BRAID SEMISTATISTICS AND DOUBLY REGULAR R-MATRIX *

S.A. Duplij ${ }^{1)}$, W. Marcinek ${ }^{\text {2) }}$
${ }^{1)}$ Department of Physics and Technology, Kharkov National University, Kharkov 61077, Ukraine
E-mail: Steven.A.Duplij@univer.kharkov.ua. Internet: http://www.math.uni-mannheim.de/ $/$ duplij
${ }^{2)}$ Institute of Theoretical Physics, University of Wroctaw, Pl. Maxa Borna 9, 50-204 Wrocław, Poland Received August 5, 2003

We introduce "noninvertible" generalization of statistics - semistatistics replacing condition when double exchanging gives identity to "regularity" condition. Then in categorical language we correspondingly generalize braidings and the quantum Yang-Baxter equation. We define the doubly regular R-matrix and introduce obstructed regular bialgebras.
KEYWORDS : monoidal category, Yang-Baxter equation, semistatistics, braiding, obstruction, regularity, bialgebra, Hopf algebra
Particle systems endowed with generalized statistics and its quantizations have been studied from different points of view (for review see e.g. [1,2]). The color statistics have been considered in [3] (and refs. therein), and the category for color statistics has been described in details in [4]. The statistics in low dimensional spaces is based on the notion of the braid group [5,6] (see also [7] for its acyclic extension). The construction for the category corresponding to a given triangular solution of the quantum Yang-Baxter equation has been given by Lyubashenko [8]. The statistics corresponding for arbitrary triangular solution of the quantum Yang-Baxter equation called S-statistics has been discussed by Gurevich [9]. The mathematical formalism for the description of particle system with S-statistics is based on the theory of the tensor (monoidal) symmetric categories of MacLane [10]. The mathematical formalism related to an arbitrary braid statistics has been developed by Majid [11]. Such formalism is based on the concept of quasitensor (braided monoidal) categories which has been introduced by Joyal and Street [12].

The previous generalizations are "invertible" in the following sense: having the two-particle exchange process $12 \rightarrow$ 21 (which in the simplest case usually yields the phase factor ± 1 or general anyonic factor [13]), then double exchanging gives identity $12 \rightarrow 12$. Here we weaken this requirement by moving to nearest "noninvertible" generalization of statistics - "regularity" as follows (symbolically)

$$
\begin{align*}
12 \xrightarrow{a} 21 \xrightarrow{b} 12=12 \xrightarrow{\text { id }} 12 \text { "invertibility", } \tag{1}\\
12 \xrightarrow{a} 21 \xrightarrow{b} 12 \xrightarrow{a} 21=12 \xrightarrow{a} 21 \text { "left regularity", } \tag{2}\\
21 \xrightarrow{b} 12 \xrightarrow{a} 21 \xrightarrow{b} 12=21 \xrightarrow{b} 12 \text { "right regularity". } \tag{3}
\end{align*}
$$

In this consideration we can treat usual statistics as one morphism a, in other words, the representation of the morphism a (because b can be found from the "invertibility" condition (1) which is $a \circ b=\mathrm{id}$ symbolically) by various phase factors or elements of R-matrix. Here we introduce the more abstract concept of "semistatistics" as a pair of exchanging morphisms a and b satisfying the "regularity" conditions (2)-(3) (symbolically $a \circ b \circ a=a, b \circ a \circ b=b$). The general regularization procedure for different systems was previously studied in [14-17].

We also introduce the notion of braid semistatistics and corresponding generalization of the quantum Yang-Baxter equation.

BRAID SEMISTATISTICS AND REGULAR YANG-BAXTER EQUATION

Let \mathfrak{C} be a directed graph with objects $\mathrm{Ob} \mathfrak{C}$ and arrows Mor $\mathbb{C}[18,19]$. An N-regular cocycle $\left(X_{1}, X_{2} \ldots, f_{1}, f_{2} \ldots\right)$ in $\mathfrak{C}, N=1,2, \ldots$, is a sequence of arrows

$$
\begin{equation*}
X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{N-1}} X_{N} \xrightarrow{f_{N}} X_{1}, \tag{4}
\end{equation*}
$$

such that

$$
\begin{gather*}
f_{1}^{\circ} \circ f_{N} \circ \cdots \circ f_{2} \circ f_{1}=f_{1}, \\
f_{2} \circ f_{1} \circ \cdots \circ f_{3} \circ f_{2}=f_{2}, \tag{5}\\
f_{N} \circ f_{N-1} \circ \cdots \circ f_{1} \circ f_{N}=f_{N} .
\end{gather*}
$$

[^0]We define N obstructors by

$$
\begin{gather*}
e_{X_{1}}^{(N)}:=f_{N} \circ \cdots \circ f_{2} \circ f_{1} \in \operatorname{End}\left(X_{1}\right), \\
e_{X_{2}}^{(N)}:=f_{1} \circ \cdots \circ f_{3} \circ f_{2} \in \operatorname{End}\left(X_{2}\right), \tag{6}\\
\vdots \\
e_{X_{N}}^{(N)}:=f_{N-1} \circ \cdots \circ f_{1} \circ f_{N} \in \operatorname{End}\left(X_{N}\right)
\end{gather*}
$$

The correspondence $e_{X}^{(N)}: X_{n} \in \operatorname{ObC} \mapsto e_{X_{n}}^{(N)} \in \operatorname{End}\left(X_{n}\right), n=1,2, \ldots, N$, is called an N-regular cocycle obstruction structure on ($X_{1}, X_{2}, \ldots, X_{N} \mid f_{1}, f_{2}, \ldots, f_{N}$) in \mathfrak{C}.

Let \mathfrak{M} be a monoidal category $[12,19]$ which abstractly defines the braid statistics. An N-regular obstructed monoidal category $\mathfrak{M}_{\text {obtr }}^{(N)}$ can be defined as usual, but instead of the identity id $X_{X} \otimes \mathrm{id}_{Y}=\mathrm{id}{ }_{X \otimes Y}$ we have an obstruction structure $e_{X}^{(N)}=\left\{e_{X_{n}}^{(N)} \in \operatorname{End}\left(X_{n}\right) ; N=1,2, \ldots\right\}$ satisfying the condition

$$
\begin{equation*}
e_{X_{n} \otimes Y_{n}}^{(N)}=e_{X_{n}}^{(N)} \otimes e_{Y_{n}}^{(N)} \tag{7}
\end{equation*}
$$

for every two N-regular cocycles $\left(X_{1}, X_{2}, \ldots, X_{N} \mid f_{1}, f_{2}, \ldots, f_{N}\right)$ and $\left(Y_{1}, Y_{2}, \ldots, Y_{N} \mid g_{1}, g_{2}, \ldots, g_{N}\right)$.
In a monoidal category \mathfrak{M} for any two objects $X, Y \in \operatorname{ob} \mathfrak{M}$ and the product $X \otimes Y$ one can define a natural isomorphism ("braiding" [12]) by $\mathrm{B}_{X, Y}: X \otimes Y \rightarrow Y \otimes X$ satisfying the symmetry condition ("invertibility")

$$
\begin{equation*}
\mathrm{B}_{Y, X} \circ \mathrm{~B}_{X, Y}=\mathrm{id}_{X \otimes Y} \tag{8}
\end{equation*}
$$

which formally defines $\mathrm{B}_{Y, X}=\mathrm{B}_{X, Y}^{-1}: Y \otimes X \rightarrow X \otimes Y$. The simplest type of braiding is the usual transposition $\tau_{X, Y}(x \otimes y)=$ $y \otimes x$, where $x \in X, y \in Y$. Nonsymmetric braidings in context of the noncommutative geometry were considered in [20,21] (see also [7]). In the obstructed monoidal category $\mathfrak{M}_{\text {obstr }}^{(N)}$ we introduce a "regular" extension of the braidings as follows. Let $\left(X_{1}, X_{2}, \ldots, X_{N} \mid f_{1}, f_{2}, \ldots, f_{N}\right)$ and $\left(Y_{1}, Y_{2}, \ldots, Y_{N} \mid g_{1}, g_{2}, \ldots, g_{N}\right)$ are regular cocycles and $e_{X_{n}}^{(N)}, e_{Y_{n}}^{(N)}$ are corresponding obstructors, then we have two sets of monoidal products of N-regular cocycles $X_{1} \otimes Y_{1}, X_{2} \otimes Y_{2}, \ldots X_{N} \otimes Y_{N}, f_{1} \otimes g_{1}, f_{2} \otimes g_{2}$, $\ldots f_{N} \otimes g_{N}$, and $Y_{1} \otimes X_{1}, Y_{2} \otimes X_{2}, \ldots Y_{N} \otimes X_{N}, g_{1} \otimes f_{1}, g_{2} \otimes f_{2}, \ldots g_{N} \otimes f_{N}$, and the obstructors satisfy $e_{X_{n}}^{(N)} \otimes e_{Y_{n}}^{(N)}=e_{X_{n} \otimes Y_{n}}^{(N)}$.

An N-regular ("vector") braiding $\tilde{\mathrm{B}}^{(N)}$ is a set of (" n-component") maps

$$
X_{n} \otimes Y_{n} \xrightarrow{B_{X_{n} \otimes Y_{n}}^{(N), n}} Y_{n} \otimes X_{n}
$$

such that the following diagram

$$
\begin{array}{cccccc}
X_{1} \otimes Y_{1} & \xrightarrow{f_{1} \otimes g_{1}} & X_{2} \otimes Y_{2} & \xrightarrow{f_{2} \otimes g_{2}} & \ldots & \rightarrow \\
X_{N} \otimes Y_{N} \\
\mathrm{~B}_{X_{n} \otimes Y_{n}}^{(N), n} \downarrow & & \mathrm{~B}_{X_{n} \otimes Y_{n}}^{(N), n} & & & \\
Y_{1} \otimes X_{1} & \xrightarrow{g_{1} \otimes f_{1}} & Y_{X_{n} \otimes, n} \otimes X_{2} \downarrow \\
Y_{2} & \xrightarrow{g_{2} \otimes f_{2}} & \ldots & \rightarrow & Y_{N} \otimes X_{N}
\end{array}
$$

is commutative. Instead of the symmetry condition (8) we introduce the generalized (1-star) inverse N-regular braiding $\tilde{\mathrm{B}}^{*(N)}$ with components satisfying

$$
\begin{equation*}
\mathrm{B}_{X_{n} \otimes Y_{n}}^{(N), n} \circ \mathrm{~B}_{X_{n} \otimes Y_{n}}^{*(N), n} \circ \mathrm{~B}_{X_{n} \otimes Y_{n}}^{(N), n}=\mathrm{B}_{X_{n} \otimes Y_{n}}^{(N), n}, \tag{9}
\end{equation*}
$$

where in general $\mathrm{B}_{X_{n} \otimes Y_{n}}^{*(N), n} \neq \mathrm{B}_{X_{n} \otimes Y_{n}}^{(N), n,-1}$. We call such a category a "regular" category $[15,16]$ to distinct from symmetric and "braided" categories [12, 19].

The prebraiding relations in a symmetric monoidal category are defined as $[2,6,12]$

$$
\begin{align*}
\mathrm{B}_{X \otimes Y, Z} & =\mathbf{B}_{X, Z, Y}^{\mathrm{R}} \circ \mathbf{B}_{X, Y, Z}^{\mathrm{L}}, \tag{10}\\
\mathrm{~B}_{Z, X \otimes Y Y} & =\mathbf{B}_{X, Z, Y}^{\mathrm{L}} \circ \mathbf{B}_{X, Y, Z,}^{\mathrm{R}}, \tag{11}\\
\mathbf{B}_{X, Y, Z}^{\mathrm{L}} & =\mathrm{id}_{X} \otimes \mathrm{~B}_{Y, Z}, \tag{12}\\
\mathbf{B}_{X, Y, Z}^{\mathrm{R}} & =\mathrm{B}_{X, Y} \otimes \mathrm{id}_{Z}, \tag{13}
\end{align*}
$$

and prebraidings $\mathrm{B}_{X \otimes Y, Z}$ and $\mathrm{B}_{Z, X \otimes Y}$ satisfy (for symmetric case) the "invertibility" property

$$
\mathrm{B}_{X \otimes Y, Z}^{-1} \circ \mathrm{~B}_{X \otimes Y, Z}=\mathrm{id}_{X \otimes Y \otimes Z},
$$

where $\mathrm{B}_{X \otimes Y, Z}^{-1}=\mathrm{B}_{Z, X \otimes Y}$. In this notations the standard "invertible" quantum Yang-Baxter equation takes the form $[6,21]$

$$
\begin{equation*}
\mathbf{B}_{Y, Z, X}^{\mathrm{R}} \circ \mathbf{B}_{Y, X, Z}^{\mathrm{L}} \circ \mathbf{B}_{X, Y, Z}^{\mathrm{R}}=\mathbf{B}_{Z, X, Y}^{\mathrm{L}} \circ \mathbf{B}_{X, Z, Y}^{\mathrm{R}} \circ \mathbf{B}_{X, Y, Z}^{\mathrm{L}} . \tag{14}
\end{equation*}
$$

For "noninvertible" braidings satisfying regularity (9) in search of the analogs of the definitions (12)-(13) it is naturally to exploit the obstructors $e_{X_{n}}^{(N)}$ instead of identity $\operatorname{id}_{X_{n}}(n=1 \ldots N)$ which were introduced in [22,23]. They are defined as self-mappings $e_{X_{n}}^{(N)}: X_{n} \rightarrow X_{n}$ satisfying closure conditions

$$
\begin{align*}
& e_{X_{n}}^{(1)}=\mathrm{id}_{X_{n}}, \tag{15}\\
& e_{X_{n}}^{(2)}=g \circ f, \tag{16}\\
& e_{X_{n}}^{(3)}=h \circ g \circ f, \tag{17}
\end{align*}
$$

where $g, h \ldots$ are some morphisms (see [23] for details). Then using the following triple maps

$$
\begin{aligned}
& \mathbf{T}_{X_{n}, Y_{n}, Z_{n}}^{(N)}: X_{n} \otimes Y_{n} \otimes Z_{n} \rightarrow X_{n} \otimes Z_{n} \otimes Y_{n}, \\
& \mathbf{T}_{X_{n}, Y_{n}, Z_{n}}^{\left(N, Z_{n}\right.}: X_{n} \otimes Y_{n} \otimes Z_{n} \rightarrow Y_{n} \otimes X_{n} \otimes Z_{n}
\end{aligned}
$$

defined similarly to (12)-(13)

$$
\begin{align*}
\mathbf{T}_{X_{n}}^{(N), Y_{n}, Z_{n}}=e_{X_{n}}^{(N)} \otimes \mathrm{B}_{Y_{n}, Z_{n}}^{(N), n}, \tag{18}\\
\mathbf{T}_{X_{n}, Y_{n}, Z_{n}}^{(N}=\mathrm{B}_{X_{n}, Y_{n}}^{(N)} \otimes e_{Z_{n}}^{(N)}, \tag{19}
\end{align*}
$$

we weaken prebraiding construction (10)-(11) in the following way

$$
\begin{align*}
& \mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N)}=\mathbf{T}_{X_{n}, Z_{n}, Y_{n}}^{(N)} \circ \mathbf{T}_{X_{n}, Y_{n}, Z_{n}}^{(N,}, \tag{20}\\
& \mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}^{(N)}=\mathbf{T}_{X_{n}, Z_{n}, Y_{n}}^{(N)} \circ \mathbf{T}_{X_{n}, Y_{n}, Z_{n}}^{(N)} \tag{21}
\end{align*}
$$

Thus the corresponding "noninvertible" analog of the Yang-Baxter equation (21) is the set of "component"equations

$$
\begin{equation*}
\mathbf{T}_{Y_{n}, Z_{n}, X_{n}}^{(N), n} \circ \mathbf{T}_{Y_{n}, X_{n}, Z_{n}}^{(N), n} \circ \mathbf{T}_{X_{n}, Y_{n}, Z_{n}}^{(N), n} \mathrm{R}=\mathbf{T}_{Z_{n}, X_{n}, Y_{n}}^{(N), n} \stackrel{\mathrm{~L}}{(N)} \mathbf{T}_{X_{n}, Z_{n}, Y_{n}}^{(N), n} \mathrm{R} \circ \mathbf{T}_{X_{n}, Y_{n}, Z_{n}}^{(N)} . \tag{22}
\end{equation*}
$$

Its solutions can be found by application of the semigroup methods (see e.g. [24, 25]). Let us construct "braidings tower" of k-star regular braidings, and for 1 -star regular braidings we have

$$
\begin{align*}
& \mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N), n} \circ \stackrel{*}{\mathrm{P}_{X_{n}} \otimes Y_{n}, Z_{n}} \stackrel{(N), n}{\mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N), n}}=\mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N), n} \tag{23}\\
& \stackrel{*}{\mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}(N), n} \circ \mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N), n} \circ \stackrel{*(N), n}{\mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}}=\stackrel{*(\mathbb{P}}{\mathrm{P}_{X_{n} \otimes} \otimes Y_{n}, Z_{n}}, \tag{24}\\
& \mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}^{(N), n} \circ \stackrel{*}{\mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}^{(N), n}} \circ \mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}^{(N), n}=\mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}^{(N), n}, \tag{25}\\
& \stackrel{*}{\mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}(N), n} \circ \mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}^{(N), n} \circ \stackrel{*(N), n}{\mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}}=\stackrel{*(N), n}{\mathrm{P}_{Z_{n}, X_{n} \otimes Y_{n}}}, \tag{26}
\end{align*}
$$

where $\stackrel{*}{\mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N), n}}$ is the generalized inverse (see e.g. [26]) for $\mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N)}$, and in general case ${ }_{\mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N), n}}^{{ }^{(N)}} \neq \mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N), n,-1}$. In a similar we can define k-star braidings $\mathrm{P}_{X_{n} \otimes Y_{n}, Z_{n}}^{(N), \overbrace{*}} \overbrace{}^{k}(K \times N$-regular morphisms, their number is $K N)$, where $k=0,1,2 \ldots K-1$ [17,22].

REGULAR YANG-BAXTER OPERATORS

Let we have a set of regular obstructed algebras $\left(A_{n}, m_{n}, e_{A_{n}}^{(N)}\right)$ with multiplication m_{n} and obstructor $e_{A_{n}}^{(N)}: A_{n} \rightarrow A_{n}$ (see (6)) such that the diagram

$$
\begin{array}{ccccccc}
A_{1} \otimes A_{1} & \xrightarrow{f_{1} \otimes f_{1}} & A_{2} \otimes A_{2} & \xrightarrow{f_{2} \otimes f_{2}} & \ldots & \rightarrow & A_{N} \otimes A_{N} \\
m_{1} \downarrow & & m_{2} \downarrow & & & & m_{N} \downarrow \\
A_{1} & \xrightarrow{f_{1}} & A_{2} & \xrightarrow{f_{2}} & \ldots & \rightarrow & A_{N}
\end{array}
$$

is commutative, or

$$
\begin{equation*}
e_{A_{n}}^{(N)} \circ m_{n}=m_{n} \circ e_{A_{n} \otimes A_{n}}^{(N)} . \tag{27}
\end{equation*}
$$

We introduce N Yang-Baxter operators $R_{n}^{(N)}: A_{n} \otimes A_{n} \rightarrow A_{n} \otimes A_{n}$ which commute with obstructors

$$
\begin{equation*}
R_{n}^{(N)} \circ e_{A_{n} \otimes A_{n}}^{(N)}=e_{A_{n} \otimes A_{n}}^{(N)} \circ R_{n}^{(N)} \tag{28}
\end{equation*}
$$

and satisfy N-regular analog of the Yang-Baxter equation (set of N equations)

$$
\begin{align*}
& \left(e_{A_{n}}^{(N)} \otimes R_{n}^{(N)}\right) \circ\left(R_{n}^{(N)} \otimes e_{A_{n}}^{(N)}\right) \circ\left(e_{A_{n}}^{(N)} \otimes R_{n}^{(N)}\right) \tag{29}\\
& =\left(R_{n}^{(N)} \otimes e_{A_{n}}^{(N)}\right) \circ\left(e_{A_{n}}^{(N)} \otimes R_{n}^{(N)}\right) \circ\left(R_{n}^{(N)} \otimes e_{A_{n}}^{(N)}\right) .
\end{align*}
$$

We define 1-star N-regular obstructed Yang-Baxter operator (set of N operators $R_{n}^{(N) *}$) by

$$
\begin{align*}
R_{n}^{(N)} \circ R_{n}^{(N) *} \circ R_{n}^{(N)} & =R_{n}^{(N)}, \tag{30}\\
R_{n}^{(N) *} \circ R_{n}^{(N)} \circ R_{n}^{(N) *} & =R_{n}^{(N) *} . \tag{31}
\end{align*}
$$

Similarly, one can define k-star operators $\overbrace{n}^{R_{n}^{*} \ldots *}(K \times N$-regular Yang-Baxter operators, their number is $K N)$, where $n=1,2 \ldots N ; k=0,1,2 \ldots K-1[22,23,27]$.

BIALGEBRAS AND UNIVERSAL R-MATRIX

An obstructed (see [15]) N-regular bialgebra can be defined as a set of N bialgebras $\left(H_{n}, m_{n}, \Delta_{n}, e_{H_{n}}^{(N)}\right)$, where H_{n}, $(n=1 \ldots N)$ are linear vector spaces over \mathbb{K} with multiplications $m_{n}: H_{n} \otimes H_{n} \rightarrow H_{n}$ and comultiplications $\Delta_{n}: H_{n} \rightarrow$ $H_{n} \otimes H_{n}$, but instead of identity map we have now N obstructors $e_{H_{n}}^{(N)}: H_{n} \rightarrow H_{n}$ (analogies of mappings (6)) satisfying the consistency conditions

$$
\begin{equation*}
e_{H_{n}}^{(N)} \circ m_{n}=m_{n} \circ e_{H_{n} \otimes H_{n}}^{(N)}, \quad \Delta_{n} \circ e_{H_{n}}^{(N)}=e_{H_{n} \otimes H_{n}}^{(N)} \circ \Delta_{n} . \tag{32}
\end{equation*}
$$

The associativity and coassociativity now have the form

$$
m_{n} \circ\left(m_{n} \otimes e_{H_{n}}^{(N)}\right)=m_{n} \circ\left(e_{H_{n}}^{(N)} \otimes m_{n}\right), \quad\left(\Delta_{n} \otimes e_{H_{n}}^{(N)}\right) \circ \Delta_{n}=\left(e_{H_{n}}^{(N)} \otimes \Delta_{n}\right) \circ \Delta_{n}
$$

The Yang-Baxter operators $R_{n}^{(N)}: H_{n} \otimes H_{n} \rightarrow H_{n} \otimes H_{n}$ also satisfy the additional consistency conditions (analogy of (28))

$$
e_{H_{n} \otimes H_{n}}^{(N)} \circ R_{n}^{(N)}=R_{n}^{(N)} \circ e_{H_{n} \otimes H_{n}}^{(N)}
$$

and the set of N Yang-Baxter equations of type (29), as follows

$$
\left(e_{H_{n}}^{(N)} \otimes R_{n}^{(N)}\right) \circ\left(R_{n}^{(N)} \otimes e_{H_{n}}^{(N)}\right) \circ\left(e_{H_{n}}^{(N)} \otimes R_{n}^{(N)}\right)=\left(R_{n}^{(N)} \otimes e_{H_{n}}^{(N)}\right) \circ\left(e_{H_{n}}^{(N)} \otimes R_{n}^{(N)}\right) \circ\left(R_{n}^{(N)} \otimes e_{H_{n}}^{(N)}\right),
$$

which defines the universal obstructed N-regular R-matrix for obstructed N-regular bialgebra $\left(H_{n}, m_{n}, \Delta_{n}, e_{H_{n}}^{(N)}\right)$. We define 1 -star universal obstructed N-regular R-matrix by

$$
\begin{equation*}
R_{n}^{(N)} \circ R_{n}^{(N) *} \circ R_{n}^{(N)}=R_{n}^{(N)}, \quad R_{n}^{(N) *} \circ R_{n}^{(N)} \circ R_{n}^{(N) *}=R_{n}^{(N) *} . \tag{33}
\end{equation*}
$$

As above one can define k-star Yang-Baxter operators $\overbrace{R_{n}^{* *} \ldots *}^{k}$ (set of $K N$ operators) $n=1,2 \ldots N ; k=0,1,2 \ldots K-1$ $[22,23]$. Then the convolution product can be defined (in "components") as

$$
\begin{equation*}
s \star_{n} t:=m_{n} \circ(s \otimes t) \circ \Delta_{n}, \tag{34}
\end{equation*}
$$

where $s, t \in \operatorname{hom}_{m_{n}}\left(H_{n}, H_{n}\right)$.
Let A be an N-regular obstructed algebra with N obstructors $e_{A}^{(N)}$ and multiplication m, and $R^{(N)}$ be an N-regular YangBaxter operator on A, then the algebra A with the multiplication $m_{R}=m \circ R^{(N)}$ is also an N-regular obstructed algebra. Indeed, from definition (27) we have $e_{A}^{(N)} \circ m=m \circ e_{A \otimes A}^{(N)}$, and then from (28) we obtain $m_{R} \circ e_{A \otimes A}^{(N)}=m \circ R^{(N)} \circ e_{A \otimes A}^{(N)}=$ $m \circ e_{A \otimes A}^{(N)} \circ R^{(N)}=e_{A}^{(N)} \circ m \circ R^{(N)}=e_{A}^{(N)} \circ m_{R}$.

Let C be an N-regular obstructed coalgebra with N obstructors $e_{C}^{(N)}$ and comultiplication Δ, and $R^{(N)}$ be an N-regular Yang-Baxter operator on C, then the algebra C with the comultiplication $\Delta_{R}=R^{(N)} \circ \Delta$ is also an N-regular obstructed coalgebra. Indeed, from definition (32) we have $\Delta \circ e_{A}^{(N)}=e_{A \otimes A}^{(N)} \circ \Delta$, and then from (28) we obtain $\Delta_{R} \circ e_{A}^{(N)}=R^{(N)} \circ \Delta \circ e_{A}^{(N)}=$ $R^{(N)} \circ e_{A \otimes A}^{(N)} \circ \Delta=e_{A \otimes A}^{(N)} \circ R^{(N)} \circ \Delta=e_{A \otimes A}^{(N)} \circ \Delta_{R}$.

DOUBLY REGULAR HOPF ALGEBRAS

Usual antipode is defined as inverse to the identity under convolution, if and only if there exist unit and counit for a bialgebra [28,29]. Since we do not require existence of unit and counit in obstructed bialgebras, we have to define some more general analog of antipode. The Von Neumann regular antipode for weal Hopf algebras was considered in [30-32] ("non-unital"/"nonsymmetric" antipodes were considered in [33]). By analogy we can introduce the obstructed N-regular antipode (set of N antipodes) for every bialgebra $\left(H_{n}, m_{n}, \Delta_{n}, e_{H_{n}}^{(N)}\right)$ as a generalized inverse for obstructor

$$
\begin{equation*}
e_{H_{n}}^{(N)} \star_{n} S_{n}^{(N)} \star_{n} e_{H_{n}}^{(N)}=e_{H_{n}}^{(N)}, \quad S_{n}^{(N)} \star_{n} e_{H_{n}}^{(N)} \star_{n} S_{n}^{(N)}=S_{n}^{(N)} . \tag{35}
\end{equation*}
$$

In this way we define $L N$ higher L-regular analogs of antipode $\overbrace{n}^{* * \ldots *}(l=0,1,2 \ldots L-1)$, similarly to K-star regular quantities above. For example, in the case $l=1$ we have instead of (35) the following set of defining equations

$$
\begin{aligned}
e_{H_{n}}^{(N)} \star_{n} S_{n}^{(N)} \star_{n} S_{n}^{(N) *} \star_{n} e_{H_{n}}^{(N)} & =e_{H_{n}}^{(N)}, \\
S_{n}^{(N)} \star_{n} S_{n}^{(N) *} \star_{n} e_{H_{n}}^{(N)} \star_{n} S_{n}^{(N)} & =S_{n}^{(N)}, \\
S_{n}^{(N) *} \star_{n} e_{H_{n}}^{(N)} \star_{n} S_{n}^{(N)} \star_{n} S_{n}^{(N) *} & =S_{n}^{(N) *}
\end{aligned}
$$

An obstructed N-regular bialgebra $\left(H_{n}, m_{n}, \Delta_{n}, e_{H_{n}}^{(N)}\right)$ with L-regular antipode is called obstructed $N \times L$-regular (doubly regular) Hopf algebra $(H_{n}, m_{n}, \Delta_{n}, e_{H_{n}}^{(N)}, \overbrace{S_{n}^{* *}}^{l})$, where $n=1,2 \ldots N ; l=0,1,2 \ldots L-1$.

Note, that in general, obstructed $N \times L$-regular Hopf algebras $(H_{n}, m_{n}, \Delta_{n}, e_{H_{n}}^{(N)}, \overbrace{S_{n}^{* *} \ldots *}^{l})$ do not contain unit and/or counit (analogously to [32,33]).

In the opposite case it can be possible that for each $N \times L$-regular Hopf algebra $(H_{n}, m_{n}, \Delta_{n}, e_{H_{n}}^{(N)}, \overbrace{P_{n}^{* *} \ldots *}^{i})$ there exist unit η_{n} and counit ε_{n}. If we have one antipode for every n, then it should satisfy

$$
\left(S_{n}^{(N)} \otimes e_{H_{n}}^{(N)}\right) \circ \Delta_{n}=\left(e_{H_{n}}^{(N)} \otimes S_{n}^{(N)}\right) \circ \Delta_{n}=\eta_{n} \circ \varepsilon_{n}
$$

We call P_{n}, Q_{n} obstructed N-regular modules if for each n there exist maps $\rho_{P_{n}}: P_{n} \otimes H_{n} \rightarrow P_{n}$ and $\rho_{Q_{n}}: H_{n} \otimes Q_{n} \rightarrow Q_{n}$, such that

$$
e_{P_{n}}^{(N)} \circ \rho_{P_{n}}=\rho_{P_{n}} \circ\left(e_{P_{n}}^{(N)} \otimes e_{H_{n}}^{(N)}\right), \quad \rho_{Q_{n}} \circ e_{Q_{n}}^{(N)}=\left(e_{H_{n}}^{(N)} \otimes e_{Q_{n}}^{(N)}\right) \circ \rho_{Q_{n}},
$$

where $e_{P_{n}}^{(N)}$ and $e_{Q_{n}}^{(N)}$ are obstructors for modules P_{n} and Q_{n} (see (6)).
Let R_{n} be the universal obstructed N-regular R-matrix on the obstructed N-regular bialgebra $\left(H_{n}, m_{n}, \Delta_{n}, e_{H_{n}}^{(N)}\right)$, and P_{n} and Q_{n} are left modules over H_{n}, then there is obstructed N-regular braiding $B_{P_{n}, Q_{n}}^{(N)}: P_{n} \otimes Q_{n} \rightarrow Q_{n} \otimes P_{n}$, such that $B_{P_{n}, Q_{n}}^{(N)}\left(P_{n} \otimes Q_{n}\right)=\tau_{P_{n}, Q_{n}}\left(R_{n}^{(N)}\left(P_{n} \otimes Q_{n}\right)\right)$, where $R_{n}^{(N)}$ is the corresponding Yang-Baxter operator.

CONCLUSIONS

Thus, in this paper we have constructed a general categorical approach for systems endowing "noninvertible" ("regular") statistics (2)-(3) - semistatistics - using methods of [1]- [17]. We introduced doubly regular prebraiding and braiding and obtained the set of regular Yang-Baxter equations in terms of obstructors. The doubly regular Yang-Baxter operators, bialgebras and Hopf algebras are considered.

REFERENCES

1. Marcinek W. // On braid statistics and noncommutative calculus. Rep. Math. Phys. - 1993. - V. 33. - № 1/2. - P. 117-121.
2. Marcinek W. // Categories and quantum statistics. Rep. Math. Phys. - 1996. - V. 38. - № 2. - P. 149-174.
3. Marcinek W. // Colour superspaces and supermanifolds. Rep. Math. Phys. - 1991. - V. 29. - № 1. - P. 55-74.
4. Marcinek W. // On unital braiding and quantization. Rep. Math. Phys. - 1994. - V. 34. - № 3. - P. 325-340.
5. Majid S. // Braided groups and duals of monoidal categories. - Cambridge, 1992. - 12 p. (Preprint / Univ. Cambridge; DAMTP-9203).
6. Majid S. // Solutions of the Yang-Baxter equations from braided-Lie algebras and braided groups. J. Knot Theor. Ramifications. 1995. - V. 4. - P. 673-697.
7. Greenberg P., Sergiescu V. // An acyclic extension of the braid group. Comm. Math. Helv. - 1991. - V. 62. - P. 185-239.
8. Lyubashenko V. V. // Vectorsymmetries. Seminar on Supermanifolds. V. 19. - Stockholm. Stockholm Univ., 1987. - P. 1-34.
9. Gurevich D. // Generalized translation operators on Lie groups. Soviet. J. Contemp. Math. Anal. - 1983. - V. 18. - № 1. - P. 21-27.
10. MacLane S. Homology. - Berlin: Springer-Verlag, 1967. - 541 p.
11. Majid S. // Duals and doubles of monoidal categories. - Cambridge, 1989. - 14 p. (Preprint / Univ. Cambridge; DAMTP-89/41).
12. Joyal A., Street R. // Braided monoidal categories. - North Ryde, New South Wales, 1986. - 45 p. (Preprint / Macquarie University; Mathematics Reports 86008).
13. Majid S. Foundations of Quantum Group Theory. - Cambridge: Cambridge University Press, 1995.
14. Duplij S. Semisupermanifolds and semigroups. - Kharkov: Krok, 2000. - 220 p.
15. Duplij S., Marcinek W. // Semisupermanifolds and regularization of categories, modules, algebras and Yang-Baxter equation. Supersymmetry and Quantum Field Theory. - Amsterdam. Elsevier Science Publishers, 2001. - P. 110-115.
16. Duplij S., Marcinek W. // Regular obstructed categories and topological quantum field theory. J. Math. Phys. - 2002. - V. 43. - № 6. - P. 3329-3341.
17. Duplij S., Marcinek W. // Noninvertibility, semisupermanifolds and categories regularization. Noncommutative Structures in Mathematics and Physics. - Dordrecht. Kluwer, 2001. - P. 125-140.
18. Mitchell B. Theory of Categories. - New York: Academic Press, 1965. - 346 p.
19. MacLane S. Categories for the Working Mathematician. - Berlin: Springer-Verlag, 1971. - 189 p.
20. Marcinek W. // Noncommutative geometry for arbitrary braidings. J. Math. Phys. - 1996. - V. 35. - P. 2633-2641.
21. Majid S. // Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Mod. Phys. - 1990. - V. A5. - № 1. - P. 1-91.
22. Duplij S., Marcinek W. // Higher regularity properties of mappings and morphisms. - Wrocław, 2000. - 12 p. (Preprint / Univ. Wrocław; IFT UWr 931/00, math-ph / 0005033).
23. Duplij S., Marcinek W. // On higher regularity and monoidal categories. Kharkov State University Journal (Vestnik KSU), ser. Nuclei, Particles and Fields. - 2000. - V. 481. - № 2(10). - P. 27-30.
24. Li F. // Solutions of Yang-Baxter equation in endomorphism semigroup and quasi-(co)braided almost bialgebras. Comm. Algebra. - 2000. - V. 28. - № 5. - P. 2253-2270.
25. Li F. // Weak Hopf algebras and new solutions of Yang-Baxter equation. J. Algebra. - 1998. - V. 208. - № 1. - P. 72-100.
26. Nashed M. Z. Generalized Inverses and Applications. - New York: Academic Press, 1976. - 321 p.
27. Duplij S., Marcinek W. // Semisupermanifolds and regularization of categories. Supersymmetric Structures in Mathematics and Physics. - Kiev. UkrINTI, 2000. - P. 102-115.
28. Abe E. Hopf Algebras. - Cambridge: Cambridge Univ. Press, 1980. - 221 p.
29. Sweedler M. E. Hopf Algebras. - New York: Benjamin, 1969. - 336 p.
30. Duplij S., Li F. // On regular solutions of quantum Yang-Baxter equation and weak Hopf algebras. Journal of Kharkov National University, ser. Nuclei, Particles and Fields. - 2001. - V. 521. - № 2(14). - P. 15-30.
31. Li F., Duplij S. // Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation. Commun. Math. Phys. - 2002. V. 225. - № 1. - P. 191-217.
32. Duplij S., Li F. // Regular solutions of quantum Yang-Baxter equation from weak Hopf algebras. Czech. J. Phys. - 2001. - V. 51. № 12. - P. 1306-1311.
33. Böhm G., Nill F., Szlachányi K. // Weak Hopf algebras I. Integral theory and C*-structure. J. Algebra. - 1999. - V. 221. - P. 385-438.

СПЛЕТЕННЫЕ ПОЛУСТАТИСТИКИ И ДВАЖДЫ РЕГУЛЯРНАЯ R-МАТРИЦА

$$
\text { С.А. Дуплий }{ }^{1)} \text {, В. Марчинек }{ }^{2)}
$$

${ }^{1)}$ Харьковский национальный университет им. В. Н. Каразина, пл. Свободы, 4, г. Харьков, 61077, Украина
${ }^{2)}$ Институт теоретической физики, университет Врочлава, пл. Макса Борна 9, 50-204 Врочлав, Польша
В работе вводится "необратимое" обобщение статистики - полустатистика путем замены условия, когда двойной обмен приводит к тождественному преобразованию на условие "регулярности". Затем на категорном языке подобным образом обобщаются сплетения и квантовое уравнение Янга-Бакстера. Определяется дважды регулярная R-матрица и вводятся препятственные регулярные биалгебры.
КЛЮЧЕВЫЕ СЛОВА: моноидальная категория, уравнение Янга-Бакстера, полустатистика, сплетение, препятствие, регулярность, биалгебра, алгебра Хопфа

[^0]: *This is our last common article unfortunately unfinished.

