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ON REGULAR SUPERALGEBRAS AND OBSTRUCTED CATEGORIES
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Regular and highet-regular superalgebras generated by purely odd elements are introduced and their properties are investigated.
They are described in terms of obstructed categories with invertible and noninvertible morphisms for whichrregalale
obstruction structure is defined. Thaegular functors are introduced and corresponding natural transformations are considered.
In monoidal categories regular-cocycle almost bialgebras and Hopf algebras are defined. A 3-cocycle example is given.
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The concept of higher regularization was introduced in the abstract way in the supermanifold theory [1, 2] and then
considered for general morphisms [3, 4], which leaded to regularization of categories and Yang-Baxter equation [5, 6,
7]. This concept is close to the some generalizations of category theory [8, 9, 10] and connected with weak bialgebras
[11, 12, 13] and plays an important role in topological quantum field theories [14, 15]. Here we introduce higher regular
superalgebras and study them in terms of obstructed categories, which can clear and to concrete understanding of the
concept of semisupermanifold [1].

Let .4 be a superalgebra [16]. We use the notatiofe ® b) = ab for the multiplicationm : A® A — Ain A.

Denote byla| the parity ofa € A. Then we have the relatidab| = |a| + |b] (mod2) for the multiplication inA. This

means that the multiplication is an even map. &gt € A be odd elementga| = |b| = 1, then the produatb is an even
element of4, |ab| = 0(mod2). We are going to consider certain superalgebras generated by purely odd elements. Let us
consider a simple example.

Let us consider an associative superalgebra A (©,0*) generated by two noncommuting odd genera@®m@nd
O* satisfying the following relations

02— 02 — . 1)

and
000 =0, 000" = 0*. 2

Definition 1. The superalgebrd = A (©,©*) is said to be regular.

Note that in this algebr®©* and©*© are idempotents, becaud®*00* = (00*0)0* = OO* andO*OO*O =
(6*00*) 6 = ©*6.
Let us introduce two—dimensional linear spadgsand X, over a fieldK

X1 = linK{G, @*9}, Xg = linK{G*, 99*} (3)

Define two linear mappingg, : X1 — Xs andf; : X5 — X; as a right multiplication by9* and®©, respectively.
We obtain
f1(0) =00*,  f1(0*0) =0*06* = 0%, )
f2(0*) =0*0, [f(060*)=600*6 =06.
Obviously we have

fiofeofi=fi, faofiofo=fo (%)
Define two self-mappingX’; — X; andX,; — X by

ex, := fio fa, ex,:= fa0 f1. (6)
Itis obvious thakx, andex, are idempotents
ex, oex, = ex,, €x,0ex, = ex,. (7)

Observe that there is a categdty whose objects aré, := {K, X;, X», X; @ X»} and whose morphisms are given
as all compositions of mappindd1, f2, ex,, ex, } and identity morphisms.
Note that the superalgebrd = A (©,0*) can be described as the so-called free product of two one dimensional
Grassmann algebrag ©) andA(©*) modulo relations (2). Recall that the free product of algebtandB is the algebra
A x B formed by all formal finite sums of monomials of the formn* by * as * ... 0rby * a; * b x ..., wherea; € A,
b; € B,i=1,2,...are non-scalar elements. In other woils B is the algebra generated by two algehraand 3 with
no relations.




Example2. Let us considem copies of one—dimensional Grassmann algeb(®). The i—th copy is denoted by

i n—1

A(©** ), Let us define a superalgeb/d©,0*,...,0* * --*) as a free product of. copies of one—dimensional
Grassmann algebras subject to the following relation

n—1

and its all cyclic permutations.
n—1

. . ’_/H . -
Definition3. The superalgebra(0,0*,...,0* * ---*) is said to ber—regular.

We definen—dimensional linear spaces over a fi&ld

n n

—~ —~
X, = ling{0,0% "% 0,...,0%...0% " * 9},

—
X, = ling{©@0*, 0% " *00*,..., 0%},

n n—1
X, = ling {©O* ... 0% ¥ @r...@* T FgF
. . . B . . . /-/’L\\ .
Define linear mapping; : X; — X, as a right multiplication b@* * --* fori = 1,...,n. For f; we obtain

n n

—~ —~
£1(0) = 0%, f,(0% F @) =0 F 0or, ...,

—~ /—:\
F(0°0% " F 9) = 0*0* T F 9O = O~

We can calculate that we have the relation

fiofno-rofaofi=fi (11)

and corresponding cyclic permutations. In this case there is also a specific category which contains all spaces and mappings
considered above.

ALGEBRAS VIA CATEGORIES

Let us briefly recall the fundamental concept of the category theory for fixing the notation (or more details see e.g.
[17]). A categoryC = (C, ¢) contains

(i) a collectionC, of objects

(i) a collectionC; of morphisms (arrows)

a= | cuv
Uu,vecCo

(iii) an associative compositiotniof morphisms

c:C(U,V) x C(V,W) = CU,W) (12)

The collectionC; is the union of mutually disjoint set3(l/, V) of morphismsf : &/ — V from U to V defined for
every pair of objecté/, V € Cy. It may happen that for a pait,V € C(C) the seC(U, V) is empty.

An opposite(or dual) category of a categorg = (C,c) is a categonC°? = (C°P, c°P) equipped with the same
collection of object®, as the categorg but with reversed all arrows

CoPU, V) = C(V,U). (13)

If D is adiagram built from objects and morphisms of the categothen the same diagram but with reversed all arrows
is said to bedualto D.




Let C andD be two categories. Aunctor F : C — D of C into D is a pair of map$, : Co — Dy, F1 : C1 — Dy
which sends objects @f into objects ofD and morphisms of into morphisms o> such that

Fi(fog)=Fi(f) o Fi(g) (14)

for every morphismg : V — W andg : Y — V of C. The generalization to multifunctors is obvious. For instance
ann-ary functorF : C** — N sends am—-tuple of objects of into an object of\/. The corresponding condition for
morphisms is evident.
Now we recall the concept of natural transformations [17hakural transformations : 7 — G of F into G is a
collection of morphisms
s = {Su : .7:(1/{) — Q(U),L[ € Co}

such that
sy o F(f)=G(f)osu (15)

for every morphismyf : &/ — V of C. The set of all natural transformations #finto G is denoted byWat(F, G). Itis
easy to see that the composition f of natural transformation of F into G andt¢ of G into # is a natural transformation
of FintoH. If 7 = G, then we say that the natural transformatianF — G is a natural transformation ¢f into itself.
We can use functors and natural transformations in order to describe certain algebraic structures in categories [17].
Let C be a category and we define a functf : C — C which sends an objectl into A x --- x A and similarly

n
for morphisms. A binary multiplication is a natural transformatien: 2 — F satisfying the associativity condition
mo (m x F) = mo (F x m). Similarly, a comultiplication is a natural transformatidn : 7 — F? satisfying the
corresponding coassociativity conditioh x F) o A = (F x A) o A.

OBSTRUCTED CATEGORIES

Let C be a category with invertible and noninvertible morphisms [4] and equivalence. By an equivaléheein
mean a class of morphisni&™” = Jx y ., C""(X,Y), whereC”(X,Y) is a subset o€ (X,Y). Two objectsX, Y

of the category is equivalent if and only if there is an morphiskh —= Y in C?"*(X,Y) such thats—! o s = idx and
sos ! =idy.

Definition 4. A sequence of noninvertible morphisms

XN x, 2 x, I x

such that there is an (endo-)morphis%f : X3 — X; defined uniquely by the following equation

) i=foo---0fao fy )
and subjects to the following relation

fiofno-rofaofi=fi (18)
is said to be aegularn-cocycleonC and it is denoted by X, f).

n)

Definition 5. The morphismag(1 is said to be an obstruction &f; corresponding to the regularcocyclef = (f1,... fn)

onC. The obstruction (endo—)morphismg? : X; — X; corresponding fof = 2, ..., n are defined by a suitable cyclic
permutation of above sequence.

Definition 6. If the obstruction (endo—)morphismgﬁ) : X — X is defined for every objecX € Cy, then the mapping
e™ X eCy— egg> € C(X, X) is called a regular n-cocycle obstruction structure&on

It is obvious that for usual category aﬂ?) are equal to identityeg?) = Idx. We are interested with categories for
which the obstructiomg?) differs from the identity.

Definition 7. A categoryC equipped with a regulat-cocycle obstruction structue™ : X € Cy — eg’;) € C(X,X)

such thakg?) # idx for someX € C, is called an obstructed category. The minimum numbet ns,- for which it
occurs will define a quantitative measure of obstructigg,..

Let (Y, g) a regulam—cocycle, i. e. a sequence of morphiskis— Y, %3 ... 73" v, 23 v; such thare(y’j) =
gn o 0gaogi.




Definition 8. A sequence of morphisms:= (ay, ..., a,) such that the diagram
X N ox, Booox, Iyox
lag 1 az lay la (19)
i %oy &y, 2oy

is commutative, is said to be a regular n-cocycle morphism ff&myf) to (Y, g) and is denoted by : (X, f) — (Y, g).

Observe that for a regularcocycle morphisma : (X, f) — (Y, g) we have the relation
Qo eg?l) = egfll) oaj. (20)

Definition 9. A regular n-cocycle obstruction morphism (X, f) — (X', g) which sends the object; into equivalent
object X/ and morphismy; into g; is said to be obstruction-cocycle equivalence. The corresponding obstructkﬂ?‘l)s
andeg?,) are also said to be equivalent.

Let C andD be two obstructed categories. The morphisnﬁ”% can be used to extend the notion of functors. Let
F : C — D be afunctor defined as usual as a pair of mappitgs 71 ).

Definition 10. A new functorF(™ : ¢ — D defined as a pair of mappings-‘é"),]-'l(")) such that

RV =F B () =Py, (21)

whereX € (Cy, is said to ber-regular.

All the standard definitions of functor do not changed, but preservation of idénfifylx, ) = Idx,, whereX,; =

FX;, X, €Cy, Xo € Dy, is be replaced by requirement of preservation of morphiéfﬁs Then the generalized functor
F(") becomes:-dependent. Note that= 1 corresponds to the standard functor, F&) = F.

Lemma 11. Let the sequence

X yx, Iy x (22)

be a regularn—cocycle in the categor. If F(™) : C — D is n-regular functor, then
(n) (n) (n) (n)
Fo () T o x) PR ET ) py xR o (x)) (23)
is a regularn-cocycle in the categor.

Proof. We need to prove that (™) (f) o e{) = F(")(f). Indeed, we have

FOI(f) = FO) (foeld)) = FO) () o F® (F)) = FOI(f) o ey,

O

Multifunctors can be regularized in a similar way. One can also “regularize” natural transformations in the similar
manner. LetF(") andG (™) be twon—regular functors of the categofyinto the categoryD.

Definition 12. A natural transformatios : F(™ — G of F(™) into G™ is a collection of morphisms = {sx :
Fy(X) = Go(X),X € C} such that

sy o F{" (@) = G{"” (a) 0 sx, (24)
for every regular morphism : X — Y is said to bex-regular natural transformation.

A monoidal category = C(®, K) is a category¥ equipped with a monoidal operation (a bifuncter} C x C — C,
a unit objectK satisfying some known axioms [18].

Definition 13. A monoidal category = C(®,K) equipped with a family of obstruction morphismi&) = {eg?) X e
Co;n = 1,2, ...} satisfying the condition
eg?(gy = eg?) ® egfb). (25)

is said to be an obstructed monoidal category.




REGULAR ALGEBRAS AND BIALGEBRAS

LetC be an obstructed monoidal category [5, 6].

Definition 14. An algebraA in the categonC such that the multiplicatiom : A ® A — A is a regulam—cocycle
morphism
mo (eff) ® eff)) = eff) om, (26)

is said to be a regular-cocycle algebra.

Obviously such multiplication not need to be unique. Denot®by, (C) (A®.A4, A) a class of all such multiplications.
We can see that a regularcocycle2-morphismss : m = m’ which send the multiplicatiom into a new onen’ should
be an algebra homomorphism. One can define regutaicle coalgebra or bialgebra in a similar way. A comultiplication
A A— A® Acan be regularized according to the relation

Noelp) = (P ®elP)on. 27)

In this case we obtain a cla®g,, (C)(A, A ® A) of comultiplications.

Let A be a regulan-cocycle algebra. If4 is also regular coalgebra such tia{ab) = A (a) A (b), then it is said
to be aregular n-cocycle almost bialgebrdf A is a regulam-cocycle algebra, then we denotelbym,,, (A, .A) the set of
morphismss € hom¢ (A, A) satisfying the condition

som=mo (s®s). (28)
Let A be a regulan-cocycle almost bialgebra. We define t@nvolution product
sxt:=mo(s®t)oA, (29)

wheres, t € hom,, (A4, A). If Ais aregulam-cocycle almost bialgebra, then the convolution product is regular. A regular
n-cocycle almost bialgebrtl equipped with an elemetst € hom,,, (H, H) such that

S*id?{*S:S, idq{*s*id}[:idq{. (30)

is said to be aegular n-cocycle almost Hopf algebr&. This is a regular analogy of week Hopf algebras considered in
[11] (see also [12]).

Let 4C be a category of all lefl -modules, wherel is a bialgebra. For the regularizatiftag,, (4C) of the. A—module
actionpys : A ® M — M we use the following formula

P 0 (e(") ® e(Mn)) _ 65\2) o pat, (31)

wherepys : A® M — M is the left module action off on M. The class of all such module actions is denoted by
Regn(4C)(A® M, M). The monoidal operation in this category is given as the following tensor produttoddules

pueN = (idy @ T ®idy) o (pym ® pN) © (A ®idyen), (32)
wherer : A®@ M — M ® Aisthe twist, i. er(a ® m) := m ® a for everya € A, m € M.
Lemma 15. For the tensor product of module actions we have the following formula
pren © (eA ® eneN) = €MaN © PMEN - (33)

LetC# be a category of rightl-comodules, wheregl is an algebra. The corresponding regularization can be given by
the formulae

poel) = (efy) @ y)) o pur, (34)
pyueN = (idy @mg) o (idy @ T ®ddn) o (o @ pN),

wherer : M @ N -+ N ® M is the twistm 4 : A ® A — A is the multiplication inA.
We conside\ (0, ©*) as an example and have the following

Lemma 16. The superalgebra (©, ©*) is a regular3-cocycle algebra in the categoGj .




Proof.Leta, b € A(©, ©*) have the following form
a=X+ O+ XOF + X\1200" + )\219*@, b= Mo + ng + [1,2@* + ;Lm@@* + M21@*@. (35)
The multiplication inA(©, ©*) is given by

ab = Xopo + (Mopr + Arpro + Arpar + A121)O + (Aopz + Aapro + Aaprio + Ao1pip) O
+(Aoprrz2 + Atz + Ai2pto + A1212)O0* + (Aop2r + Aopt1 + Azt + A214121)0*O.

The obstructiomfff) is given by

%) (@) = Ao + MO + M10* + 19,00 + 11,070 (37)

We can calculate that the condition (26) holds. O

We conclude that further study of regular superalgebras can lead to new structures in corresponding objects built from
them and possible nontrivial features of resulting supersymmetric theories.
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O PEI'VJISIPHBIX CYIIEPAJITEBPAX U ITPEISITCTBEHHBIX KATET'OPUAX
C. A. Jlymmmii V), B. Mapunnek >

R Xapvkosckuil Hayuonanvubvil yHusepcumem um. B. H. Kapasuna, ni. Céoboowl, 4, 2. Xapvros, 61077, Yxkpauna

2) Hncmumym meopemuueckoti gpusuku, ynusepcumem Bpoynasa, ni. Maxca bopua 9, 50-204Bpoynas, Honvwa

BBozsTcs peryisipHbIe ¥ BBICIIHE N-peTYISIPHBIE CynepanreOpsl, FeHepupyeMble HeUeTHBIMU 2JIEMEHTAaMHU, HCCIEAYIOTCS X CBOMCTBA.
OHM ONHCHIBAIOTCS B TEPMUHAX MPETATCTBEHHBIX KATETOPHHI ¢ 00paTHMBIMU U HEOOPATHMBIMU MOP(HHU3MaMH, I KOTOPHIX OIpeie/ieHa
n-perynspHas NpersTCTBeHHas CTPYKTypa. BBomsTces n-perynsapHslie PyHKTOPBI M paCCMaTPUBAIOTCS COOTBETCTBYIOLIIE €CTECTBEHHbIC
npeoOpaszoBanus. 11 MOHOMIAIBHBIX KaTETOPHI ONPENeNeHbl PErysipHble n-KOUKINYecKue Ouanreops! u anredper Xonda. [Ipuse-
JeH nmpuMep 3-KOIUKIIA.

KJIFOYEBBIE CJIOBA: cynepanredpa, peryiasipHOCTb, KATETOPHUs, €CTECTBEHHOE peoOpa3oBaHue, MPEMITCTBEHHOCTh, (PyHKTOD




