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In general abstract algebraic language we extend “invertibility” to “regularity” for categories. Higher regularity
conditions and “semicommutative” diagrams are introduced. Distinction between commutative and “semicommu-
tative” cases is measured by non-zero obstruction proportional to the difference of some self-mappings (obstruc-

tors) e(n) from the identity, which allows us to generalize the notion of functor and to “regularize” braidings and
related structures in monoidal categories. Also we propose a “noninvertible” analog of the Yang-Baxter equation.
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The concept of regularity was introduced by von Neumann [1] and applied by Penrose to matrices [2].
After that study of regularity was developed in many different fields, e.g. generalized inverses theory [3] and
semigroup theory [4]. We consider here this concept in categorical language [5] and introduce the most abstract
form of higher regularity conditions (firstly introduced in [6]).

Let X and Y be two arbitrary sets. A mapping f from X to Y is defined by a prescription which assigns
an element of Y to each element of X, i.e. f : X → Y . Injective mapping (injection) assigns different images to
different elements, and in surjective mapping (surjection) every image has at least one pre-image. Bijection has
both properties. Usually inverse mapping f−1 is defined as a new mapping g : Y → X which assigns to each
y ∈ Y such x ∈ X that f (x) = y and so f−1 = g. For injective f and any A ⊂ X it is imposed the following
“invertibility” condition

f−1 (f (A)) = A. (1)

For surjective f and B ⊂ Y the standard “invertibility” condition is

f
(
f−1 (B)

)
= B. (2)

These conditions are strong, because they imply possibility to solve the equation f (x) = y for all elements.
In many cases, especially while considering supersymmetric theories, there naturally appear noninvertible mor-
phisms [6, 7] and semigroups [8, 9]. That obviously needs extending some general assumptions. We propose
to extend the “invertibility” conditions (1)–(2) in the following way (which comes from analogy of regularity
in semigroup theory [4]). We introduce less restricted “regular” f∗ mapping by extending “invertibility” to
“regularity” in following way

f (f∗ (f (A))) = f (A) . (3)

For the second equation (2) we have the “reflexive regularity” condition

f∗ (f (f∗ (B))) = f∗ (B) . (4)

REGULAR MORPHISMS

We distinguish among all mappings X → Y the morphisms satisfying closure and associativity. That
defines a category C with objects ObC as sets X,Y, Z and morphisms MorC as mappings f : X → Y between
them (or f = Mor (X,Y )) [5]. For composition h : X → Z of morphisms f : X → Y and g : Y → Z
instead of h (x) = g (f (x)) for mappings we use the notation h = g ◦ f . Associativity implies that h ◦ (g ◦ f) =
(h ◦ g) ◦ f = h ◦ g ◦ f . Let us consider “invertibility” properties of morphisms in general. If f satisfies the “right
invertibility” condition f ◦ f−1 = IdY for some f−1 : Y → X then f is called a retraction, and if f satisfies the
“left invertibility” condition f−1 ◦ f = IdX , then it is called a coretraction, where IdX and IdY are identity
mappings IdX : X → X and IdY : Y → Y for which ∀x ∈ X, IdX (x) = x and ∀y ∈ Y, IdY (y) = y. These
requirements sometimes are very strong to be fulfilled (see e.g. [10]). To obtain more weak conditions one has
to introduced the following “regularity” conditions

f ◦ f∗in ◦ f = f, (5)

where f∗in is called an inner inverse [3], and such f is called regular. Similar “reflexive regularity” conditions

f∗out ◦ f ◦ f∗out = f∗out (6)



defines an outer inverse f∗out. Notice that in general f∗in 6= f∗out 6= f−1 or it can be that f−1 does not exist at
all. If f∗in is an inner inverse, then

f∗ = f∗in ◦ f ◦ f∗in (7)

is always both inner and outer inverse or generalized inverse (quasi-inverse) [3], and so for any regular f there
exists (need not be unique) f∗ from (7) for which both regularity conditions (5) and (6) hold. Let us consider
a composition of two morphisms and its “invertibility” properties. It can be shown, that a retraction is an
epimorphism, and a regular monomorphism is a coretraction [3]. If the composition h = g ◦ f belongs to the
same class of functions (closure), then all such morphisms form a semigroup of such functions [4]. If for any
f : X → Y there will be a unique f∗ : Y → X satisfying (5)–(6), this semigroup is called an inverse semigroup [4]
which we denote F.

Let us define two idempotent “projection operators” Pf = f ◦ f∗, Pf : Y → Y and Pf∗ = f∗ ◦ f ,
Pf∗ : X → X satisfying Pf ◦ Pf = Pf , Pf ◦ f = f ◦ Pf∗ = f and Pf∗ ◦ Pf∗ = Pf∗ , Pf∗ ◦ f∗ = f∗ ◦ Pf = f∗.
If we introduce the ∗-operation (f)

∗
= f∗ by formulas (5 )–(6) and assume that this operation acts on the

product of morphisms f : X → Y and g : Y → Z in the following way (g ◦ f)
∗

= f∗ ◦ g∗, then commutativity
of projectors Pf ◦ Pg∗ = Pg∗ ◦ Pf leads to closure of the semigroup, i.e. the product g ◦ f also satisfies both
regularity conditions (5)–(6).

HIGHER REGULARITY

Let us introduce higher analogs of regularity conditions (5)–(6) (they were proposed for some particular
case (noninvertible analogs of supermanifolds) in [6,7]). Let we have two elements f and its regular f∗ (in sense
of (5)) of the semigroup F. Consider a third morphism f∗∗ : X → Y and analyze the action f ◦f∗◦f∗∗ : X → Y .
This means the composition f ◦f∗ ◦f∗∗ cannot be equal to identity IdX . Therefore it is possible to “regularize”
f ◦ f∗ ◦ f∗∗ in the following way

f ◦ f∗ ◦ f∗∗ ◦ f∗ = f∗. (8)

This formula can be called as 2-regularity condition and be considered as a definition of ∗∗-operation. For
3-regularity and f∗∗∗ : Y → X we can obtain an analog of (5) in the form

f ◦ f∗ ◦ f∗∗ ◦ f∗∗∗ ◦ f = f. (9)

By recursive considerations we can propose the following formula of n-regularity

f ◦ f∗ ◦ f∗∗ . . . ◦ f
2k︷ ︸︸ ︷∗ ∗ . . . ∗ ◦ f∗ = f∗, f ◦ f∗ ◦ f∗∗ . . . ◦ f

2k+1︷ ︸︸ ︷∗ ∗ . . . ∗ ◦ f = f. (10)

Note that for even number of stars f

2k︷ ︸︸ ︷∗ ∗ . . . ∗ : X → Y and for odd number of stars f

2k+1︷ ︸︸ ︷∗ ∗ . . . ∗ : Y → X. We
introduce “higher projector” by the formula

P(n)
f = f ◦ f∗ ◦ f∗∗ . . . ◦ f

n︷ ︸︸ ︷∗ ∗ . . . ∗. (11)

It is easy to check the following properties

P(2k)
f ◦ f∗ = f∗, P(2k+1)

f ◦ f = f. (12)

and idempotence P(n)
f ◦ P(n)

f = P(n)
f .

SEMICOMMUTATIVE DIAGRAMS AND OBSTRUCTORS

Obviously, that for two morphisms f : X → Y and g : Y → X instead of “invertibility” g ◦ f = IdX we
have the same generalization as regularity (5), i.e. f ◦ g ◦ f = f , where g plays the role of an inner inverse [3].

f

g

“Regularization”

=⇒
g

f

n = 2

Invertible morphisms Noninvertible (regular) morphisms

Usually, for 3 objects X,Y, Z and 3 morphisms f : X → Y and g : Y → Z and h : Z → X one can have
the “invertible” triangle commutative diagram h ◦ g ◦ f = IdX . Its regular extension has the form

f ◦ h ◦ g ◦ f = f. (13)

Such a diagram (from the right)



f

h

“Regularization”

=⇒
g h

f

g
n = 3

Invertible morphisms Noninvertible (regular) morphisms

can be called a semicommutative diagram. This triangle case can be expanded on any number of objects
and morphisms. To measure difference between semicommutative and commutative cases let us introduce

self-mappings e
(n)
X : X → X which are defined by

e
(1)
X = IdX , e

(2)
X = g ◦ f, e(3)

X = h ◦ g ◦ f, . . . (14)

It is obvious that for commutative diagrams all e
(n)
X are equal to identity e

(n)
X = IdX . The deviation of

e
(n)
X from identity will give us measure of obstruction of commutativity, and therefore we call e

(n)
X obstructors.

The minimum number n = nobstr for which e
(n)
X 6= IdX occurs will define a quantitative measure of obstruction

nobstr. In terms of obstructors e
(n)
X the n-regularity condition can be written in the short form f ◦ e(n)

X = f .

From this equation and definitions (14) it simply follows that obstructors e
(n)
X are idempotents.

REGULARIZATION OF MONOIDAL CATEGORIES

Let C be a monoidal category equipped with a monoidal operation ⊗ : C × C −→ C. A triple of objects

X,Y, Z is said to be a regular 3-cycle if and only if every sequence of morphisms X
f−→ Y

g−→ Z
h−→ X define

uniquely the morphism e
(3)
X : X −→ X by the following relation e

(3)
X := h ◦ g ◦ f and subjects to the relation

f ◦h◦g◦f = f . The object Y is said to be a (first) regular dual of X, and the object Z is called the second regular
dual of X. We denote by C3 (C) the collection of all regular 3-cycles on C . This collection is said to be regularity
in C. The generalization to arbitrary n ≥ 4 is obvious. Let X,Y, Z and X ′, Y ′, Z ′ be two regular 3-cycles in C.

Then the morphism f : X −→ X ′ such that f ◦ e(3)
X = e

(3)
X′ ◦ f is said to be a 3-cycle morphism. If f : X −→ X ′

and g : X ′ −→ X ′′ are two 3-cycle morphisms, then the composition g ◦f : X → X ′′ is also a 3-cycle morphism.
Moreover the regularity C3 (C) forms a monoidal category with 3-cycles as objects and 3-cycle morphisms. The
monoidal product of two regular 3-triples X,Y, Z and X ′, Y ′, Z ′ is the triple X ⊗X ′, Y ⊗ Y ′, Z ⊗ Z ′ which is
also a regular 3-cycle. The category C3 (C) is said to be a regularization of C .

The morphisms e
(n)
X can be used to extend the notion of a functor F : C1 → C2. All the standard definitions

of a functor (as a mapping of one category to another with preserving composition of morphisms [5]) do not
changed, but preservation of identity F (IdX1

) = IdX2
, where X2 = FX1, X1 ∈ ObC1, X2 ∈ ObC2, can be

replaced by requirement of preservation of morphisms e
(n)
X as

F(n)
(
e

(n)
X1

)
= e

(n)
X2
, (15)

where e
(n)
X1
∈ MorC1, e

(n)
X2
∈ MorC2 defined in (14) for two categories. Then the generalized functor F(n) becomes

n-dependent. From (14) it follows that n = 1 corresponds to the standard functor, i.e. F(1) = F.

HIGHER REGULAR YANG-BAXTER EQUATION

Let us consider a symmetric monoidal category C [5] playing an important role in quantum groups [11] and
quantum statistics [12].In C for any two objects X and Y and the operation X⊗Y one usually defines a natural
isomorphism (“braiding” [13]) by BX,Y : X ⊗ Y → Y ⊗X satisfying the symmetry condition (“invertibility”)

BY,X ◦ BX,Y = IdX⊗Y (16)

which formally defines BY,X = B−1
X,Y : Y ⊗X → X⊗Y . Note that possible nonsymmetric braiding in context of

the noncommutative geometry was considered in [14]. Here we introduce a “regular” extension of the symmetry
condition (16) in the form

BX,Y ◦ B∗X,Y ◦ BX,Y = BX,Y , (17)

where in general B∗X,Y 6= B−1
X,Y . Such a category can be called a “regular” category to distinct from symmetric

and “braided” categories [13].



In categorical sense the prebraiding relations usually are defined as [13,14]

BX⊗Y,Z = BR
X,Z,Y ◦BL

X,Y,Z , BZ,X⊗Y = BL
X,Z,Y ◦BR

X,Y,Z , (18)

BL
X,Y,Z = IdX ⊗ BY,Z , BR

X,Y,Z = BX,Y ⊗ IdZ , (19)

and prebraidings BX⊗Y,Z and BZ,X⊗Y satisfy (for symmetric case) the “invertibility” property B−1
X⊗Y,Z ◦

BX⊗Y,Z = IdX⊗Y⊗Z , where B−1
X⊗Y,Z = BZ,X⊗Y . In this notations the standard “invertible” Yang-Baxter

equation is [11]

BR
Y,Z,X ◦BL

Y,X,Z ◦BR
X,Y,Z = BL

Z,X,Y ◦BR
X,Z,Y ◦BL

X,Y,Z . (20)

Possible “noninvertible” (endomorphism semigroup) solutions of this equation without introduction of

e
(n)
X were studied in [15]. For “noninvertible” braidings satisfying regularity (17) it is naturally to exploit the

obstructors e
(n)
X instead of identity IdX as

B
L(n)
X,Y,Z = e

(n)
X ⊗ BY,Z , B

R(n)
X,Y,Z = BX,Y ⊗ e(n)

Z , (21)

to weaken prebraiding construction in the following way

B
(n)
X⊗Y,Z = B

R(n)
X,Z,Y ◦B

L(n)
X,Y,Z , B

(n)
Z,X⊗Y = B

L(n)
X,Z,Y ◦B

R(n)
X,Y,Z , (22)

Then their “invertibility” can be also “regularized” as follows

B
(n)
X⊗Y,Z ◦ B

(n)∗
X⊗Y,Z ◦ B

(n)
X⊗Y,Z = B

(n)
X⊗Y,Z , (23)

where in general case B
(n)∗
X⊗Y,Z 6= B−1

X⊗Y,Z . Thus the corresponding n-“noninvertible” analog of the Yang-Baxter

equation (20) is

B
R(n)
Y,Z,X ◦B

L(n)
Y,X,Z ◦B

R(n)
X,Y,Z = B

L(n)
Z,X,Y ◦B

R(n)
X,Z,Y ◦B

L(n)
X,Y,Z . (24)

Its solutions can be found by application of the semigroup methods (see e.g. [15]). The introduced formalism
can be used in analysis of categories with some weaken invertibility conditions, which can appear in nontrivial
supersymmetric or noncommutative geometry constructions beyond the group theory.
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О ВЫСШЕЙ РЕГУЛЯРНОСТИ И МОНОИДАЛЬНЫХ КАТЕГОРИЯХ
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Мы расширяем “обратимость” на “регулярность” для категорий в абстрактном алгебраическом подходе. Введены
условия высшей регулярности и “полукоммутативные” диаграммы. Различие между коммутативным и “полуком-
мутативным” случаями измеряется отличием некоторых отображений e(n) от единичного, что позволяет обобщить
понятие функтора и “регуляризовать” подобные структуры в моноидальных категориях. Предложен также “необратимый”
аналог уравнения Янга-Бакстера.
КЛЮЧЕВЫЕ СЛОВА: морфизм, регулярность, препятствие, моноидальная категория, функтор, уравнение
Янга-Бакстера


