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The most important and interesting question in fundamental physics is how quantum mechanics and general relativity
can be reconciled in a theory of ‘quantum gravity’ (for review see e.qg. [1, 2]). It is well-known that the classical physics is
based on the continuum concept of space-time, on the contrary the quantum gravity needs a discrete concept of space-time.
The concept of smooth manifolds, points and coordinate systems are fundamental objects of classical theories. Quantum
physics involve objects of quite different nature, namely operators acting on Hilbert space.

Unified description of classical gauge theories and general relativity and the corresponding space-time quantization
leads to some generalization of physical ideas and corresponding mathematical structures. In physics, it is the sudden
changes in viewpoint that go on to inspire progress shifting usually generalizations not involving total abandonment of
the original ideas. The mathematically motivated shift from the use of the magnetic field to the more commonly discussed
vector potential was one such change. Another was the decision of the earlier natural philosophers to accept the use of
the number zero in physics. Such changes in viewpoint are often resisted by aficionados of the old ways. First, working
with a new viewpoint may slow the prediction process of observed phenomena (ask an engineer to work with the full
relativistic vector potential when using magnets). Second, the new viewpoint may predict exactly the same set of results for
any experiment. Thirdly, the new viewpoint requires a greater repertoire of concepts, not all of which immediately sound
physically plausible (how does one observe no bananas? Or empty space?). Those trained to think in the old reliable ways
see little point in learning a new way to think, a way that simply slows one’s ability to predict merely the same results.
The development of gauge field theory threw new physical fields into the picture. Fields that were not directly observable.
Physicists now treat these fields as more real than their more accessible predecessors. The real gain in having more than
one viewpoint is that a more general feel for physics is obtained. It is this which inspires new ideas. There are various
approaches to the notion of a topos [3], but we will focus here on one that emphasizes the underlying logical structure and
we will only discuss one, albeit crucial, clause of the definition of a topos: the requirement that a topos contain a ‘subobject
classifier’. This is a generalization of the idea, familiar in set-theory, of characteristic functions. The generalization will
turn out to have a particularly interesting logical structure in the case of the kind of topos: a topos of presheaves [4, 5].

A topos is a particular type of category. Very roughly, it is a category that behaves much like the category of sets;
indeed, this category, which we will calet is itself a topos.

The goal of the paper is to discuss the topos theory from physical point of view (see e.g. [2, 6, 5]). We give some
basic ideas of topos [3, 7, 8, 4] and concentrate our attention on the connection with algebras of classical and quantum
observables, alternative concept of space-time, theory of relativity and quantum gravity, the generalized histories approach
[9, 10, 11] to a quantum theory of the whole universe [12, 13, 14]. Then using formalisiregtilar obstructed categories
[15, 16] we generalize the concept of a topos in a similar way.

TOPOSES AND CATEGORIES

We recall that a category (see e.g. [17]) consists of a collectiobjects and a collection ofirrows (or morphismg,
with the following three properties. (1) Each arrdws associated with a pair of objects, known asdicgnain(dom f)
and thecodomain(cod f), and is written in the fornf : B — A whereB = domf andA = codf. (2) Given two arrows
f : B— Aandg: C — B(so that the codomain afis equal to the domain df), there is a composite arrofw g : C — A;
and this composition of arrows obeys the associative law. (3) Each dbjeas an identity arrowda : A — A, with the
properties that foralf : B— Aandallg: A— C,idao f = f andgoida = @.

We have already mentioned the prototype category (indeed, t8po&) which the objects are sets and the arrows are
ordinary functions between them (set-maps). In many categories, the objects are sets equipped with some type of additional



structure, and the arrows are functions that preserve this structure (hence the word ‘morphism’). An obvious algebraic
example is the category of groups, where an object is a group, and an firrdds — G, is a group homomorphism

from G; to G,. (More generally, one often defines one category in terms of another; and in such a case, there is often only
one obvious way of defining composition and identity maps for the new category.) However, a category need not have
‘structured sets’ as its objects. An example is given by any partially-ordered set (‘g@skan be regarded as a category

in which (i) the objects are the elementsfafand (i) if p,q € P, an arrow fromp to q is defined to exist if, and only if,

p < qin the poset structure. Thus, in a poset regarded as a category, there is at most one arrow between any pair of objects
p.ge®.

In any category, an objedt is calleda terminal(resp.initial) object if for every objeci there is exactly one arrow
f:A—>T(resp.f : T — A). Any two terminal (resp. initial) objects are isomorphic (two objes@ndB in a category
are said to bésomorphicif there exists arrowsg : A — Bandg : B — Asuch thatf o g = idg andgo f = ida). So we
normally fix on one such object; and we write ‘the’ terminal (resp. initial) objedt@ssp.0). An arrowl — Ais called a
point, or aglobal elementof A. For example, applying these definitions to our exanggeof a category, we find that (i)
each singleton set is a terminal object; (ii) the emptydgstinitial; and (iii) the points ofA give a ‘listing’ of the elements
of A.

We now introduce a very special kind of category called a ‘topos’ [7, 8]. We will discuss only one clause of the
definition of a topos: the requirement that a topos contain a generalization of the set-theoretic concept of a characteristic
function; this generalization is closely related to what is called a ‘subobiject classifier’.

Recall that characteristic functions classify whether an elemiih a given subseh of a setX by mappingx to 1 if
x e A, and to0 if x ¢ A. More fully: for any setX, and any subset C X, there is a characteristic functign : X — {0, 1},
with ya(x) = 1 or 0 according ag € Aor x ¢ A. One thinks ofl0, 1} as the truth-values; angh classifies the various
for the set-theoretically natural questiorx € A?”. Furthermore, the structure 8et—the category of sets—secures the
existence of this set of truth-values and the various functignsn particular,{0, 1} is itself a setj.e. an object in the
categorySet, and for eactA, X with A C X, ya is an arrow fromX to {0, 1}. It is possible to formulate this ‘classifying
action’ of the varioug s in general category-theoretic terms, so as to give a fruitful generalization.

In any category, one can define a categorical analogue of the set-theoretic idea of subset: it is called a ‘subobject’.
More precisely, one generalizes the idea that a sube€X has a preferred injective €., one-to-one) mag — X sending
x € Ato x € X. For category theory provides a generalization of injective maps, called ‘monic arrows’ or ‘monics’; so that
in any category one defines a subobject of any obfeict be a monic with codomaiK.

Any topos is required to have an analogue, writterof the sef{0, 1} of truth-values. That is to say: just & 1} is
itself a set—e., an object in the categoiyetof sets—so also in any topaQ,is an object in the topos. And just as the set
of subsets of a given s&tcorresponds to the set of characteristic functions from subset$aoif0, 1}; so also in any topos,
there is a one-to-one correspondence between subobjects of anXgect arrows fronX to Q. In a toposQ2 acts as an
object of generalized truth-values, just{@sl} does in set-theory; (thoughtypically has more than two global elements).
Intuitively, the elements of2 are the answers to a natural ‘multiple-choice question’ about the objects in the topos, just
as "x € X?” is natural for sets. An example: A s¥tequipped with a given functioa : X — X is called anendomap
written (X; @); and the family of all endomaps forms a category—indeed, a topos—when one defines an arr@; trpm
to (Y; B) to be an ordinary set-functiof between the underlying sets, frafto Y, that preserves the endomap structure,

i.e, f oa = Bo f. Applying the definition of a subobject, it turns out that a subobjed®otr) is a subset oK that is

closed undet, equipped with the restriction aef: i.e., a subobject i$Z, « |7), with Z € X and such tha&(Z) c Z. So a

natural question, giver € X and a subendomaf, « |z), is: “How many iterations ofr are needed to send(or rather

its descendanty(x) or a?(x) or @3(x) ...) intoZ?” The possible answers a@(i.e., x € Z)’,* 1’,* 2,..., and ‘infinity (.e.,

the descendants never enil; and if the answer foix is some natural numbet (resp.0, infinity), then the answer for

a(x) is N — 1 (resp.0, infinity). So the possible answers can be presented as an endomap, with the elements of the base-set
labelled as ‘0’, ‘1, ‘2, ..., and &', and with the mapr acting as followsa : N— N-1forN=1,2,...,anda : 0 - O,

a @ oo > co. And it turns out that this endomap is exactly the obfeah the category of endomaps! Recall that in any topos

Q is an object in the topos, so that hékenust itself be an endomap, a set equipped with a function to itself. This example
suggests tha is fixed by the structure of the topos concerned. And indeed, this is so in the precise sense that, although
the clause in the definition of a topos that postulates the existerieelodracterize® solely in terms of conditions on the

topos’ objects and arrows) is provably unique (up to isomorphism).

In any toposQ has a natural logical structure. More exacfiyhas the internal structure of a Heyting algebra object:
the algebraic structure appropriate for intuitionistic logic [18]. In addition, in any topos, the collection of subobjects of any
given objectX is a complete Heyting algebra (a locale). This sort of Heyting algebra structure in more detail below, for
the case that concerns us—presheaves. For the moment we note only the general point, valid for any topos, that because
Q is fixed by the structure of the topos concerned, and has a natural Heyting structure, a major traditional objection to
multi-valued logics—that the exact structure of the logic, or associated algebras, seems arbitrary—does not apply here.



TOPOSES IN QUANTUM THEORY

Quantum theory has several interpretative problems, about such topics as measurement and non-locality; each of
which can be formulated in several ways. But workers in the field would probably agree that all the problems center around
the relation between—on the one hand—the values of physical quantities, and—on the other—the results of measurement.
For our purposes, it will be helpful to put this in terms of statements: so the issue is the relation between “The Auantity
has a value, and that valueris (wherer is a real number) and “If a measurementof made, the result will bg’.

In classical physics, this relation is seen as unproblematic. One assumes that, at each moment of time:

(i) every physical quantity has a real number as a value (relative to an appropriate choice of units); and

(i) one can measure any quantRyideally’, i.e.in such a way that the result obtained is the value fabssessed before
the measurement was made; thus “epistemology models ontology”.

Assumption(i) is implemented mathematically by the representation of quantities as real-valued functions on a state
spacd; so that, in particular, the statement “the valuedd§ r” (r € R) corresponds té\{r}, the subset of that is the
inverse image of the singleton gef ¢ R under the functiorA : I' — R that represents the physical quantityThus, in
particular, to any statee I' there is associated a ‘valuation’ (an assignment of values) on all quantities, defined by:

VS(A) := A(9). (1)

More generally, the proposition “the value Afis in A” (where A ¢ R) corresponds to the subs&t!(A) of I'; these
subsets form a Boolean lattice, which thus provides a natural representation of the ‘logic’ of propositions about the system.
In particular, corresponding to the real-numbered valuafioon quantities, defined by a state I', we have 40, 1}-valued
valuation (a truth-value assignment) to propositions:

VS(A€ A) = 1if A(S) € A; otherwiseVS(A € A) = 0. 2)

Thus, in particular, in classical physics each proposition about the system at some fixed time is regarded as being either
true or false.

Note that assumptiafii) is incorporated implicitly in the formalism—namely, in the absence of any explicit representation
of measurement—by the fact that the funct®dnI’ — R suffices to represent the quantysince its values (in the sense
of ‘values of a function’) are the possessed values (in the sense of ‘values of a physical quantity’), and these would be
revealed by an (ideal) measurement.

In quantum theory, on the other hand, the relation between values and results, and in particular ass(ijrgtihns
(i), are notoriously problematic. The state-space is a Hilbert spa@equantityA is represented by a self-adjoint operator
A (which, with no significant loss of generality, we can assume throughout to be bounded), and a statement about values
“A e A" corresponds naturally to a linear subspacé-bfor, equivalently, to a spectral project&A € A], of A).

Assumption(i) above (the existence of possessed values for all quantities) now fails by virtue of the famous Kochen-
Specker theorem [19]; which says, roughly speaking, that prowdde@) > 2, one cannot assign real numbers as values
to all quantum-theory operators in such a way that for any opeA’ﬂod any function of iff (A) (f a function fromR to R),
the value off (A) is the corresponding function of the value/f(On the other hand, in classical physics, this constraint,
called FUNC, is trivially satisfied by the valuationgs.) In particular, it is no longer possible to assign an unequivocal
true-false value to each proposition of the ford &€ A”. In a strict instrumentalist approach to quantum theory, the non-
existence of such valuations is of no great import, since this interpretation of the theory deals only with the counterfactual
assertion of the probabilities of what values would be obtaihsditable measurements are made.

However, strict instrumentalism faces severe problems (not least in quantum gravity); and the question arises therefore
of whether it may not after all be possible to retain some ‘realist flavor’ in the theory by, for example, changing the logical
structure with which propositions about the values of physical quantities are handled. One of our claims is that this can
indeed be done by introducing a certain topos perspective on the Kochen-Specker theorem. For the moment, we just remark
that no-go theorems like that of Kochen and Specker depend upon the fact that the set of all spectral projectonsof
a non-Boolean, indeed non-distributive, lattice; suggesting a non-Boolean, indeed non-distributive, ‘quantum logic’. This
alluring idea, originated by Birkhoff and von Neumann [20], has been greatly developed in various directions. The Dalla
Chiara and Giuntini’'s masterly recent survey [21] includes recent developments that generalize the basic correspondence
between subspaces and propositions about values, so as to treat so-called ‘unsharp’ (‘operational’) quantum physics; on
this see also [22] and other papers in this issue. The logic associated with the topos-theoretic proposals here is not non-
distributive. On the contrargnytopos has an associated internal logical structureigtdistributive. This retention of the
distributive law marks a major departure from the dominant tradition of quantum logic stemming from Birkhoff and von
Neumann.



On the other hand, the proposals do involve non-Boolean structure since the internal logic of a topos is ‘intuitionistic’,
in the sense that the law of excluded middle may not hold (although for some toposes, such as the category of sets, it does
apply). Some intuitionistic structures also arise in the dominant ‘non-distributive’ tradition in quantum logic; for example,
in the Brouwer-Zadeh approach to unsharp quantum theory, cf. [23].

TOPOSES IN QUANTUM GRAVITY

The problem of realism becomes particularly acute in the case of quantum gravity. This field is notoriously problematic
in comparison with other branches of theoretical physics, not just technically but also conceptually. In the first place, there
is no clear agreement about what the aim of a quantum theory of gravity should be, apart from the broad goal of in some
way unifying, or reconciling, quantum theory and general relativity. That these theories do indeed conflict is clear enough:
general relativity is a highly successful theory of gravity and spacetime, which treats matter classically (both as a source
of the gravitational field, and as influenced by it) and treats the structure of spacetime as dynamical; while quantum theory
provides our successful theories of matter, and treats spacetime as a fixed, background structure.

Much has been written about the conceptual problems that arise in quantum gravity; (for review see [14]). But in the
present context it suffices to say that these are sufficiently severe to cause a number of workers in the field to question many
of the basic ideas that are implicit in most, if not all, of the existing programs. For example, there have been a number
of suggestions that spatio-temporal ideas of classical general relativity such as topological spaces, continuum manifolds,
space-time geometry, micro-causality, etc. are inapplicable in quantum gravity.

More iconoclastically, one may doubt the applicability of quantum theory itself, notwithstanding the fact that all
current research programs in quantum gravity do adopt a more-or-less standard approach to quantum theory. In particular,
as we shall discuss shortly, there is a danger of ceataiiori, classical ideas about space and time being used unthinkingly
in the very formulation of quantum theory; thus leading to a type of category error when attempts are made to apply this
theory to domains in quantum gravity where such concepts may be inappropriate.

CONTINUUM IN PHYSICAL THEORY

We will now consider the use of the continuunie; of real and complex numbers—in the formulation of our physical
theories in general. There are two natural alternative conceptions of space and time, which will involve the use of topos
theory. We give this discussion before introducing toposes, since: (i) it is independent of the logical issues that will be
emphasized in the rest of this paper; and accordingly, (i) it can be understood without using details of the notion of a topos.
So let us ask: why do we use the continuuu, the real numbers, in our physical theories? The three obvious answers are:

(i) to be the values of physical quantities; (ii) to model space and time; and (iii) to be the values of probabilities. But let us
pursue a little the question of what justifies these answers: we will discuss them in turn.

As to (i), the first point to recognize is of course that the whole edifice of physics, both classical and quantum, depends
upon applying calculus and its higher developments (for example, functional analysis and differential geometry) to the
values of physical quantities. But in the face of this, one could still take the view that the success of these physical theories
only shows the ‘instrumental utility’ of the continuum—and not that physical quantities really have real-number values. This
is not the place to enter the general philosophical debate between instrumentalist and realist views of scientific theories; or
even the more specific question of whether an instrumentalist view about the continuum is committed to somehow rewriting
all our physical theories without use Bf for example, in terms of rational numbers (and if so, how he should do it!). Suffice
it to say here that the issue whether physical quantities have real-number values leads into the issue whether space itself
is modelled usindR. For not only is length one (obviously very important!) quantity in physics; also, one main, if not
compelling, reason for taking other quantities to have real-number values is that results of measuring them can apparently
always be reduced to the position of some sort of pointer in space—and space is modelld®l. using

We note that the formalism of elementary wave mechanics affords a good example pfian adoption of the idea
of a continuum model of space: indeed, th&n ¥(X) represents space, and in the theory this observable is modelled as
having a continuous spectrum; in turn, this requires the underlying Hilbert space to be defined over the real or complex
field.

So we turn to (ii): why should space be modelled udt®More specifically, we ask, in the light of our remarks about
(i): Can any reason be given apart from the (admittedly, immense) ‘instrumental utility’ of doing so, in the physical theories
we have so far developed? In short, our answer is No. In particular, we believe there is rooad reason why space
should be a continuum; similarlgnutatis mutandigor time. But then the crucial question arises of how this possibility of
a non-continuum space should be reflected in our basic theories, in particular in quantum theory itself, which is one of the
central ingredients of quantum gravity.

As to (iii), why should probabilities be real numbers? Admittedly, if probability is construed in terms of the relative
frequency of a result in a sequence of measurements, then real numbers do arise as the limits of infinite sequences of finite
relative frequencies (which are all rational numbers). But this limiting relative frequency interpretation of probability is



disputable. In particular, it seems problematic in the quantum gravity regime where standard ideas of space and time might
break down in such a way that the idea of spatial or temporal ‘ensembles’ is inappropriate.

On the other hand, for the other main interpretations of probability—subjective, logical, or propensity—there seems
to us to be no compelling priori reason why probabilities should be real numbers. For subjective probability (roughly:
what a rational agent’s minimum acceptable odds, for betting on a proposition, are or should be): many authors point out
that the use oR as the values of probabilities is questionable, whether as an idealization of the psychological facts, or as
a norm of rationality. For the logical and propensity interpretations—which are arguably more likely to be appropriate for
the quantum gravity regime—the uselfas the values of probabilities is less discussed. But again, we sa@iiari
reason forR.It seems to us that in the literature, the principal ‘justification’ givenRois the mathematical desideratum
of securing a uniqueness claim in a representation theorem about axiom systems for qualitative probability; the claim is
secured by imposing a continuity axiom that excludes number-fields othelRhesthe codomain of the representing
probability-function. Indeed, we would claim that while no doubt in some cases, one ‘degree of entailment’ or ‘propensity’
is ‘larger’ than another, it also seems possible that in other cases two degrees of entailment, or two propensities, might
be incomparable—so that the codomain of the probability-function should be, not a linear order, but some sort of partially
ordered set (equipped with a sum-operation, so as to make sense of the additivity axiom for probabilities).

ALTERNATIVE CONCEPTIONS OF SPACETIME

Here we turn to briefly sketch two alternative conceptions of space and time. Both involve topos theory, and indeed
raise the idea—even more iconoclastic than scepticism about the continuum— that the use of set theory itself may be
inappropriate for modelling space and time.

In standard general relativity—and, indeed, in all classical physics—space (and similarly time) is modelled by a set,
and the elements of that set are viewed as corresponding to points in space. However, if one is ‘suspicious of points'—
whether of spacetime, of space or of time (instants)—it is natural to try and construct a theory based on ‘regions’ as
the primary concept; with ‘points'—if they exist at all—being relegated to a secondary role in which they are determined
by the ‘regions’ in some way (rather than regions being sets of points, as in the standard theories). For time, the natural
word is ‘intervals’, not ‘regions’; but we shall use only ‘regions’, though the discussion to follow applies equally to the
one-dimensional case—and so to time—as it does to higher-dimensional cases, and so to space and spacetime.

So far as we know, the first rigorous development of this idea was made in the context of foundational studies in
the 1920s and 1930s, by authors such as Tarski. The idea was to write down axioms for regions from which one could
construct points, with the properties they enjoyed in some familiar theory such as three-dimensional Euclidean geometry.
For example, the points were constructed in terms of sequences of regions, each contained in its predecessor, and whose
‘widths’ tended to zero; (more precisely, the point might be identified with an equivalence class of such sequences). The
success of such a construction was embodied in a representation theorem, that any model of the given axiom system for
regions was isomorphic to, for example® equipped with a structured family of subsets, which corresponded to the axiom
system’s regions. In this sense, this line of work was ‘conservative’: one recovered the familiar theory with its points, from
a new axiom system with regions as primitives. From the pure mathematical point of view, Stone’s representation theorem
for Boolean algebras of 1936 was a landmark for this sort of work.

The use of regions in place of points need not be ‘conservative’: one can imagine axiom systems for regions, whose
models (or some of whose models) do not contain anything corresponding to points of which the regions are composed.
Indeed, for any topological spaZethe family of all open sets can have algebraic operations of ‘conjunction’, ‘disjunction’
and ‘negation’ defined on them b@; A O, := O1 N Oy; O1 vV O, := 01 U Oy; and—=0 := int(Z — O); and with these
operations, the open sets form a complete Heyting algebra, also knoncaseaHere, a Heyting algebra is defined to be
a distributive latticeH, with null and unit elements, thatislatively complementeevhich means that to any pa, S in
H, there exists an elemeBt = S, of H with the property that, for alb€ H,

S< (S = S)ifandonlyifSAS <S . 3)

Heyting algebras are thus a generalization of Boolean algebras; they need not obey the law of excluded middle, and so
provide natural algebraic structures for intuitionistic logic. A Heyting algebra is said twimpleteif every family of
elements has a least upper bound. Summing up: the open sets of any topological space form a Heyting algebra, when
partially ordered by set-inclusion; indeed a complete Heyting algebra (a locale), since arbitrary unions of open sets are open.
However, it turns out that not every locale is isomorphic to the Heyting algebra of open sets of some topological space; and
in this sense, the theory of regions given by the definition of a locale is not ‘conservative’—it genuinely generalizes the
idea of a topological space, allowing families of regions that are not composed of underlying points.

A far-reaching generalization of this idea is given by topos theory: (i) in any topos, there is an analogue of the set-
theoretic idea of the family of subsets of a given set—called the family of subobjects of a givenxl{jgdor any object
Xin any topos, the family of subobjects Xfis a locale.



The idea of infinitesimals was heuristically valuable in the discovery and development of the calculus, and it was
expunged in the nineteenth-century rigorization of analysis by authors such as Cauchy and Weierstrass—for surely no
sense could be made of the idea of nilpotent real numbersj such that? = 0, apart from the trivial casé = 0? But it
turns out that senseanbe made of this: indeed in two somewhat different ways.

In the first approach, called ‘non-standard analysis’, every infinitesineglévery nilpotentd # 0) has a reciprocal,
so that there are different infinite numbers corresponding to the different infinitesimals. There were attempts in the 1970s
to apply this idea to quantum field theory: in particular, it was shown how the different orders of ultra-violet divergences
that arise correspond to different types of infinite number in the sense of non-standard analysis [24]. However, we wish
here to focus on the alternative approach in which we have infinitesimals, but without the corresponding infinite numbers.
It transpires that this is possible provided we work within the context of a topos; for example, a careful study of the proof
that the only real numbet such thatl? = 0 is 0, shows that it involves the principle of excluded middle, which in general
does not hold in the characteristic intuitionistic logic of a topos [25].

So in this second approach, called ‘synthetic differential geometry’, infinitesimals do not have reciprocals. Applying
this approach to elementary real analysis, ‘all goes smoothly’. For example, all functions are differentiable, with the linear
approximation familiar from Taylor’s theoreni(x + d) = f(X) + d f'(x), being exact. And in the context of synthetic
differential geometry, a tangent vector on a manifditlis a map (more precisely, a ‘morphism’) from the objEéct=
{d | d® = 0} to M. Furthermore, one can go on to apply this approach to the higher developments of calculus. The crucial
question is whether or not there are giyysicallynatural applications of synthetic differential geometry to physics; (as
against ‘merely rewriting’ standard theories in synthetic terms).

PRESHEAVES FROM TOPOS THEORY

We recall the idea of a ‘functor’ between a pair of catego@iend D: this is a arrow-preserving function from one
category to the other. The precise definition is as followsowariant functorF from a categoryC to a categon® is a
function that assigns to eachobjectA, a D-objectF(A); to eachC-arrow f : B — A, aD-arrowF(f) : F(B) —» F(A)
such thaF(ida) = idra); and, ifg: C — B, andf : B — Athen

F(f o) = F(f) o F(9). 4

A presheafalso known as &arying se} on the categorg is defined to be a covariant functérfrom the category to the
category Set of normal sets. We want to make the collection of presheaves o a category, and therefore we need
to define what is meant by an ‘arrow’ between two preshexvasdY. The intuitive idea is that such an arrow frofnto
Y must give a ‘picture’ oiX within Y. Formally, such an arrow is defined to beatural transformatiorN : X — Y, by
which is meant a family of maps (called tbemponentsf N) Na : X(A) — Y (A), Aan object inC, such thatiff : A— B

is an arrow inC, then the composite map(A) o, Y (A) rq Y (B) is equal toX(A) alll X(B) e, Y (B). The category of
presheaves o@ equipped with these arrows is denotet .

We say thaK is asubobjectof X if there is an arrow in the category of presheavnes, (@ natural transformation)

i : K — X with the property that, for eaclA, the component map, : K(A) —» X(A) is a subset embeddinge.,
K(A) C X(A). The category of presheaves@nSet, forms a topos. We will not need the full definition of a topos, but we
do need the idea that a topos has a subobject claRifterwhich we now turn.

Among the key concepts in presheaf theory is that of a ‘sieve’, which plays a central role in the construction of the
subobject classifier in the topos of presheaves on a cat€jdry A sieveon an objecAin C is defined to be a collection
Sof arrowsf : A — B in C with the property that iff : A — B belongs toS, and ifg : B — C is any arrow, then
go f : A— Calso belongs t&. In the simple case wher@is a poset, a sieve gme C is any subse$ of C such that if
r € Sthen (i)p <r, and (ii)r’ € Sfor all r < r’; in other words, a sieve is nothing butipperset in the poset.

The presheaf : C — Setis now defined as follows. IA is an object inC, thenQ(A) is defined to be the set of all
sieves oMA; and if f : A — B, thenQ(f) : Q(A) —» Q(B) is defined as

Q(f)S:=th:B>Clhofes (5)

for all Se Q(A). For our purposes in what follows, it is important to note th&ig a sieve oA, and if f : A — B belongs
to S then from the defining property of a sieve we have

Q(f)(9:=th:B—>ClhofeS=(h:B—-C}=1B, (6)

where?TB denotes th@rincipal sieve onB, defined to be the set of all arrowsdhwhose domain i8. If C is a poset, the
associated operation on sieves corresponds to a family of fgpsQ, — Qg (whereQ, denotes the set of all sieves on
p in the poset) defined bqp = Q(ipg) if ipg: P — q(i.e, p < q). Itis straightforward to check that8 € Qq, then

Qqp(9 :=TpNS (7)



wheretp:={reC|p<r}.

A crucial property of sieves is that the $2¢A) of sieves oA has the structure of a Heyting algebra. Recall that this
is defined to be a distributive lattice, with null and unit elements, that is relatively complemented—which means that for
any pairS;, S in Q(A), there exists an elemest = S, of Q(A) with the property that, for alb € Q(A),

S<(S = S)ifandonlyifSAS <S . (8)

Specifically, (A) is a Heyting algebra where the unit eleméata) in Q(A) is the principal sievgA, and the null element
Oq(a) is the empty siev@. The partial ordering i2(A) is defined byS, < S if, and only if, S, € $; and the logical
connectives are defined as:

SAS=SNS )
SVS=SUS (10)
S=>S={f:A->B| forallg:B—>CifgofeSthengofe$S }. (12)

As in any Heyting algebra, the negation of an elent&talled thepseudo-complement S) is defined as:S:= S= 0;
so that
-S:={f:A—->B|forallg:B—>C,gof ¢S} (12)

The main distinction between a Heyting algebra and a Boolean algebra is that, in the former, the negation operation does
not necessarily obey the law of excluded middle: instead, all that be can said is that, for any 8&ement

Sv-S<1 (13)

It can be shown that the preshe@fis a subobject classifier for the top8gf. That is to say, subobjects of any
objectX in this topos i.e., any presheaf og) are in one-to-one correspondence with arrgusX — Q. This works as
follows. First, letk be a subobject ok. Then there is an associateltaracteristicarrowy X : X — Q, whose ‘component’
X,'§ 1 X(A) - Q(A) at each ‘stage of truthA in C is defined as

XA = {f: A— B X(f)(X) € K(B)} (14)

for all x e X(A). That the right hand side of (14) actuai$ya sieve orA follows from the defining properties of a subobject.

Thus, in each ‘branch’ of the categafygoing ‘upstream’ from the stag® x (x) picks out the first membes in that
branch for whichX(f)(x) lies in the subsat (B), then guarantees th&i(h o f)(x) will lie in K(C) forallh: B — C. Thus
each ‘stage of truthA in C serves as a possible context for an assignment toxeacK(A) of a generalized truth-value:
which is a sieve, belonging to the Heyting algefX@), rather than an element of the Boolean alggbra} of normal set
theory. This is the sense in which contextual, generalized truth-values arise naturally in a topos of presheaves.

There is a converse to (14): namely, each arfowX — Q (i.e. a natural transformation between the preshexves
andQ) defines a subobje&t* of X via

KX(A) := xa {1la} (15)

at each stage of truth. For the category of presheaves@©@na terminal objecl : C — Setcan be defined b§(A) := {x}
at all stageAin C; if f : A — Bis an arrow inC then1(f) : {#} — {«} is defined to be the map+ =. This is indeed
a terminal object since, for any preshegfwe can define a unique natural transformafibn X — 1 whose components
Na : X(A) = 1(A) = {=} are the constant maps— = for all x € X(A).

A global element (or point) of a presheéfis also called global sectionAs an arrowy : 1 — X in the toposSet’, a
global section corresponds to a choice of an elemgret X(A) for each stage of trutA in C, such that, iff : A — B, the
‘matching condition’

X()(va) =78 (16)

is satisfied. As we shall see, the Kochen-Specher theorem can be read as asserting the non-existence of any global sections
of certain presheaves that arises naturally in any quantum theory.

PRESHEAVES IN QUANTUM THEORY AND QUANTUM GRAVITY

We wish now to consider some possible applications of the idea of a topos in quantum physics. There are several
natural orders in which to present these examples, but we will in fact proceed by first giving several examples involving
space, time or spacetime, since: (i) in these examples, it is especially natural to think of the objects of the presheaf’s base-
categoryC as ‘contexts’ or ‘stages’ relative to which generalized truth-values are assigned; and (ii) these examples will
serve as prototypes, in various ways, for later examples.



Throughout classical and quantum physics, we are often concerned with reference frames (or coordinate systems),
the transformations between them, and the corresponding transformations on states of a physical system, and on physical
quantities. Our first example will present in terms of presheaves some familiar material about reference frames in the context
of non-relativistic wave mechanics.

Define the category of contex@to have as its objects global Cartesian reference fraanes {e', €, €’} (where
€,i = 1,2 3, are vectors in Euclidean 3-spaEe such thate - e = ¢'), all sharing a common origin; and defigeto
have as its arrows the orthogonal transformatiofe €) from one reference fram@} to anothere ', i.e., with a matrix
representatio® ' = ?zlejO(e, €)t; (so that between any two objects, there is a unique arrow). Define a présheaf

as assigning to each objezin C, a copyH(e) of the Hilbert spacd.?(R®); and to each arrovd(e, €), the unitary map

U(e €) : H(e) = H(¢) defined by(U(e, €)y)(X) := y(O(e, &)~1(X)) (so thatU(e, &) represents the action Gf(e, €) as a

map from one copyH (e), of the (pure) state-spatg(R3), to the other copy (€)). Any giveny € L%(R®), together with

its transforms under the various unitary map®, €), defines a global section &f. Discussions of the transformation of

the wave-function under spatial rotations etc. normally identify the different copies of the state-$(aég and from

the viewpoint of those discussions, the above definitiod afiay seem at first sight to make a mountain out of a molehill,
particularly since the category of contexts in this example is so trivial (for example, the internal logic is just the standard
‘true-false’ logic). But it is a helpful prototype to have in mind when we come to more complex or subtle examples. This
definition has the advantage of clearly distinguishing the quantum state at the given time from its representing irectors
various reference frames. We need to allow for the fact that the quantum state is a yet more abstract notion, also occurring
in other representations than wave mechanics (position-representation). So the point is: this defikitistioiguishes

the Schodinger-picture, wave-mechanical representative of the quantum state at the given time—which it takes as a global
section ofH—from its representing vectors (elements of the global section at the various ‘stages’

The example above illustrates a contextual aspect of standard quantum theory whereby the concrete representation of
an abstract state depends on the observer; at least, this is so if we identify reference frames with observers. This contextual
aspect is not emphasized in standard quantum theory since the different Hilbert spaces associated with different observers
are all naturally isomorphic (via the unitary operatbi®, €) : H(e) — H(€)). From a physical perspective, the fact that
different observers, related by a translation or a rotation of reference frame, see ‘equivalent’ physics is a reflection of the
homogeneity and isotropy of physical space. However, the situation might well be different in cosmological situations,
since the existence of phenomena like event and particle horizons means that the physics perceptible from the perspective
of one observer may be genuinely different from that seen by another. This suggests that any theory of quantum cosmology
(or even quantum field theory in a fixed cosmological background) may require the use of more than one Hilbert space, in
a way that cannot be ‘reduced’ to a single space.

Itis well known that quantum field theory on a curved spacetime often requires more than one Hilbert space, associated
with the unavoidable occurrence of inequivalent representations of the canonical commutation relations: this is one of the
reasons for preferring@*-algebra approach. But what we have in mind is different—for example, our scheme could easily
be adapted to involve a presheal@tfalgebras, each associated with an ‘observer’. A key question in this context is what
is meant by an ‘observer’; or, more precisely, how this idea should be represented mathematically in the formalism. One
natural choice might be a time-like curve (in the case of quantum field theory in a curved background with horizons),
although this does suggest that a ‘history’ approach to quantum theory would be more appropriate than any of the standard
ones. In the case of quantum cosmology proper, these issues become far more complex since—for example—even what is
meant by a ‘time-like curve’ presumably becomes the subject of quantum fluctuations!

Let us fix once for all a global Cartesian reference framg3inand define the base-category of contexts be the
real lineR, representing time. That is to say, let the object€ dife instants € R; and let there be a@-arrow fromt to
t, f:t - t,ifand only ift < t’; so there is at most one arrow between any pair of objetitg C. Define the presheaf,
calledH, as assigning to eacfa copy of the system’s Hilbert spagé; (- need not bé2(R%)—here we generalize from
wave mechanics). Writing this copy &, we haveH (t) := H;. The action oH onC-arrows is defined by the Hamiltonian
H, via its one-parameter family of unitary exponentiatithsif f : t — t’, thenH(f) : H; — H, is defined byJy_;. The
action ofUy_, then represents the Sdidinger-picture evolution of the system from timi t’; and a total history of the
system (as described in the given spatial coordinate system) is represented by a global section of thédpMeheadld
similarly express in terms of presheaves Heisenberg-picture evolution: we would instead define a presheaf that assigned
to eachC-objectt a copy of the seB(H) of bounded self-adjoint operators @i (or say, a copy of some other fixed set
taken as the algebra of observables), and then have the lhapduce Heisenberg-picture evolution on the elements of
the copies oB(H). A parallel discussion could be given for time evolution in classical physics: we would attach a copy of
the phase-spadeto eacht, and a total history of the system (as described in the given spatial coordinate system) would be
represented by a global section of the corresponding presheaf. It transpires that the development of such a *history’ approach
to classical physics provides a very illuminating perspective on the mathematical structures used in the consistent-histories
approach to quantum theory [26].



Now we will present in terms of presheaves some ideas that are currently being pursued in research on foundations of
quantum theory and quantum gravity. The previous example admits an immediate generalization to the theory of causal sets.
By acausal setve mean a partially-ordered setwhose elements represent spacetime points in a discrete, non-continuum
model, and in whiclp < g, with p, g € £, means that lies in the causal future gf. The setP is a natural base category
for a presheaf of Hilbert spaces in which the Hilbert space at a jpoir® represents the quantum degrees of freedom that
are ‘localized’ at that point/context. From another point of view, the Hilbert space at agodntd represent the history of
the system (thought of now in a cosmological sense) as viewed from the perspective of an observer localized at that point
(see [27]). The sieve, and hence logical, structure in this example is distinctly non-trivial.

PRESHEAVES FOR TOPOLOGICAL QUANTUM FIELD THEORY

Topological quantum field theory (TQFT) has a very well-known formulation in terms of category theory, and it is
rather straightforward to see that this extends naturally to give a certain topos perspective.

Recall that in differential topology, two closeddimensional manifold¥; andX, are said to beobordantif there
is a compach + 1-manifold, M say, whose bounda@M is the disjoint union o&; andX,. In TQFT, then-dimensional
manifolds are interpreted as possible models for physical space (so that spacetime has dmeséord an interpolating
n+ 1-manifold is thought of as describing a form of ‘topology change’ in the context of a (euclideanised) type of quantum
gravity theory. In the famous Atiyah axioms for TQFT, a Hilbert spa&es attached to each spatiaimanifoldX, and to
each cobordism frorli; to ¥, there is associated a unitary map fraif, to Hs,.

The collection of all compaat-dimensional manifolds can be regarded as the set of objects in a categonyhich
the arrows from an objed; to anotheiX, are given by cobordisms fro@y to X,. The Atiyah axioms for TQFT can be
viewed as a statement of the existence of a functor ffdmthe category of Hilbert spaces; indeed, this is how these axioms
are usually stated. However, from the perspective being developed in the present paper, we see that we can also think of
as a ‘category of contexts’, in which case we have a natural presheaf reformulation of TQFT.

CONSISTENT HISTORIES FORMALISM FOR QUANTUM THEORY AND CONTINUOUS TIME

Inthe ‘History Projection Operator’ (HPO) version of the consistent-histories approach to quantum theory, propositions
about the history of the system at a finite set of time poffitd,, . . ., t,) are represented by projection operators on the
tensor producH;, ®H,,®- - -@H;, of ncopies of the Hilbert spacH associated with the system by standard quantum theory.

The choice of this particular Hilbert space can be motivated in several different ways. The original motivation [9] was a
desire to find a concrete representation of the temporal logic of such history propositions. This Hilbert space can be seen
as the carrier of an irreducible representation of the ‘history group’ whose Lie algebra is (on the simplifying assumption
that the system is a non-relativistic point particle moving in one dimension)

[Xti’ th] =0, [pti’ pt]] =0, [Xtm pt,] = |h6|J, (17)

wherei, j = 1,2,...,n,andx; (resp.py,) is the Schddinger-picture operator whose spectral projectors represent propositions
about the position (resp. momentum) of the system at thetfif@me advantage of the approach based on equations (17) is
that it suggests an immediate generalization to the caserginuoustime histories: namely, the use of the history algebra

[X. %] =0, [pr. pr] =0, [X.pr] =inro(t’ 1), (18)

wherer is a constant with the dimensions of time. This continuous-time history algebra has been studied by a variety of
authors but here we will concentrate on Savvidou’s observation [26] that the notion of ‘time’ appears in two ways that
differ in certain significant respects. The main idea is to introduce a new time coordirafe, and to associate with
it a Heisenberg picture defined from the time-averaged Hamiltdﬁianfdth. Thus, in particular, one defines for the
time-indexed position operatey

X(9) := explisH/h) % expisH/n). (29)

This new timesis nota difference in values df Rather, if one thinks of assigning a coply of the system’s (usual) Hilbert
spaceH to each timd, thens parametrizes a Heisenberg-picture motion of quantiigisin #;. Accordingly,t is called
‘external time’, andsis called ‘internal time’.

This formalism has been developed in various ways: in particular, there is a natural, dyiaiejpsndenLiouville’
operator that generates translations in the external time parameter. From our topos-theoretic perspective, we note that
external time is more singular than internal time—as hinted by the delta-functiarikahoccur in the history algebra’s
canonical commutation relations. This suggests modelling external time, not by the usual real faptheisy the reals
‘enriched’ with infinitesimals in the sense of synthetic differential geometry, and which are related in some way to the
action of the Liouville operator. This requires a non-standard model of the real line: in fact, we have to use a real number



object in a topos. This use of a topos is quite different from, and in addition to, any development of a consistent-histories
analogue of the temporal presheaf. In the latter case, the presheaf structure in the consistent-histories theory can arguably
be related to ideas of state reduction of the kind discussed by von Neumanitiders see [26]).

PRESHEAVES OF PROPOSITIONS AND VALUATIONS IN QUANTUM THEORY

In quantum theory, assumption (i)e., that all quantities have real-number values, fails by virtue of the Kochen-
Specker theorem; and assumption (ii), that one can measure any quantity ideally, is very problematic, involving as it does
the notion of measurement. Standard quantum theory, with its ‘eigenvalue-eigenstate link’—thatjrtiséaiteis a value
only for a quantity of whichy is an eigenstate, viz. the eigenvalue—retains assumption (ii) only in the very limited sense
thatif the quantityA has a value, say, according to the theoiye., the (pure) state is an eigenvector ok for eigenvalue,
then an ideal measurementAfvould have result. But setting aside this very special case, the theory faces the notorious
‘measurement problem’; the scarcity of values in the microrealm, due to the eigenvalue-eigenstate link, threatens to make
the macrorealm indefinite (‘Sobdinger’s cat’). It is worth distinguishing two broad approaches to it, which we are called
‘Literalism’ and ‘Extra Values’. For our topos-theoretic proposal will combine aspects of these approaches. They are:

1. Literalism . This approach aims to avoid the instrumentalism of standard quantum theory, and yet retain its scarcity
of values (the eigenvalue-eigenstate link), while solving the measurement problem: not by postulating a non-unitary
dynamics, but by a distinctivelynterpretativestrategy. So far, there are two main forms of this approach: Everettian
views (where the eigenvalue-eigenstate link is maintained ‘within a branch’); and those based on quantum logic.

2. Extra Values. This approach gives up the eigenvalue-eigenstate link; but retains standard quantum theory’s unitary
dynamics for the quantum state. It postulates extra values (and equations for their time-evolution) for some quantities.
The quantities getting these extra values are selected aitwori, as in the pilot-wave program, or by the quantum
state itself, as in (most) modal interpretations.

The topos-theoretic proposal combines aspects of Literalism and Extra Values. Like both these approaches, the
proposal is ‘realist’, not instrumentalist; (though it also shares with standard quantum theory, at least in its Bohrian or
‘Copenhagen’ version, an emphasis on contextuality). Like Extra Values (but unlike Literalism), it attributes values to
quantities beyond those ascribed by the eigenvalue-eigenstate link. Like Literalism (but unlike Extra Values), these additional
values are naturally defined by the orthodox quantum formalism. More specifillfpuantities get additional values (so
no quantity is somehow ‘selected’ to get such values); any quantum state defines such a valuation, and any such valuation
obeys an appropriate version of tAReINC. The ‘trick’, whereby such valuations avoid no-go theorems like the Kochen-
Specker theorem [19], is that the truth value ascribed to a proposition about the value of a physical quantity is not just ‘true’
or ‘false’!

Thus consider the propositio\“e A”, saying that the value of the quantifylies in a Borel seA € R. Roughly
speaking, any such proposition is ascribed as a truth-value a set of coarse-grdifihgsf the operatoA that represents
A. Exactly which coarse-grainings are in the truth-value depends in a precise and natural Avagthe quantum state
w: in short, f(A) is in the truth-value iffy is in the range of the spectral projectff(A) € f(A)]. Note the contrast with
the eigenstate-eigenvalue link: our requirement is notghiae in the range oE[A € A], but a weaker requirement. For
E[f(A) € f(A)] is a larger spectral projectare., in the lattice£(H) of projectors on the Hilbert spack, E[A € A] <
E[f(A) € f(A)]. So the new proposed truth-value @ ‘€ A” is given by the set of weaker proposition$(A) € f(A)”
that are true in the old.g., eigenstate-eigenvalue link) sense. To put it a bit more exactly: the new proposed truth-value of
“A e A”is given by the set of quantitieB(A) for which the corresponding weaker propositidi{A) € f(A)” is true in the
old (i.e. eigenstate-eigenvalue link) sense. To plgssexactly, but more memorably: the new truth-value of a proposition
is given by the set of its consequences that are true in the old sense.

Let us introduce the sé of all bounded self-adjoint operatafsB, . . . on the Hilbert spac@{ of a quantum system.

We turnO© into a category by defining the objects to be the elemen&, @ind saying that there is an arrow frokto B

if there exists a real-valued functidnon o(A) c R, the spectrum oA, such thaBB = f(A) (with the usual definition of

a function of a self-adjoint operator, using the spectral representatioB)=Iff (A), for somef : o(A) —» R, then the
corresponding arrow in the categadywill be denotedf, : A — B. Define two presheaves on the categOrycalled the

dual presheafind thecoarse-graining presheagspectively. The former affords an elegant formulation of the Kochen-
Specker theorem, namely as a statement that the dual presheaf does not have global sections. The latter is at the basis of
our proposed generalized truth-value assignments. The dual presh@éd tre covariant functdd : O — Setdefined as

follows:

1. On objectsD(A) is thedual of Wa, whereW, is the spectral algebra of the operafyri.e. W, is the collection of all
projectors onto the subspaces/gfassociated with Borel subsets®fA). That is to sayD(A) is defined to be the set
Hom(Wa, {0, 1}) of all homomorphisms from the Boolean algebva to the Boolean algebr@®, 1.



2. On arrows: Iffp : A — B, so thatB = f(A), thenD(fo) : D(Wa) — D(Ws) is defined byD(fo)(x) := xlw,,, Where
Xlwy, denotes the restriction gfe D(Wa) to the subalgebrésa) C Wa.

A global element (global section) of the funcidr: O — Setis then a functiony that associates to ea¢he O an
elementy, of the dual ofW, such that iffy : A — B (soB = f(A) andWg C Wa), thenyalw, = ys. Thus, for all projectors
@ € Wg C W,

v8(@) = ya(@). (20)

Since eactw in the lattice £L(H) of projection operators of{ belongs to at least one such spectral alg&kgfor
example, the algebrd, 1, &, 1 - &}) it follows from (20) that a global section @ associates to each projection operator
& € L(H) a numben/ (&) which is either0 or 1, and is such that, i A 3 = 0, thenV(a v g) = V(&) + V(B). In other
words, a global sectiop of the preshead would correspond to an assignment of truth-valige4} to all propositions of
the form “A € A”, which obeyed thé&UNC condition (20). These are precisely the types of valuation prohibited, provided
thatdim#H > 2, by the Kochen-Specker theorem. So an alternative way of expressing the Kochen-Specker theorem is that,
if dim#H > 2, the dual preshed has no global sections.

However, wecanuse the subobject classifi€rin the toposSef’ of all presheaves 0@ to assigrgeneralizedruth-
values to the propositionsA* € A”. These truth-values will be sieves; and since they will be assigned relative to each
‘context’ or ‘stage of truth’A in O, these truth-values will be contextual as well as generalized. Because in any topos the
subobiject classifief is fixed by the structure of the topd®,is unique up to isomorphism. Thus the family of associated
truth-value assignments is fixed, and the traditional objection to multi-valued logics—that their structure often seems
arbitrary—does not apply to these generalized, contextual truth-values. Define the appropriate presheaf of propositions.
Thecoarse-graining presheaiverQ is the covariant functo® : O — Setdefined as follows:

1. On objects iMD: G(A) := Wa, whereW, is the spectral algebra

2. On arrows inO: If fy : A — B(i.e, B = f(A)), thenG(fp) : Wa — Ws is defined a(fo)(E[A € A]) := E[f(A) €
f(A)], where, if f(A) is not Borel, the right hand side is to be understood in the sense of Theorem 4.1 of [12]—a
measure-theoretic nicety that we shall not discuss here.

We call a functiorv that assigns to each choice of objédh O and each Borel sét C o-(A), a sieve of arrows i) on
A(i.e. a sieve of arrows witl as domain), aieve-valued valuatioan G. We write the values of this function agA € A).
One could equally well write(E[A € A]), provided one bears in mind that the value depends not only on the projector
E[A € A], but also on the operator (conteXX)of whose spectral family the projector is considered to be a member. A
natural desideratum for any kind of valuation on a presheaf of propositions s@&lsabat the valuation should specify
a subobject o6. For in logic one often thinks of a valuation as specifying the ‘selected’ or ‘winning’ propositions: in this
case, the ‘selected’ elemeri§A € A] in eachG(A). So it is natural to require that the elements that a valuation ‘selects’ at
the various contexta together define a subobject@f Subobjects are in one-one correspondence with ari@ys)atural
transformationsN : G — Q. So it is natural to require a sieve-valued valuatido define such a natural transformation
by the equatiorN;(E[A € A]) := v(A € A). This desideratum leads directly to the analogue for presheaves of the famous
functional composition condition of the Kochen-Specker theorem [19], cBI#IC above: and which we will again call
FUNCIn the setting of presheaves. A sieve-valued valuation defines such a natural transformation iff it obeys (the presheaf
version of)FUNC.

Let us recall that the subobject classif2fpushes along’ sieves, according to (5). For the categhithis becomes:
if fo: A— B, thenQ(fy) : Q(A) - Q(B) is defined by

Q(fo)(§ :=tho:B—>Clhgofoe§ (21)

for all sievesS € Q(A). Accordingly, we say that a sieve-valued valuatian G satisfiegeneralized functional compositien
for short, FUNC—if for all A,Bandfy, : A— Band allE[A € A] € G(A), the valuation obeys

V(B € G(f)(E[A € A]) = v(F(A) € F(A)) = Q(fo)(/(A € A)). (22)

TheFUNCIis exactly the condition a sieve-valued valuation must obey in order to thus define a natural transformation,
i.e, a subobject of5, by the natural equatioN,(E[A € A]) := v(A € A). That is: A sieve-valued valuationon G obeys
FUNCIf and only if the functions at each ‘stage of truth’

NX(E[A € A]) := V(A€ A) (23)

define a natural transformatidft from G to Q. With any quantum state there is associated suebdC-obeying sieve-
valued valuation. Furthermore, this valuation gives the natural generalization of the eigenvalue-eigenstate link, that is, a



quantum state induces a sieve on eadhin O by the requirement that an arrofy : A — Bis in the sieve iffiy is in the
range of the spectral project&i{B € f(A)]. To be precise, we define for agly and anyA a Borel subset of the spectrum
o(A) of A:

V(A€ A) ={fo:A-BIE[Be f(A)ly =y)
={fp: A— B|Prob@B € f(A);y) = 1}, (24)

whereProb@B € f(A); y) is the usual Born-rule probability that the result of a measuremeBwfl lie in f(A), given the
statey. This definition generalizes the eigenstate-eigenvalue link, in the sense that we require padigttmthe range of
E[A € A], but only that it be in the range of the larger projedipf (A) € f(A)]. One can check that the definition satisfies
FUNC, and also has other properties that it is natural to require of a valuation discussed in [12, 13, 28].

TOPOSES AND THEORY OF RELATIVITY

The system of axioms for the Special theory of relativity contains fewer primary notions and relations, is simple,
and lead directly to the ultimate goal (see review [29]). In the case of the General relativity it is difficult to introduce a
smoothness (see [30, 31, 32]).

Does the unified way of axiomatization of these different physical theories exist? Does the unified way of axiomatization
of these different physical theories exist? The language of topos theory [8, 7] gives the unified way of axiomatization of the
Special and General Relativity, the axioms being the same in both cases. Selecting one or another physical theory amounts
to selecting a concrete topos. Here we give a topos-theoretic causal theory of space-time.

Let & be an elementary topos with an object of natural numbers, af leé the object of continuous real numbers
[33]. An affine morphismr : Ry — Ry is a finite composition of morphisms of the fortg,, ®o (1 Xx1g)oj, ®o
(1r, x u) o j, Wwheres, ® are the operations of addition and multiplicatiorRnrespectively, u are arbitrary elements in
Rr, andj : Rr =~ 1 x Ry is an isomorphism. Ldt be the set of all affine morphisms froRs to Ry. An affine objecin &
is an object together with two sets of morphisms:

® c Homg(Rr,a), ¥ c Homg(a, Ry)

such that the following conditions hold:

1) Foranyg € @,y € Y thereisyo¢p € T.

2) If f € Homg(Ry,a) \ @ then there existg € ¥ such thatyo f ¢ T.

3) If f € Homg(a, Ry) \ ¥ then there existg € ® such thatf o ¢ ¢ T

4) For any monomorphismi: Q - a,g: Q — Ry there exist® € ® such thatpo g = f.

5) For any monomorphismi: Q — a,g: Q — Ry there existgy € ¥ such thaiy o f = g.

HereQ is the subobject classifier ifi. An affine object in categor$etis the set equipped with an affine structure
[34]. In the topoBn(M) and in the spatial topoBop(M) (see notations in [8]), an affine object is a fiber bundle with base
M and affine space as fibers.

A categorical description of the Relativity means the introduction of the Lorentz structure either in an affine space
or in a fiber bundle with affine spaces as fibers, which can be done by defining in the affine space a family of equal and
parallel elliptic cones or a relativistic elliptic conal order [35] (we use the notations from [8]).

Letabe an affine object in the top&s An orderin ais an objecP together with a collection of subobjeqig: P — a,
wherex : 1 — ais an arbitrary element, such that:

1) X € py.

2) If y € py, thenz e py impliesz € py.

The ordekP, {py}) is denoted a®. A morphismf : a — ais calledaffing if y o f o ¢ € T for any¢ € ® andy € .

We denote the set of all affine morphisms by £dj.

Let A c Aff (a) consist of all commuting morphisms. An ord@is invariant with respect toA if for any p, py there
existsgyy € A such thabyy o px = py. A morphismf : a — apreservesn ordeiO, if for eachpy there existg, such that
f o px = py. The collection of all morphisms preserving an or@ghat is invariant with respect td is denoted byAut(O).

A rayis a morphismi : R, —» Ry N a, whereg € @y c @, and for anyp € ®q there is nox : 1 — a such thap = xo!.
Here! : Rr — 1 andR, is the subobject of objed®; consisting of thosé for which 0 < t (see definition of order iRy
in [33]). An orderQ is calledconicif 1) for everyy € py there exists a ray c py such thatx,y € 4, and 2)x is the origin
of A, i.e.ifuisarayand/ e u c 4, u # 4, thenx ¢ u. An orderO hasthe acute verterr pointedone if for eachpy there
does not exispy € @ such thatp, c px. An orderO is completeif for any elementz: 1 — a andpy there exist different
elemental,, vy 1 1 —» aand¢ € ®q such thatz, uy, vx € ¢ anduy, vx € px. An elementu € py is calledextremeif there
existsg € @ for whichu € ¢, buty ¢ ¢ for ally € py,y # u. A conic orderO is said to bestrict if, for each nonextreme



elementu € py, andv € py, Vv # U, and each rayt with origin u such thatv € A, there exists an extreme element 2,
andw € px. An affine objecta with an orderO, which is complete, strict, conic, has an acute vertex, and is invariant with
respect toA is said to be_orentzif for eachx : 1 — aand each extreme elementy € py, whereu,v # x there exists a

f € Aut(O) such thatf ou = v, f o X = X. A Lorentz object in the topoSetis an affine space admitting a pseudo-Euclidean
structure defined by a quadratic fomﬁ— > xiz, wheren is finite or equal too, andAut(O) is the Poinca¥ group (see
[35]). A Lorentz object in the topo$op(M) is a fiber bundle oveM with fibers equipped with an affine structure and a
continuous pseudo-Euclidean structure of finite or infinite dimension. It is quite possible to take not only the Sgtoses
Bn(M), or Top(M), but also any others that have an affine object.

The existing categorical determination of the set theory and determinatidopdf) between elementary toposes
gives the possibility to speak about the solution of problem of categorical description of the Theory of Relatisyalf
well-pointed topos satisfying the axiom of partial transitivity with a Lorentz okgetiten& is a model of set theor¥ and
ais a model of the Special Relativity. & is a topos defined oveetthat has enough points and satisfies the axiom (SG)
(see [7]) with a Lorentz objee, then& is a toposTop(M) anda is a model of the General Relativity.

REGULAR OBSTRUCTED CATEGORIES AND TOPOSES

Let us describe the conceptmfegularity (introduced in [36, 37] for supermanifolds) in the topos theory. We use the
previously developed notions of obstructed categories, functors, natural transformations (defined in [15, 38, 16, 39]) as a
certain nonstandard topos. All definitions of are in general case the same like in the usual topos theory [7, 8, 4], but the
preservation of the identitigly, is replaced by the requirement of preservation of obstruct&@hand certain compatibility
conditions are added.

Let € be a topos [7, 8]. Am-regular cocyclgX, f) in € is a sequence of composable arrowfin

Yoy o By B 25)
such that
fiofyo---0frofy = fy,
faofio---ofzofy=1, (26)
foofpro---0fiofy=f,
and
® = fro-- 0 fro fy € End (Xy),
eg?z = flo--~o f30f2€End(X2), (27)

eg?n) = fn_lo...oflo fHEEnd(Xn)-

Let (X, ), (Y, g) be twon-regular cocycles it. An n-regular cocycle morphism : (X, f) — (Y, g) is a sequence of
morphismsy := (a1, ..., an) such that we have the relation

ajo fi=goq (28)

foreveryi = 1,...,n,1. If every component; of « is invertible, therw is said to be am-regular cocycle equivalence. It is
obvious that the-regular cocycle equivalence is an equivalence relation. We postulate that all definitions are formulated
n-regular cocycles ift up to then-regular cocycle equivalence, and 1,2, ...,n. Let (X, f) be ann-regular cocycle ir€,

then the correspondene@ X €G> egz) e End(X),i =1,2,...,n,is called am-regular cocycle obstruction structure

on (X, f) in €. We have the following relations

fioe) =1, o ofi=f, {oel)=cl (29)
fori = 1,2,...,n(mod n + 1). Let (X, f) be ann-regular sequence ii. An n-regular subcocycléY, g) of (X, f) is an

n-regular cocycle of the following forms

Y, 5y, Sy By (30)

whereY; is a subobject 0K;. Let (X, f), (Y, g) be twon-regular cocycles ift. An n-regular cocycle produdgiX x Y, f x g)
of (X, f) and(Y, g) is ann-regular cocycle

fixon faxgz fr-1XQn-1 faxg
Xi XY o5 X x Yo o3 oo "3 X X Y 25 Xy X Yy (31)



An n-regular obstructed category is a directed gréphith an associative composition and such that every object is
a component of an-regular cocycle [16, 39].

Let € and® be twon-regular obstructed categories. We postulate that all definitions are formulated on-eggojar
cocycle(X, f) in € up to then-regular cocycle equivalence, ané 1, 2, ...(modn).

An or n-regular cocycle functoF® : € — D is a pair of mappingé7.”, 7{"), where7 " sends objects dt into
objects ofD, and7—‘l(”) sends morphisms & into morphisms of® such that [15, 16]

710 o i) = FLV(0) 0 V(). 717 () = ey (32)

whereX € €. Let € andD ben-regular obstructed categories, and let
f]_ fz fn—l fn
X — Xo— - — Xy — Xg (33)
be ann-regular cocycle ir€. If #( : € — D is n-regular cocycle functor, then
FO(f) 0 o) = FO(F). (34)

Itis a simple calculatiorF™(f) = #( (fi o egz)) =FO(f)oF® (egz)) = FO(f)o e;’,gxi. Let7™ andg™ be two
n-regular cocycle morphisms of the categ@rinto the category®. An n-regular natural transformatias: ¥® — G
of 7™ into g is a collection of functors = {sx : Fo(X) — Go(X)} such that

.1 0 F(R) = GV (F) o s, (35)

for f; 1 X; — Xi,1. There is an obstructed top(i (™) equipped with an obstruction structu@ : X €€y ex € End(X)
for everyn-regular cocyclgX, f) in €. Let € be ann-regular obstructed category. This means that for every object
€, there isn-regular cocyclgX, f) and the corresponding obstruction structugfé X € G - ex € End(X),i =
1,2,...,n. Let us describe the obstruction structure for subobjects and produ@dtsy)lfs a subcocycle ofX, f), then the
corresponding obstruction structulf : Y; € €o — ¢ € End (¥;) is well defined if and only it is the restriction ot
toY;. One can describe products and the terminal object.

An n-regularizatiorfRed” (€) of € is a collection of alh-regular cocycles i and corresponding-regular cocycle
morphisms up to an-regular cocycle equivalence. There is a toffasg™ (€) calledn-regular topos oiE. Indeed, the-
regular cocycle equivalence is an equivalence relation. Equivalence classes of this relation are just eléRegfft§©f.
Ourn-regular cocycles and obstruction structures are unique up to the equivalence. For every equivalenae egssanf
cocycles, there is the corresponding class-oégular cocycle obstruction structure on it. The correspondence is a one to
one. Subobjects are given by subcocycles, and product are the above cocycle product. One can describe the generalized
truth object. All is up to an equivalence. Finally, one can introduce the notioredular obstructed presheaves, Heyting
algebras in an analogous way. It should be important to a study of the noninvertible histories approach to a quantum physics
and related topics. It will be done explicitly in forthcoming publications.
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APPENDIX
Number systems in synthetic differential geometry

The Naturals, Rationals and Cauchy RealsThe naturalsl, in any topos that possesses them, can be thought of
in exactly the same way as the naturals we are all familiar with. Showing this is another matter, and is left to texts such
as [7]. From the natural numbei§ the integer and rational€) can be easily constructed. These objects also behave as
expected. Classical reasoning is entirely permissible when considering the arithmetic of these number systems, as they are
all decidable objects. So too is the object of Cauchy reglsconstructed as equivalence classes of sequences of rationals.
As an example, the topos of sheaves d@el] has a natural numbers object. It is given by

NU):={f: U — N | f is continuous

N(V 5 U)(f) = fly
Note that in the topos of sheaves of&rb], wherea = b, the natural numbers object is the same as that of set theory.
The Smooth Reals The smooth real object was discovered inhabiting many toposes. Some of its properties were

abstracted to provide the foundation for synthetic differential geometry, however the smooth real object of one topos
generally behaves slightly differently to those of others. The axiomatic scheme we assume for the smooth reals is as



follows. R is to model the axioms (A1) - (A15) proposed by |. Moerdijk and G. E. Reyes, listed on pages 295-298 of
their work [40]. We uséJ(R) to denote the subobject of invertible elements. The most relevant of those axioms for this
paper are the following:

Axiom [Al]. R is a commutative ring with unit.

Axiom [A2]. Rislocal, such thad # 1 (¥X).

Axiom [A3]. (R,<) is a Euclidean ordered local ring, such that

0<1
O<X)AO0<y)=>(0<x+y)A(0<xy)
xeUR)e 0<xvx<0

(0 < x) = Jy(x =Yy

We take the following additional field axiom, relating distinguishability and invertibility, to hold true for ourRing

Axiom [Field]. R is a field in the following sens@/x,, ..., X, € R).

Also assumed is the following topological axiom

Axiom [Open Cover]. (¥x € R).

This says that the obje¢f<, 1), (0, —)} is an open cover. Fundamental to synthetic differential geometry are the
differentiation and integration axioms

Axiom [Kock-Lawvere]. For eachf : D — R, there exists a unique € R, such that for everg € D one has
f(d) = f(0) + d.b.

Axiom [Integration] . For eachf : R — R, there exists a unigué : R — R, such tha¥’(x) = f(x), F(0) = 0.

The well-adapted models of synthetic differential geometry discovered are all Grothendieck toposes (categories of
sheaves over sites), and extensive studies of the synthetic differential geometry aspects of these toposes (and others) have
been made in [40]. Those readers who wish to examine the toposes are referred to this source. The studies have revealed
some of the variable behaviors of the smooth reals as one moves from one topos to another. It is inevitable that there will
be preferred choices of topos for the construction of quantum mechanics within.

It is found that the most basic topos modelling parts of synthetic differential geonSstts () does not possess the
nicest of properties regardirig. For example, in this topos, the intenjél 1] is not compactR is not a local ring, and
many of the axioms of the previous section are not modelled. It is difficult to imagine this smooth real object modelling the
space around us. The toposesaindG detailed in [40] validate all of the axioms required in the body of this paper.
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TONOCHI U KATETOPMU B KBAHTOBOM TEOPUU U TPABUTALIAH

C. A. Iynmii D, B. Mapunnek?

D Xapvkosckuil Hayuonanvuwil yHusepcumem um. B. H. Kapaszuna, ni. Céoboowl, 4, 2. Xapvros, 61077, Yxkpauna
2 Uucmumym meopemuueckoii pusuxu, yuusepcumem Bpoynasa, nn. Maxca Bopna 9, 50-204Bpoynas, Honvwa

Paccmotpena Teopust TOMOCOB ¢ (Gu3nueckoit Touky 3peHus. [IpencraBneHsl 1 00bICHEHB OCHOBHBIE HJEH MOHSTHS Tomoc. Creman
0030p cBs3eli anredp KIACCHYECKUX U KBAaHTOBBIX HAOMIOAaeMBIX, alIbTEPHATUBHBIX KOHICIIIUI IPOCTPAHCTBA-BPEMEHH, TEOPUH OTHO-
CHUTEIIFHOCTH 1 KBAaHTOBOH I'paBHUTAINH, IPHOIIKEHNE 0000IEHHBIX HCTOPHH K KBAaHTOBOI TEOPUH BCEICHHOH B menoM. Konmenmus
Toroca 0600I1eHa, UCTIONb3Ys Pa3BUTHIN aBTOPaMH (HOPMaIn3M N-PETYISAPHBIX MPEMATCTBEHHBIX KaTerOpuii.

KJIFOYEBBIE CJIOBA: Tomoc, kareropus, MpeAy4oK, HHTYHIIMOHUCTCKAs JIOTHKA, IPENSATCTBUE, N-PETYIIPHOCTh



