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Regular and highern-regular superalgebras generated by purely odd elements are introduced and their properties are investigated.
They are described in terms of obstructed categories with invertible and noninvertible morphisms for which regularn-cocycle
obstruction structure is defined. Then-regular functors are introduced and corresponding natural transformations are considered.
In monoidal categories regularn-cocycle almost bialgebras and Hopf algebras are defined. A 3-cocycle example is given.
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The concept of higher regularization was introduced in the abstract way in the supermanifold theory [1, 2] and then
considered for general morphisms [3, 4], which leaded to regularization of categories and Yang-Baxter equation [5, 6,
7]. This concept is close to the some generalizations of category theory [8, 9, 10] and connected with weak bialgebras
[11, 12, 13] and plays an important role in topological quantum field theories [14, 15]. Here we introduce higher regular
superalgebras and study them in terms of obstructed categories, which can clear and to concrete understanding of the
concept of semisupermanifold [1].

Let A be a superalgebra [16]. We use the notationm (a⊗ b) ≡ ab for the multiplicationm : A⊗A → A in A .
Denote by|a| the parity ofa ∈ A. Then we have the relation|ab| = |a| + |b| (mod2) for the multiplication inA. This
means that the multiplication is an even map. Leta, b ∈ A be odd elements.|a| = |b| = 1, then the productab is an even
element ofA, |ab| = 0(mod2). We are going to consider certain superalgebras generated by purely odd elements. Let us
consider a simple example.

Let us consider an associative superalgebraA = Λ (Θ,Θ∗) generated by two noncommuting odd generatorsΘ and
Θ∗ satisfying the following relations

Θ2 = Θ∗2 = 0. (1)

and
ΘΘ∗Θ = Θ, Θ∗ΘΘ∗ = Θ∗. (2)

Definition 1. The superalgebraA = Λ (Θ,Θ∗) is said to be regular.

Note that in this algebraΘΘ∗ andΘ∗Θ are idempotents, becauseΘΘ∗ΘΘ∗ = (ΘΘ∗Θ)Θ∗ = ΘΘ∗ andΘ∗ΘΘ∗Θ =
(Θ∗ΘΘ∗) Θ = Θ∗Θ.

Let us introduce two–dimensional linear spacesX1 andX2 over a fieldK

X1 := linK{Θ,Θ∗Θ}, X2 := linK{Θ∗,ΘΘ∗}. (3)

Define two linear mappingsf1 : X1 → X2 andf2 : X2 → X1 as a right multiplication byΘ∗ andΘ, respectively.
We obtain

f1(Θ) = ΘΘ∗, f1(Θ∗Θ) = Θ∗ΘΘ∗ = Θ∗,
f2(Θ∗) = Θ∗Θ, f2(ΘΘ∗) = ΘΘ∗Θ = Θ.

(4)

Obviously we have
f1 ◦ f2 ◦ f1 = f1, f2 ◦ f1 ◦ f2 = f2. (5)

Define two self-mappingsX1 → X1 andX2 → X2 by

eX1 := f1 ◦ f2, eX2 := f2 ◦ f1. (6)

It is obvious thateX1
andeX2

are idempotents

eX1 ◦ eX1 = eX1 , eX2 ◦ eX2 = eX2 . (7)

Observe that there is a categoryCΛ whose objects areC0 := {K, X1, X2, X1⊕X2} and whose morphisms are given
as all compositions of mappings{f1, f2, eX1 , eX2} and identity morphisms.

Note that the superalgebraA = Λ (Θ,Θ∗) can be described as the so-called free product of two one dimensional
Grassmann algebrasΛ(Θ) andΛ(Θ∗) modulo relations (2). Recall that the free product of algebrasA andB is the algebra
A ∗ B formed by all formal finite sums of monomials of the forma1 ∗ b1 ∗ a2 ∗ . . . or b1 ∗ a1 ∗ b2 ∗ . . ., whereai ∈ A,
bi ∈ B, i = 1, 2, . . . are non-scalar elements. In other wordsA ∗ B is the algebra generated by two algebrasA andB with
no relations.



Example2. Let us considern copies of one–dimensional Grassmann algebraΛ (Θ). The i−th copy is denoted by

Λ(Θ

i︷ ︸︸ ︷∗ ∗ ...∗). Let us define a superalgebraΛ(Θ,Θ∗, . . . ,Θ

n−1︷ ︸︸ ︷∗ ∗ ...∗) as a free product ofn copies of one–dimensional
Grassmann algebras subject to the following relation

ΘΘ∗Θ∗∗ · · ·Θ
n−1︷ ︸︸ ︷∗ ∗ ...∗ Θ = Θ

(8)

and its all cyclic permutations.

Definition3. The superalgebraΛ(Θ,Θ∗, . . . ,Θ

n−1︷ ︸︸ ︷∗ ∗ ...∗) is said to ben–regular.

We definen–dimensional linear spaces over a fieldK

X1 := linK{Θ,Θ
n︷ ︸︸ ︷∗ · · · ∗ Θ, . . . ,Θ∗ · · ·Θ

n︷ ︸︸ ︷∗ · · · ∗ Θ},

X2 := linK{ΘΘ∗,Θ

n︷ ︸︸ ︷∗ · · · ∗ΘΘ∗, . . . ,Θ∗},
...

...

Xn := linK{ΘΘ∗ · · ·Θ
n︷ ︸︸ ︷∗ · · · ∗,Θ∗ · · ·Θ

n−1︷ ︸︸ ︷∗ · · · ∗Θ
n︷ ︸︸ ︷∗ · · · ∗, . . . ,Θ

n︷ ︸︸ ︷∗ · · · ∗}

(9)

Define linear mappingfi : Xi → Xi+1 as a right multiplication byΘ

i︷ ︸︸ ︷∗ ∗ ...∗ for i = 1, . . . , n. Forf1 we obtain

f1(Θ) = ΘΘ∗, f1(Θ

n︷ ︸︸ ︷∗ · · · ∗ Θ) = Θ

n︷ ︸︸ ︷∗ · · · ∗ ΘΘ∗, . . . ,

f1(Θ∗Θ

n︷ ︸︸ ︷∗ · · · ∗ Θ) = Θ∗Θ

n︷ ︸︸ ︷∗ · · · ∗ ΘΘ∗ = Θ∗.

(10)

We can calculate that we have the relation

f1 ◦ fn ◦ · · · ◦ f2 ◦ f1 = f1 (11)

and corresponding cyclic permutations. In this case there is also a specific category which contains all spaces and mappings
considered above.

ALGEBRAS VIA CATEGORIES

Let us briefly recall the fundamental concept of the category theory for fixing the notation (or more details see e.g.
[17]). A categoryC = (C, c) contains

(i) a collectionC0 of objects
(ii) a collectionC1 of morphisms (arrows)

C1 =
⋃

U,V∈C0
C(U ,V)

(iii) an associative compositionc of morphisms

c : C(U ,V)× C(V,W)→ C(U ,W) (12)

The collectionC1 is the union of mutually disjoint setsC(U ,V) of morphismsf : U → V from U to V defined for
every pair of objectsU ,V ∈ C0. It may happen that for a pairU ,V ∈ C(C) the setC(U ,V) is empty.

An opposite(or dual) category of a categoryC = (C, c) is a categoryCop = (Cop, cop) equipped with the same
collection of objectsC0 as the categoryC but with reversed all arrows

Cop(U ,V) ≡ C(V,U). (13)

If D is a diagram built from objects and morphisms of the categoryC, then the same diagram but with reversed all arrows
is said to bedual toD.



Let C andD be two categories. AfunctorF : C → D of C intoD is a pair of mapsF0 : C0 → D0,F1 : C1 → D1

which sends objects ofC into objects ofD and morphisms ofC into morphisms ofD such that

F1(f ◦ g) = F1(f) ◦ F1(g) (14)

for every morphismsf : V −→ W andg : U −→ V of C. The generalization to multifunctors is obvious. For instance
ann–ary functorF : C×n −→ N sends ann–tuple of objects ofC into an object ofN . The corresponding condition for
morphisms is evident.

Now we recall the concept of natural transformations [17]. Anatural transformations : F → G of F into G is a
collection of morphisms

s = {sU : F(U)→ G(U),U ∈ C0}
such that

sV ◦ F(f) = G(f) ◦ sU (15)

for every morphismf : U −→ V of C. The set of all natural transformations ofF into G is denoted byNat(F ,G). It is
easy to see that the compositiont ◦ f of natural transformations of F into G andt of G intoH is a natural transformation
of F intoH. If F ≡ G, then we say that the natural transformations : F −→ G is a natural transformation ofF into itself.

We can use functors and natural transformations in order to describe certain algebraic structures in categories [17].
Let C be a category and we define a functorFn : C → C which sends an objectA into A× · · · × A︸ ︷︷ ︸

n

and similarly

for morphisms. A binary multiplication is a natural transformationm : F2 → F satisfying the associativity condition
m ◦ (m × F) = m ◦ (F × m). Similarly, a comultiplication is a natural transformation4 : F → F2 satisfying the
corresponding coassociativity condition(4×F) ◦ 4 = (F ×4) ◦ 4.

OBSTRUCTED CATEGORIES

Let C be a category with invertible and noninvertible morphisms [4] and equivalence. By an equivalence inC we
mean a class of morphismsCinv =

⋃
X,Y ∈C0 Cinv(X,Y ), whereCinv(X,Y ) is a subset ofC(X,Y ). Two objectsX,Y

of the categoryC is equivalent if and only if there is an morphismX
s−→ Y in Cinv(X,Y ) such thats−1 ◦ s = idX and

s ◦ s−1 = idY .

Definition 4. A sequence of noninvertible morphisms

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ X1 (16)

such that there is an (endo-)morphisme(3)
X1

: X1 −→ X1 defined uniquely by the following equation

e
(n)
X1

:= fn ◦ · · · ◦ f2 ◦ f1 (17)

and subjects to the following relation
f1 ◦ fn ◦ · · · ◦ f2 ◦ f1 = f1 (18)

is said to be aregularn-cocycleonC and it is denoted by(X, f).

Definition 5. The morphisme(n)
X1

is said to be an obstruction ofX1 corresponding to the regularn–cocyclef = (f1, . . . fn)

onC. The obstruction (endo-)morphismse(n)
Xi

: Xi −→ Xi corresponding fori = 2, . . . , n are defined by a suitable cyclic
permutation of above sequence.

Definition 6. If the obstruction (endo-)morphismse(n)
X : X −→ X is defined for every objectX ∈ C0, then the mapping

e(n) : X ∈ C0 → e
(n)
X ∈ C(X,X) is called a regular n-cocycle obstruction structure onC.

It is obvious that for usual category alle(n)
X are equal to identitye(n)

X = IdX . We are interested with categories for

which the obstructione(n)
X differs from the identity.

Definition 7. A categoryC equipped with a regularn-cocycle obstruction structuree(n) : X ∈ C0 → e
(n)
X ∈ C(X,X)

such thate(n)
X 6= idX for someX ∈ C0 is called an obstructed category. The minimum numbern = nobstr for which it

occurs will define a quantitative measure of obstructionnobstr.

Let (Y, g) a regularn–cocycle, i. e. a sequence of morphismsY1
g1−→ Y2

g2→ · · · gn−1→ Yn
gn→ Y1 such thate(n)

Y1
:=

gn ◦ · · · ◦ g2 ◦ g1.



Definition 8. A sequence of morphismsα := (α1, . . . , αn) such that the diagram

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ X1

↓ α1 ↓ α2 ↓ αn ↓ α1

Y1
g1−→ Y2

g2−→ · · · gn−1−→ Yn
gn−→ Y1

(19)

is commutative, is said to be a regular n-cocycle morphism from(X, f) to (Y, g) and is denoted byα : (X, f)→ (Y, g).

Observe that for a regularn-cocycle morphismα : (X, f)→ (Y, g) we have the relation

α1 ◦ e(n)
X1

= e
(n)
Y1
◦ α1. (20)

Definition 9. A regular n-cocycle obstruction morphisms : (X, f) → (X ′, g) which sends the objectXi into equivalent
objectX ′i and morphismfi into gi is said to be obstructionn-cocycle equivalence. The corresponding obstructionse

(n)
X

ande(n)
X′ are also said to be equivalent.

Let C andD be two obstructed categories. The morphismse
(n)
X can be used to extend the notion of functors. Let

F : C → D be a functor defined as usual as a pair of mappings(F0,F1).

Definition 10. A new functorF (n) : C → D defined as a pair of mappings(F (n)
0 ,F (n)

1 ) such that

F (n)
0 ≡ F0 F

(n)
1

(
e

(n)
X

)
= e

(n)
F0(X), (21)

whereX ∈ C0, is said to ben-regular.

All the standard definitions of functor do not changed, but preservation of identityF (IdX1) = IdX2 , whereX2 =

FX1,X1 ∈ C0,X2 ∈ D0, is be replaced by requirement of preservation of morphismse
(n)
X . Then the generalized functor

F (n) becomesn-dependent. Note thatn = 1 corresponds to the standard functor, i.e.F (1) = F .

Lemma 11. Let the sequence

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ X1 (22)

be a regularn–cocycle in the categoryC. If F (n) : C → D is n-regular functor, then

F (n)(X1)
F (n)(f1)−→ F (n)(X2)

F (n)(f2)−→ · · · F
(n)(fn−1)−→ F (n)(Xn)

F (n)(fn)−→ F (n)(X1) (23)

is a regularn-cocycle in the categoryD.

Proof.We need to prove thatF (n)(f) ◦ e(n)
X2

= F (n)(f). Indeed, we have

F (n)(f) = F (n)
(
f ◦ e(n)

X

)
= F (n) (f) ◦ F (n)

(
e

(n)
X1

)
= F (n)(f) ◦ e(n)

X2
.

�
Multifunctors can be regularized in a similar way. One can also “regularize” natural transformations in the similar

manner. LetF (n) andG(n) be twon–regular functors of the categoryC into the categoryD.

Definition 12. A natural transformations : F (n) → G(n) of F (n) into G(n) is a collection of morphismss = {sX :
F0(X)→ G0(X), X ∈ C} such that

sY ◦ F (n)
1 (α) = G

(n)
1 (α) ◦ sX , (24)

for every regular morphismα : X → Y is said to ben-regular natural transformation.

A monoidal categoryC ≡ C(⊗,K) is a categoryC equipped with a monoidal operation (a bifunctor)⊗ : C × C → C,
a unit objectK satisfying some known axioms [18].

Definition 13. A monoidal categoryC ≡ C(⊗,K) equipped with a family of obstruction morphismse(n) = {e(n)
X : X ∈

C0;n = 1, 2, ...} satisfying the condition
e

(n)
X⊗Y = e

(n)
X ⊗ e(n)

Y . (25)

is said to be an obstructed monoidal category.



REGULAR ALGEBRAS AND BIALGEBRAS

Let C be an obstructed monoidal category [5, 6].

Definition 14. An algebraA in the categoryC such that the multiplicationm : A ⊗ A → A is a regularn–cocycle
morphism

m ◦ (e
(n)
A ⊗ e(n)

A ) = e
(n)
A ◦m, (26)

is said to be a regularn-cocycle algebra.

Obviously such multiplication not need to be unique. Denote by<egn(C)(A⊗A,A) a class of all such multiplications.
We can see that a regularn-cocycle2-morphismss : m ⇒ m′ which send the multiplicationm into a new onem′ should
be an algebra homomorphism. One can define regularn-cycle coalgebra or bialgebra in a similar way. A comultiplication
4 : A −→ A⊗A can be regularized according to the relation

4 ◦ e(n)
A = (e

(n)
A ⊗ e(n)

A ) ◦ 4. (27)

In this case we obtain a class<egn(C)(A,A⊗A) of comultiplications.
LetA be a regularn-cocycle algebra. IfA is also regular coalgebra such that∆ (ab) = ∆ (a) ∆ (b), then it is said

to be aregularn-cocycle almost bialgebra. If A is a regularn-cocycle algebra, then we denote byhomm(A,A) the set of
morphismss ∈ homC(A,A) satisfying the condition

s ◦m = m ◦ (s⊗ s). (28)

LetA be a regularn-cocycle almost bialgebra. We define theconvolution product

s ? t := m ◦ (s⊗ t) ◦ 4, (29)

wheres, t ∈ homm(A,A). If A is a regularn-cocycle almost bialgebra, then the convolution product is regular. A regular
n-cocycle almost bialgebraH equipped with an elementS ∈ homm(H,H) such that

S ? idH ? S = S, idH ? S ? idH = idH. (30)

is said to be aregular n-cocycle almost Hopf algebraH. This is a regular analogy of week Hopf algebras considered in
[11] (see also [12]).

LetAC be a category of all leftA -modules, whereA is a bialgebra. For the regularization<egn(AC) of theA–module
actionρM : A⊗M −→M we use the following formula

ρM ◦ (e
(n)
A ⊗ e(n)

M ) = e
(n)
M ◦ ρM , (31)

whereρM : A ⊗M −→ M is the left module action ofA onM . The class of all such module actions is denoted by
<egn(AC)(A⊗M,M). The monoidal operation in this category is given as the following tensor product ofA-modules

ρM⊗N := (idM ⊗ τ ⊗ idN ) ◦ (ρM ⊗ ρN ) ◦ (4⊗ idM⊗N ), (32)

whereτ : A⊗M →M ⊗A is the twist, i. e.τ(a⊗m) := m⊗ a for everya ∈ A, m ∈M .

Lemma 15. For the tensor product of module actions we have the following formula

ρM⊗N ◦ (eA ⊗ eM⊗N ) = eM⊗N ◦ ρM⊗N . (33)

Let CA be a category of rightA-comodules, whereA is an algebra. The corresponding regularization can be given by
the formulae

ρ ◦ e(n)
A = (e

(n)
M ⊗ e(n)

A ) ◦ ρM ,
ρM⊗N = (idM ⊗mA) ◦ (idM ⊗ τ ⊗ idN ) ◦ (ρM ⊗ ρN ),

(34)

whereτ : M ⊗N → N ⊗M is the twist,mA : A⊗A → A is the multiplication inA.
We considerΛ(Θ,Θ∗) as an example and have the following

Lemma 16. The superalgebraΛ(Θ,Θ∗) is a regular3-cocycle algebra in the categoryCΛ.



Proof.Let a, b ∈ Λ(Θ,Θ∗) have the following form

a = λ0 + λ1Θ + λ2Θ∗ + λ12ΘΘ∗ + λ21Θ∗Θ, b = µ0 + µ1Θ + µ2Θ∗ + µ12ΘΘ∗ + µ21Θ∗Θ. (35)

The multiplication inΛ(Θ,Θ∗) is given by

ab = λ0µ0 + (λ0µ1 + λ1µ0 + λ1µ21 + λ12µ1)Θ + (λ0µ2 + λ2µ0 + λ2µ12 + λ21µ2)Θ∗

+(λ0µ12 + λ1µ2 + λ12µ0 + λ12µ12)ΘΘ∗ + (λ0µ21 + λ2µ1 + λ21µ0 + λ21µ21)Θ∗Θ. (36)

The obstructione(3)
A is given by

e
(3)
A (a) := λ0 + λ2Θ + λ1Θ∗ + λ21ΘΘ∗ + λ12Θ∗Θ (37)

We can calculate that the condition (26) holds. �
We conclude that further study of regular superalgebras can lead to new structures in corresponding objects built from

them and possible nontrivial features of resulting supersymmetric theories.
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О РЕГУЛЯРНЫХ СУПЕРАЛГЕБРАХ И ПРЕПЯТСТВЕННЫХ КАТЕГОРИЯХ
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Вводятся регулярные и высшие n-регулярные супералгебры, генерируемые нечетными элементами, исследуются их свойства.Они описываются в терминах препятственных категорий с обратимыми и необратимыми морфизмами, для которых определена
n-регулярная препятственная структура. Вводятся n-регулярные функторы и рассматриваются соответствующие естественныепреобразования. Для моноидальных категорий определены регулярные n-коциклические биалгебры и алгебры Хопфа. Приве-ден пример 3-коцикла.

КЛЮЧЕВЫЕ СЛОВА: супералгебра, регулярность, категория, естественное преобразование, препятственность, функтор


