly distinguishing the quantum state at the given time from its representing vectorsψ in
various reference frames. We need to allow for the fact that the quantum state is a yet more abstract notion, also occurring
in other representations than wave mechanics (position-representation). So the point is: this definition ofH distinguishes
the Schr̈odinger-picture, wave-mechanical representative of the quantum state at the given time—which it takes as a global
section ofH—from its representing vectorsψ (elements of the global section at the various ‘stages’e).

The example above illustrates a contextual aspect of standard quantum theory whereby the concrete representation of
an abstract state depends on the observer; at least, this is so if we identify reference frames with observers. This contextual
aspect is not emphasized in standard quantum theory since the different Hilbert spaces associated with different observers
are all naturally isomorphic (via the unitary operatorsU(e,e′) : H(e) → H(e′)). From a physical perspective, the fact that
different observers, related by a translation or a rotation of reference frame, see ‘equivalent’ physics is a reflection of the
homogeneity and isotropy of physical space. However, the situation might well be different in cosmological situations,
since the existence of phenomena like event and particle horizons means that the physics perceptible from the perspective
of one observer may be genuinely different from that seen by another. This suggests that any theory of quantum cosmology
(or even quantum field theory in a fixed cosmological background) may require the use of more than one Hilbert space, in
a way that cannot be ‘reduced’ to a single space.

It is well known that quantum field theory on a curved spacetime often requires more than one Hilbert space, associated
with the unavoidable occurrence of inequivalent representations of the canonical commutation relations: this is one of the
reasons for preferring aC∗-algebra approach. But what we have in mind is different—for example, our scheme could easily
be adapted to involve a presheaf ofC∗-algebras, each associated with an ‘observer’. A key question in this context is what
is meant by an ‘observer’; or, more precisely, how this idea should be represented mathematically in the formalism. One
natural choice might be a time-like curve (in the case of quantum field theory in a curved background with horizons),
although this does suggest that a ‘history’ approach to quantum theory would be more appropriate than any of the standard
ones. In the case of quantum cosmology proper, these issues become far more complex since—for example—even what is
meant by a ‘time-like curve’ presumably becomes the subject of quantum fluctuations!

Let us fix once for all a global Cartesian reference frame inE3, and define the base-category of contextsC to be the
real lineIR, representing time. That is to say, let the objects ofC be instantst ∈ IR; and let there be anC-arrow fromt to
t′, f : t → t′, if and only if t ≤ t′; so there is at most one arrow between any pair of objectst, t′ in C. Define the presheaf,
calledH, as assigning to eacht a copy of the system’s Hilbert spaceH ; (H need not beL2(IR3)—here we generalize from
wave mechanics). Writing this copy asHt, we haveH(t) := Ht. The action ofH onC-arrows is defined by the Hamiltonian
Ĥ, via its one-parameter family of unitary exponentiationsUt. If f : t → t′, thenH( f ) : Ht → Ht′ is defined byUt′−t. The
action ofUt′−t, then represents the Schrödinger-picture evolution of the system from timet to t′; and a total history of the
system (as described in the given spatial coordinate system) is represented by a global section of the presheafH. We could
similarly express in terms of presheaves Heisenberg-picture evolution: we would instead define a presheaf that assigned
to eachC-objectt a copy of the setB(H) of bounded self-adjoint operators onH (or say, a copy of some other fixed set
taken as the algebra of observables), and then have the mapsUt induce Heisenberg-picture evolution on the elements of
the copies ofB(H). A parallel discussion could be given for time evolution in classical physics: we would attach a copy of
the phase-spaceΓ to eacht, and a total history of the system (as described in the given spatial coordinate system) would be
represented by a global section of the corresponding presheaf. It transpires that the development of such a ‘history’ approach
to classical physics provides a very illuminating perspective on the mathematical structures used in the consistent-histories
approach to quantum theory [26].



Now we will present in terms of presheaves some ideas that are currently being pursued in research on foundations of
quantum theory and quantum gravity. The previous example admits an immediate generalization to the theory of causal sets.
By acausal setwe mean a partially-ordered setP whose elements represent spacetime points in a discrete, non-continuum
model, and in whichp ≤ q, with p,q ∈ P, means thatq lies in the causal future ofp. The setP is a natural base category
for a presheaf of Hilbert spaces in which the Hilbert space at a pointp ∈ P represents the quantum degrees of freedom that
are ‘localized’ at that point/context. From another point of view, the Hilbert space at a pointp could represent the history of
the system (thought of now in a cosmological sense) as viewed from the perspective of an observer localized at that point
(see [27]). The sieve, and hence logical, structure in this example is distinctly non-trivial.

PRESHEAVES FOR TOPOLOGICAL QUANTUM FIELD THEORY

Topological quantum field theory (TQFT) has a very well-known formulation in terms of category theory, and it is
rather straightforward to see that this extends naturally to give a certain topos perspective.

Recall that in differential topology, two closedn-dimensional manifoldsΣ1 andΣ2 are said to becobordantif there
is a compactn + 1-manifold,M say, whose boundary∂M is the disjoint union ofΣ1 andΣ2. In TQFT, then-dimensional
manifolds are interpreted as possible models for physical space (so that spacetime has dimensionn+1), and an interpolating
n+ 1-manifold is thought of as describing a form of ‘topology change’ in the context of a (euclideanised) type of quantum
gravity theory. In the famous Atiyah axioms for TQFT, a Hilbert spaceHΣ is attached to each spatialn-manifoldΣ, and to
each cobordism fromΣ1 to Σ2 there is associated a unitary map fromHΣ1 toHΣ2.

The collection of all compactn-dimensional manifolds can be regarded as the set of objects in a categoryC, in which
the arrows from an objectΣ1 to anotherΣ2 are given by cobordisms fromΣ1 to Σ2. The Atiyah axioms for TQFT can be
viewed as a statement of the existence of a functor fromC to the category of Hilbert spaces; indeed, this is how these axioms
are usually stated. However, from the perspective being developed in the present paper, we see that we can also think ofC
as a ‘category of contexts’, in which case we have a natural presheaf reformulation of TQFT.

CONSISTENT HISTORIES FORMALISM FOR QUANTUM THEORY AND CONTINUOUS TIME

In the ‘History Projection Operator’ (HPO) version of the consistent-histories approach to quantum theory, propositions
about the history of the system at a finite set of time points(t1, t2, . . . , tn) are represented by projection operators on the
tensor productHt1⊗Ht2⊗· · ·⊗Htn of ncopies of the Hilbert spaceH associated with the system by standard quantum theory.
The choice of this particular Hilbert space can be motivated in several different ways. The original motivation [9] was a
desire to find a concrete representation of the temporal logic of such history propositions. This Hilbert space can be seen
as the carrier of an irreducible representation of the ‘history group’ whose Lie algebra is (on the simplifying assumption
that the system is a non-relativistic point particle moving in one dimension)

[xti , xt j ] = 0, [pti , pt j ] = 0, [xti , pt j ] = i~δi j , (17)

wherei, j = 1,2, . . . , n, andxti (resp.pti ) is the Schr̈odinger-picture operator whose spectral projectors represent propositions
about the position (resp. momentum) of the system at the timeti . One advantage of the approach based on equations (17) is
that it suggests an immediate generalization to the case ofcontinuous-time histories: namely, the use of the history algebra

[xt, xt′ ] = 0, [pt, pt′ ] = 0, [xt, pt′ ] = i~τδ(t′ − t), (18)

whereτ is a constant with the dimensions of time. This continuous-time history algebra has been studied by a variety of
authors but here we will concentrate on Savvidou’s observation [26] that the notion of ‘time’ appears in two ways that
differ in certain significant respects. The main idea is to introduce a new time coordinates ∈ IR, and to associate with
it a Heisenberg picture defined from the time-averaged HamiltonianH =

∫
dtHt. Thus, in particular, one defines for the

time-indexed position operatorxt

xt(s) := exp(isH/~) xt exp(−isH/~). (19)

This new times is nota difference in values oft. Rather, if one thinks of assigning a copyHt of the system’s (usual) Hilbert
spaceH to each timet, thens parametrizes a Heisenberg-picture motion of quantitieswithinHt. Accordingly,t is called
‘external time’, ands is called ‘internal time’.

This formalism has been developed in various ways: in particular, there is a natural, dynamics-independent‘Liouville’
operator that generates translations in the external time parameter. From our topos-theoretic perspective, we note that
external time is more singular than internal time—as hinted by the delta-functions int that occur in the history algebra’s
canonical commutation relations. This suggests modelling external time, not by the usual real numbersIR, but by the reals
‘enriched’ with infinitesimals in the sense of synthetic differential geometry, and which are related in some way to the
action of the Liouville operator. This requires a non-standard model of the real line: in fact, we have to use a real number



object in a topos. This use of a topos is quite different from, and in addition to, any development of a consistent-histories
analogue of the temporal presheaf. In the latter case, the presheaf structure in the consistent-histories theory can arguably
be related to ideas of state reduction of the kind discussed by von Neumann and Lüders (see [26]).

PRESHEAVES OF PROPOSITIONS AND VALUATIONS IN QUANTUM THEORY

In quantum theory, assumption (i),i.e., that all quantities have real-number values, fails by virtue of the Kochen-
Specker theorem; and assumption (ii), that one can measure any quantity ideally, is very problematic, involving as it does
the notion of measurement. Standard quantum theory, with its ‘eigenvalue-eigenstate link’—that in stateψ there is a value
only for a quantity of whichψ is an eigenstate, viz. the eigenvalue—retains assumption (ii) only in the very limited sense
thatif the quantityA has a value,r say, according to the theory,i.e., the (pure) stateψ is an eigenvector of̂A for eigenvaluer,
then an ideal measurement ofA would have resultr. But setting aside this very special case, the theory faces the notorious
‘measurement problem’: the scarcity of values in the microrealm, due to the eigenvalue-eigenstate link, threatens to make
the macrorealm indefinite (‘Schrödinger’s cat’). It is worth distinguishing two broad approaches to it, which we are called
‘Literalism’ and ‘Extra Values’. For our topos-theoretic proposal will combine aspects of these approaches. They are:

1. Literalism . This approach aims to avoid the instrumentalism of standard quantum theory, and yet retain its scarcity
of values (the eigenvalue-eigenstate link), while solving the measurement problem: not by postulating a non-unitary
dynamics, but by a distinctivelyinterpretativestrategy. So far, there are two main forms of this approach: Everettian
views (where the eigenvalue-eigenstate link is maintained ‘within a branch’); and those based on quantum logic.

2. Extra Values. This approach gives up the eigenvalue-eigenstate link; but retains standard quantum theory’s unitary
dynamics for the quantum state. It postulates extra values (and equations for their time-evolution) for some quantities.
The quantities getting these extra values are selected eithera priori, as in the pilot-wave program, or by the quantum
state itself, as in (most) modal interpretations.

The topos-theoretic proposal combines aspects of Literalism and Extra Values. Like both these approaches, the
proposal is ‘realist’, not instrumentalist; (though it also shares with standard quantum theory, at least in its Bohrian or
‘Copenhagen’ version, an emphasis on contextuality). Like Extra Values (but unlike Literalism), it attributes values to
quantities beyond those ascribed by the eigenvalue-eigenstate link. Like Literalism (but unlike Extra Values), these additional
values are naturally defined by the orthodox quantum formalism. More specifically:all quantities get additional values (so
no quantity is somehow ‘selected’ to get such values); any quantum state defines such a valuation, and any such valuation
obeys an appropriate version of theFUNC. The ‘trick’, whereby such valuations avoid no-go theorems like the Kochen-
Specker theorem [19], is that the truth value ascribed to a proposition about the value of a physical quantity is not just ‘true’
or ‘false’!

Thus consider the proposition “A ∈ ∆”, saying that the value of the quantityA lies in a Borel set∆ ⊆ IR. Roughly
speaking, any such proposition is ascribed as a truth-value a set of coarse-grainings,f (Â), of the operator̂A that represents
A. Exactly which coarse-grainings are in the truth-value depends in a precise and natural way on∆ and the quantum state
ψ: in short, f (Â) is in the truth-value iffψ is in the range of the spectral projectorÊ[ f (A) ∈ f (∆)]. Note the contrast with
the eigenstate-eigenvalue link: our requirement is not thatψ be in the range of̂E[A ∈ ∆], but a weaker requirement. For
Ê[ f (A) ∈ f (∆)] is a larger spectral projector;i.e., in the latticeL(H) of projectors on the Hilbert spaceH , Ê[A ∈ ∆] <
Ê[ f (A) ∈ f (∆)]. So the new proposed truth-value of “A ∈ ∆” is given by the set of weaker propositions “f (A) ∈ f (∆)”
that are true in the old (i.e., eigenstate-eigenvalue link) sense. To put it a bit more exactly: the new proposed truth-value of
“A ∈ ∆” is given by the set of quantitiesf (A) for which the corresponding weaker proposition “f (A) ∈ f (∆)” is true in the
old (i.e., eigenstate-eigenvalue link) sense. To put itlessexactly, but more memorably: the new truth-value of a proposition
is given by the set of its consequences that are true in the old sense.

Let us introduce the setO of all bounded self-adjoint operatorŝA, B̂, . . . on the Hilbert spaceH of a quantum system.
We turnO into a category by defining the objects to be the elements ofO, and saying that there is an arrow from̂A to B̂
if there exists a real-valued functionf onσ(Â) ⊂ IR, the spectrum of̂A, such thatB̂ = f (Â) (with the usual definition of
a function of a self-adjoint operator, using the spectral representation). IfB̂ = f (Â), for some f : σ(Â) → IR, then the
corresponding arrow in the categoryO will be denotedfO : Â→ B̂. Define two presheaves on the categoryO, called the
dual presheafand thecoarse-graining presheafrespectively. The former affords an elegant formulation of the Kochen-
Specker theorem, namely as a statement that the dual presheaf does not have global sections. The latter is at the basis of
our proposed generalized truth-value assignments. The dual presheaf onO is the covariant functorD : O → Setdefined as
follows:

1. On objects:D(Â) is thedual of WA, whereWA is the spectral algebra of the operatorÂ; i.e. WA is the collection of all
projectors onto the subspaces ofH associated with Borel subsets ofσ(Â). That is to say:D(Â) is defined to be the set
Hom(WA, {0,1}) of all homomorphisms from the Boolean algebraWA to the Boolean algebra{0,1}.



2. On arrows: IffO : Â → B̂, so thatB̂ = f (Â), thenD( fO) : D(WA) → D(WB) is defined byD( fO)(χ) := χ|Wf (A) where
χ|Wf (A) denotes the restriction ofχ ∈ D(WA) to the subalgebraWf (A) ⊆WA.

A global element (global section) of the functorD : O → Setis then a functionγ that associates to eacĥA ∈ O an
elementγA of the dual ofWA such that iffO : Â→ B̂ (soB̂ = f (Â) andWB ⊆WA), thenγA|WB = γB. Thus, for all projectors
α̂ ∈WB ⊆WA,

γB(α̂) = γA(α̂). (20)

Since eacĥα in the latticeL(H) of projection operators onH belongs to at least one such spectral algebraWA (for
example, the algebra{0̂, 1̂, α̂, 1̂− α̂}) it follows from (20) that a global section ofD associates to each projection operator
α̂ ∈ L(H) a numberV(α̂) which is either0 or 1, and is such that, if̂α ∧ β̂ = 0̂, thenV(α̂ ∨ β̂) = V(α̂) + V(β̂). In other
words, a global sectionγ of the presheafD would correspond to an assignment of truth-values{0,1} to all propositions of
the form “A ∈ ∆”, which obeyed theFUNCcondition (20). These are precisely the types of valuation prohibited, provided
thatdimH > 2, by the Kochen-Specker theorem. So an alternative way of expressing the Kochen-Specker theorem is that,
if dimH > 2, the dual presheafD has no global sections.

However, wecanuse the subobject classifierΩ in the toposSetO of all presheaves onO to assigngeneralizedtruth-
values to the propositions “A ∈ ∆”. These truth-values will be sieves; and since they will be assigned relative to each
‘context’ or ‘stage of truth’Â in O, these truth-values will be contextual as well as generalized. Because in any topos the
subobject classifierΩ is fixed by the structure of the topos,Ω is unique up to isomorphism. Thus the family of associated
truth-value assignments is fixed, and the traditional objection to multi-valued logics—that their structure often seems
arbitrary—does not apply to these generalized, contextual truth-values. Define the appropriate presheaf of propositions.
Thecoarse-graining presheafoverO is the covariant functorG : O → Setdefined as follows:

1. On objects inO: G(Â) := WA, whereWA is the spectral algebra of̂A.

2. On arrows inO: If fO : Â→ B̂ (i.e., B̂ = f (Â)), thenG( fO) : WA → WB is defined asG( fO)(Ê[A ∈ ∆]) := Ê[ f (A) ∈
f (∆)], where, if f (∆) is not Borel, the right hand side is to be understood in the sense of Theorem 4.1 of [12]—a
measure-theoretic nicety that we shall not discuss here.

We call a functionν that assigns to each choice of objectÂ inO and each Borel set∆ ⊆ σ(Â), a sieve of arrows inO on
Â (i.e., a sieve of arrows witĥA as domain), asieve-valued valuationonG. We write the values of this function asν(A ∈ ∆).
One could equally well writeν(Ê[A ∈ ∆]), provided one bears in mind that the value depends not only on the projector
Ê[A ∈ ∆], but also on the operator (context)Â of whose spectral family the projector is considered to be a member. A
natural desideratum for any kind of valuation on a presheaf of propositions such asG is that the valuation should specify
a subobject ofG. For in logic one often thinks of a valuation as specifying the ‘selected’ or ‘winning’ propositions: in this
case, the ‘selected’ elementsÊ[A ∈ ∆] in eachG(Â). So it is natural to require that the elements that a valuation ‘selects’ at
the various contextŝA together define a subobject ofG. Subobjects are in one-one correspondence with arrows,i.e., natural
transformations,N : G → Ω. So it is natural to require a sieve-valued valuationν to define such a natural transformation
by the equationNν

A(Ê[A ∈ ∆]) := ν(A ∈ ∆). This desideratum leads directly to the analogue for presheaves of the famous
functional composition condition of the Kochen-Specker theorem [19], calledFUNC above: and which we will again call
FUNC in the setting of presheaves. A sieve-valued valuation defines such a natural transformation iff it obeys (the presheaf
version of)FUNC.

Let us recall that the subobject classifierΩ ‘pushes along’ sieves, according to (5). For the categoryO, this becomes:
if fO : Â→ B̂, thenΩ( fO) : Ω(Â)→ Ω(B̂) is defined by

Ω( fO)(S) := {hO : B→ C | hO ◦ fO ∈ S} (21)

for all sievesS∈ Ω(Â). Accordingly, we say that a sieve-valued valuationν onG satisfiesgeneralized functional composition—
for short,FUNC—if for all Â, B̂ and fO : Â→ B̂ and allÊ[A ∈ ∆] ∈ G(Â), the valuation obeys

ν(B ∈ G( f )(Ê[A ∈ ∆])) ≡ ν( f (A) ∈ f (∆)) = Ω( fO)(ν(A ∈ ∆)). (22)

TheFUNC is exactly the condition a sieve-valued valuation must obey in order to thus define a natural transformation,
i.e., a subobject ofG, by the natural equationNν

A(Ê[A ∈ ∆]) := ν(A ∈ ∆). That is: A sieve-valued valuationν on G obeys
FUNC if and only if the functions at each ‘stage of truth’Â

Nν
Â
(Ê[A ∈ ∆]) := ν(A ∈ ∆) (23)

define a natural transformationNν from G to Ω. With any quantum state there is associated such aFUNC-obeying sieve-
valued valuation. Furthermore, this valuation gives the natural generalization of the eigenvalue-eigenstate link, that is, a



quantum stateψ induces a sieve on eacĥA in O by the requirement that an arrowfO : Â→ B̂ is in the sieve iffψ is in the
range of the spectral projectorÊ[B ∈ f (∆)]. To be precise, we define for anyψ, and any∆ a Borel subset of the spectrum
σ(Â) of Â:

νψ(A ∈ ∆) := { fO : Â→ B̂ | Ê[B ∈ f (∆)]ψ = ψ}
= { fO : Â→ B̂ | Prob(B ∈ f (∆);ψ) = 1}, (24)

whereProb(B ∈ f (∆);ψ) is the usual Born-rule probability that the result of a measurement ofB will lie in f (∆), given the
stateψ. This definition generalizes the eigenstate-eigenvalue link, in the sense that we require not thatψ be in the range of
Ê[A ∈ ∆], but only that it be in the range of the larger projectorÊ[ f (A) ∈ f (∆)]. One can check that the definition satisfies
FUNC, and also has other properties that it is natural to require of a valuation discussed in [12, 13, 28].

TOPOSES AND THEORY OF RELATIVITY

The system of axioms for the Special theory of relativity contains fewer primary notions and relations, is simple,
and lead directly to the ultimate goal (see review [29]). In the case of the General relativity it is difficult to introduce a
smoothness (see [30, 31, 32]).

Does the unified way of axiomatization of these different physical theories exist? Does the unified way of axiomatization
of these different physical theories exist? The language of topos theory [8, 7] gives the unified way of axiomatization of the
Special and General Relativity, the axioms being the same in both cases. Selecting one or another physical theory amounts
to selecting a concrete topos. Here we give a topos-theoretic causal theory of space-time.

Let E be an elementary topos with an object of natural numbers, and letRT be the object of continuous real numbers
[33]. An affine morphismα : RT → RT is a finite composition of morphisms of the form1RT , ⊗ ◦ (λ × 1RT ) ◦ j, ⊕ ◦
(1RT × µ) ◦ j, where⊕,⊗ are the operations of addition and multiplication inRT respectively,λ, µ are arbitrary elements in
RT , and j : RT ' 1× RT is an isomorphism. LetΓ be the set of all affine morphisms fromRT to RT . An affine objectin E
is an objecta together with two sets of morphisms:

Φ ⊂ HomE(RT ,a), Ψ ⊂ HomE(a,RT)

such that the following conditions hold:
1) For anyφ ∈ Φ, ψ ∈ Ψ there isψ ◦ φ ∈ Γ.
2) If f ∈ HomE(RT ,a) \ Φ then there existsψ ∈ Ψ such thatψ ◦ f < Γ.
3) If f ∈ HomE(a,RT) \ Ψ then there existsφ ∈ Φ such thatf ◦ φ < Γ.
4) For any monomorphismsf : Ω 7→ a,g : Ω 7→ RT there existsφ ∈ Φ such thatφ ◦ g = f .
5) For any monomorphismsf : Ω 7→ a,g : Ω 7→ RT there existsψ ∈ Ψ such thatψ ◦ f = g.
HereΩ is the subobject classifier inE. An affine object in categorySet is the set equipped with an affine structure

[34]. In the toposBn(M) and in the spatial toposTop(M) (see notations in [8]), an affine object is a fiber bundle with base
M and affine space as fibers.

A categorical description of the Relativity means the introduction of the Lorentz structure either in an affine space
or in a fiber bundle with affine spaces as fibers, which can be done by defining in the affine space a family of equal and
parallel elliptic cones or a relativistic elliptic conal order [35] (we use the notations from [8]).

Letabe an affine object in the toposE. An orderin a is an objectP together with a collection of subobjectspx : P 7→ a,
wherex : 1→ a is an arbitrary element, such that:

1) x ∈ px.
2) If y ∈ px, thenz ∈ py impliesz ∈ px.

The order〈P, {px}〉 is denoted asO. A morphism f : a→ a is calledaffine, if ψ ◦ f ◦ φ ∈ Γ for anyφ ∈ Φ andψ ∈ Ψ.
We denote the set of all affine morphisms by Aff(a).

LetA ⊂ Aff (a) consist of all commuting morphisms. An orderO is invariant with respect toA if for any px, py there
existsgxy ∈ A such thatgxy ◦ px = py. A morphism f : a→ a preservesan orderO, if for eachpx there existspy such that
f ◦ px = py. The collection of all morphisms preserving an orderO that is invariant with respect toA is denoted byAut(O).

A ray is a morphismλ : R+ 7→ RT
ϕ−→ a, whereφ ∈ Φ0 ⊂ Φ, and for anyφ ∈ Φ0 there is nox : 1→ a such thatφ = x◦!.

Here! : RT → 1 andR+ is the subobject of objectRT consisting of thoset for which 0 ≤ t (see definition of order inRT

in [33]). An orderO is calledconic if 1) for everyy ∈ px there exists a rayλ ⊂ px such thatx, y ∈ λ, and 2)x is the origin
of λ, i.e. if µ is a ray andy ∈ µ ⊂ λ, µ , λ, thenx < µ. An orderO hasthe acute vertexor pointedone if for eachpx there
does not existφx ∈ Φ0 such thatφx ⊂ px. An orderO is complete, if for any elementz : 1→ a andpx there exist different
elementsux, vx : 1 → a andφ ∈ Φ0 such thatz,ux, vx ∈ φ andux, vx ∈ px. An elementu ∈ px is calledextremeif there
existsφ ∈ Φ0 for which u ∈ φ, buty < φ for all y ∈ px, y , u. A conic orderO is said to bestrict if, for each nonextreme



elementu ∈ px, andv ∈ px, v , u, and each rayλ with origin u such thatv ∈ λ, there exists an extreme elementw ∈ λ,
andw ∈ px. An affine objecta with an orderO, which is complete, strict, conic, has an acute vertex, and is invariant with
respect toA is said to beLorentzif for eachx : 1→ a and each extreme elementsu, v ∈ px, whereu, v , x there exists a
f ∈ Aut(O) such thatf ◦u = v, f ◦ x = x. A Lorentz object in the toposSetis an affine space admitting a pseudo-Euclidean
structure defined by a quadratic formx2

0 −
∑n

i=1 x2
i , wheren is finite or equal to∞, andAut(O) is the Poincaŕe group (see

[35]). A Lorentz object in the toposTop(M) is a fiber bundle overM with fibers equipped with an affine structure and a
continuous pseudo-Euclidean structure of finite or infinite dimension. It is quite possible to take not only the toposesSet,
Bn(M), or Top(M), but also any others that have an affine object.

The existing categorical determination of the set theory and determination ofTop(M) between elementary toposes
gives the possibility to speak about the solution of problem of categorical description of the Theory of Relativity. IfE is a
well-pointed topos satisfying the axiom of partial transitivity with a Lorentz objecta, thenE is a model of set theoryZ and
a is a model of the Special Relativity. IfE is a topos defined overSet that has enough points and satisfies the axiom (SG)
(see [7]) with a Lorentz objecta, thenE is a toposTop(M) anda is a model of the General Relativity.

REGULAR OBSTRUCTED CATEGORIES AND TOPOSES

Let us describe the concept ofn-regularity (introduced in [36, 37] for supermanifolds) in the topos theory. We use the
previously developed notions of obstructed categories, functors, natural transformations (defined in [15, 38, 16, 39]) as a
certain nonstandard topos. All definitions of are in general case the same like in the usual topos theory [7, 8, 4], but the
preservation of the identityidX, is replaced by the requirement of preservation of obstructionse

(n)
X and certain compatibility

conditions are added.
Let C be a topos [7, 8]. Ann-regular cocycle(X, f ) in C is a sequence of composable arrows inC

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ X1, (25)

such that
f1 ◦ fn ◦ · · · ◦ f2 ◦ f1 = f1,
f2 ◦ f1 ◦ · · · ◦ f3 ◦ f2 = f2,

fn ◦ fn−1 ◦ · · · ◦ f1 ◦ fn = fn,

(26)

and
e

(n)
X1

:= fn ◦ · · · ◦ f2 ◦ f1 ∈ End (X1),
e

(n)
X2

:= f1 ◦ · · · ◦ f3 ◦ f2 ∈ End (X2),

e
(n)
Xn

:= fn−1 ◦ · · · ◦ f1 ◦ fn ∈ End (Xn).

(27)

Let (X, f ), (Y,g) be twon-regular cocycles inC. An n-regular cocycle morphismα : (X, f ) → (Y,g) is a sequence of
morphismsα := (α1, . . . , αn) such that we have the relation

αi ◦ fi = gi ◦ αi (28)

for everyi = 1, ..., n,1 . If every componentαi of α is invertible, thenα is said to be ann-regular cocycle equivalence. It is
obvious that then-regular cocycle equivalence is an equivalence relation. We postulate that all definitions are formulated
n-regular cocycles inC up to then-regular cocycle equivalence, andi = 1,2, ..., n. Let (X, f ) be ann-regular cocycle inC,
then the correspondencee(n)

X : Xi ∈ C0 7→ e
(n)
Xi
∈ End (Xi), i = 1,2, . . . , n, is called ann-regular cocycle obstruction structure

on (X, f ) in C. We have the following relations

fi ◦ e(n)
Xi

= fi , e
(i)
Xi+1
◦ fi = fi , e

(n)
Xi
◦ e(n)

Xi
= e

(n)
Xi

(29)

for i = 1,2, . . . , n(mod n + 1). Let (X, f ) be ann-regular sequence inC. An n-regular subcocycle(Y,g) of (X, f ) is an
n-regular cocycle of the following forms

Y1
g1−→ Y2

g2−→ · · · gn−1−→ Yn
gn−→ Y1, (30)

whereYi is a subobject ofXi . Let (X, f ), (Y,g) be twon-regular cocycles inC. An n-regular cocycle product(X × Y, f × g)
of (X, f ) and(Y,g) is ann-regular cocycle

X1 × Y1
f1×g1−→ X2 × Y2

f2×g2−→ · · · fn−1×gn−1−→ Xn × Yn
fn×gn−→ X1 × Y1. (31)



An n-regular obstructed category is a directed graphC with an associative composition and such that every object is
a component of ann-regular cocycle [16, 39].

LetC andD be twon-regular obstructed categories. We postulate that all definitions are formulated on everyn-regular
cocycle(X, f ) in C up to then-regular cocycle equivalence, andi = 1,2, . . .(modn).

An or n-regular cocycle functorF (n) : C → D is a pair of mappings(F (n)
0 ,F (n)

1 ), whereF (n)
0 sends objects ofC into

objects ofD, andF (n)
1 sends morphisms ofC into morphisms ofD such that [15, 16]

F (n)
1 ( fi ◦ fi+1) = F (n)

1 ( fi) ◦ F (n)
1 ( fi+1), F (n)

1

(
e

(n)
Xi

)
= e

(n)
F0(Xi )

, (32)

whereX ∈ C0. LetC andD ben-regular obstructed categories, and let

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ X1 (33)

be ann-regular cocycle inC. If F (n) : C→ D is n-regular cocycle functor, then

F (n)( fi) ◦ e(n)
Xi

= F (n)( fi). (34)

It is a simple calculationF (n)( fi) = F (n)
(
fi ◦ e(n)

Xi

)
= F (n) ( fi) ◦ F (n)

(
e

(n)
Xi

)
= F (n)( fi) ◦ e(n)

F0Xi
. LetF (n) andG(n) be two

n–regular cocycle morphisms of the categoryC into the categoryD. An n-regular natural transformations : F (n) → G(n)

of F (n) intoG(n) is a collection of functorss = {sXi : F0(Xi)→ G0(Xi)} such that

sXi+1 ◦ F (n)
1 ( fi) = G(n)

1 ( fi) ◦ sXi , (35)

for fi : Xi → Xi+1. There is an obstructed topos(C, e(n)) equipped with an obstruction structuree(n)
X : X ∈ C0 7→ eX ∈ End (X)

for everyn-regular cocycle(X, f ) in C. Let C be ann-regular obstructed category. This means that for every objectX in
C, there isn-regular cocycle(X, f ) and the corresponding obstruction structuree(n)

X : Xi ∈ C0 7→ eXi ∈ End (Xi), i =

1,2, . . . , n. Let us describe the obstruction structure for subobjects and products. If(Y,g) is a subcocycle of(X, f ), then the
corresponding obstruction structuree(n)

Y : Yi ∈ C0 7→ e
(n)
Yi
∈ End (Yi) is well defined if and only ife(n)

Yi
is the restriction ofe(n)

Xi

to Yi . One can describe products and the terminal object.
An n-regularization<eg(n)(C) of C is a collection of alln-regular cocycles inC and correspondingn-regular cocycle

morphisms up to ann-regular cocycle equivalence. There is a topos<eg(n)(C) calledn-regular topos onC. Indeed, then-
regular cocycle equivalence is an equivalence relation. Equivalence classes of this relation are just elements of<eg(n)(C).
Ourn-regular cocycles and obstruction structures are unique up to the equivalence. For every equivalence class ofn-regular
cocycles, there is the corresponding class ofn-regular cocycle obstruction structure on it. The correspondence is a one to
one. Subobjects are given by subcocycles, and product are the above cocycle product. One can describe the generalized
truth object. All is up to an equivalence. Finally, one can introduce the notion ofn-regular obstructed presheaves, Heyting
algebras in an analogous way. It should be important to a study of the noninvertible histories approach to a quantum physics
and related topics. It will be done explicitly in forthcoming publications.
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APPENDIX

Number systems in synthetic differential geometry

The Naturals, Rationals and Cauchy Reals. The naturals,N, in any topos that possesses them, can be thought of
in exactly the same way as the naturals we are all familiar with. Showing this is another matter, and is left to texts such
as [7]. From the natural numbersN, the integersZ and rationalsQ can be easily constructed. These objects also behave as
expected. Classical reasoning is entirely permissible when considering the arithmetic of these number systems, as they are
all decidable objects. So too is the object of Cauchy realsRC, constructed as equivalence classes of sequences of rationals.
As an example, the topos of sheaves over[0,1] has a natural numbers object. It is given by

N(U) := { f : U −→ N | f is continuous}
N(V

i−→ U)( f ) := f |V
Note that in the topos of sheaves over[a,b], wherea = b, the natural numbers object is the same as that of set theory.
The Smooth Reals. The smooth real object was discovered inhabiting many toposes. Some of its properties were

abstracted to provide the foundation for synthetic differential geometry, however the smooth real object of one topos
generally behaves slightly differently to those of others. The axiomatic scheme we assume for the smooth reals is as



follows. R is to model the axioms (A1) - (A15) proposed by I. Moerdijk and G. E. Reyes, listed on pages 295-298 of
their work [40]. We useU(R) to denote the subobject of invertible elements. The most relevant of those axioms for this
paper are the following:

Axiom [A1] . R is a commutative ring with unit.
Axiom [A2] . R is local, such that0 , 1 (∀x).
Axiom [A3] . (R, <) is a Euclidean ordered local ring, such that

0 < 1

(0 < x) ∧ (0 < y)⇒ (0 < x + y) ∧ (0 < xy)

x ∈ U(R)⇔ 0 < x∨ x < 0

(0 < x)⇒ ∃y(x = y2)

We take the following additional field axiom, relating distinguishability and invertibility, to hold true for our ringR.
Axiom [Field] . R is a field in the following sense(∀x1, . . . , xn ∈ R).
Also assumed is the following topological axiom
Axiom [Open Cover]. (∀x ∈ R).
This says that the object{(←,1), (0,→)} is an open cover. Fundamental to synthetic differential geometry are the

differentiation and integration axioms
Axiom [Kock-Lawvere] . For eachf : D −→ R, there exists a uniqueb ∈ R, such that for everyd ∈ D one has

f (d) = f (0) + d.b.
Axiom [Integration] . For eachf : R −→ R, there exists a uniqueF : R −→ R, such thatF′(x) = f (x), F(0) = 0.
The well-adapted models of synthetic differential geometry discovered are all Grothendieck toposes (categories of

sheaves over sites), and extensive studies of the synthetic differential geometry aspects of these toposes (and others) have
been made in [40]. Those readers who wish to examine the toposes are referred to this source. The studies have revealed
some of the variable behaviors of the smooth reals as one moves from one topos to another. It is inevitable that there will
be preferred choices of topos for the construction of quantum mechanics within.

It is found that the most basic topos modelling parts of synthetic differential geometry (SetsL
op

) does not possess the
nicest of properties regardingR. For example, in this topos, the interval[0,1] is not compact,R is not a local ring, and
many of the axioms of the previous section are not modelled. It is difficult to imagine this smooth real object modelling the
space around us. The toposesF andG detailed in [40] validate all of the axioms required in the body of this paper.
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Рассмотрена теория топосов с физической точки зрения. Представлены и объяснены основные идеи понятия топос. Сделанобзор связей алгебр классических и квантовых наблюдаемых, альтернативных концепций пространства-времени, теории отно-сительности и квантовой гравитации, приближение обобщенных историй к квантовой теории вселенной в целом. Концепциятопоса обобщена, используя развитый авторами формализм n-регулярных препятственных категорий.
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