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We generalize the central extension of ftie+ 1)-dimensional Poincéralgebra by including fermionic charges which obey not
supersymmetric algebra, but special graded algebra containing in the right hand side a central element only. We verify selfconsistency
of Jacobi identities and derive the Casimir operator. Then we introduce the correspondent gauge fields and construct the classical gauge
theory based on this graded algebra, present field transformations and derive the black holg inask)idimensions.
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The Einstein-type theory ifil + 1)-dimensions — lineal gravity — provides a great interest in connection e.g. with
black hole solutions, while drastic simplification of group theoretical properties in lowest dimension allows a more deep
understanding of gravitational effects.

In (1+1)-dimensions the Einstein tens@y,, = R, — 5g,“,R vanishes identically, therefore the standard equations

of motion vanish, and one needs to introduce additional fields to endow theory with sensible dynamics. The most studied
models of lineal gravity are Liouville theory [1], a simplest non-trivial theory based on the scalar cuklaodsadditional

scalar field, and so-called 'string-inspied’ model [2,3], where scalar (dilaton) field arises from string theory. Both the models
can be also obtained by dimensional reduction ff@m- 1)-dimensions [4-6]. In [2] it was shown that the lineal gravity

in (1 4+ 1)-dimensional space-time [7, 8] can be treated as a gauge theory with a central extension of the two-dimensional
Poincaeé algebra taken as a gauge algebra. The quantization of lineal gravity was obtained in [9, 10]. Recently a possible
fermionic generalization of the central extension of the Poiadgebra was proposed [11]. By gauging of this algebra,

we give here a special fermionic generalization of the lineal gravity model which differs from the standard supersymmetry.

CENTRAL EXTENSION OF POINCAR E ALGEBRA
The central extension of th@ + 1)-dimensional Poincé&ralgebra is [2,11]

[Pa, Po) = €apY, 1)
[P, J) = €" Py, (2)
[Pa,Y] =0, 3)

[J’ Y] =0, (4)

whereP, are translation generatot$,is a Lorentz generato¥, is a central element

Y = AL (5)
2
hereA is some real constant, ant = —¢*?, %! = 1 is the totally antisymmetric two-dimensional Levi-Civita tensor,
the tangent space indicesb, c... = (0, 1) are lowered,* = h,.c%® by means of the flat metrit,;, = diag (-1, 1).

The shape of central tensor chardgeg for the Poinca& group inl + 1 dimensions
Zab = 6abyva (6)

was introduced in [2] while investigating the string-inspired lineal gravity, and for any dimensions similar tensor charges
were proposed in [11]. Note that for the gauge theory of the de Sitter gfoup%AJ [6,12].

If Z,, = 0, the standard way of the supersymmetric extension of the P@radgebra (1)-(2) is introducing some
fermionic generator@&o) which satisfy anticommuting relations [13]

{Q©, QY = —2i (1°C) 3 Pa- 7)



But in case of nonvanishing tensor chargés # 0 the Jacobi identity and-invariance forbid appearance of
the standard terms with momen® in the right hand side of (7). However we can introduce fermionic generators with
nonvanishing anticommutator in another way [11] (using the central ele¥enhich satisfy the graded algebra

{Qa:Qﬁ} = _Q(’VSC)Q,BK (8)
Qs 7] = 5 (5@ ©)
[Y,Qa] =0, (10)

[Pay Qa] = Oa (11)

where(C is the charge conjugation matriy,is some constant (which controls nonanticommutativity of the fermionic
1

1 . . . .
2y, 09 = 1 [v*,~"]. As a real (Majorana) representation for the two-dimensional

v-matrices and charge conjugation matéixwe usey® = C = —CT = —ioy, y' = 01, 75 = 37,0 = 03,
{Vas W} = 2hap, b1 = —hoo = 1, C~1v,C = —,T, whereo; are Pauli matrices. The matrices satisfy

charges themselves) ang =

Ya¥s = €Y’y Ya¥o = hab — €apVs- (12)
The Jacobi identities of the extended Poiigcalgebra (1)-(4),(8)-(11) are

[Pa, [Py, P.]] + [Pe, [P, Bo]] + [Py, [Pe, Pu]] = 0, (13)

[Pa; [Py, Qall + [Qas [Pas Pol] + [P, [Qa, Fal] = 0, (14)

[Pm {Qm Qﬁ}] - {Qav [Pm Qﬁ]} - {Qﬁ? [Paa Qa]} =0, (15)
[, [Pas Bo]] + [Pa, [, Bo]] + [Py, [J, Pu]] = 0, (16)

[J, [Pa, J]] + [Pa, [, ]| + [, [J, Fa]] = 0, a7

[Qa: {@s, @y} — [Qy, {Qa, @s}] — [@5,{Q, Qa}] =0, (18)
[J,{Qa, Qp}] — {Qa, [/, Qpl} — {Qp,[J, Qal} =0, (19)

where (13)-(18) satisfy trivially, while (19) follows from antisymmetry of maifix

We note that the full algebra (1)—(4),(8)-(11) is not semi-simple, because it is a semi-direct sum of the subalgebra
generated by the Lorentz generatband the graded ideal consisting of momefa central charg&” and fermionic
generators),,. It has the following Casimir operator

K =P,P"—2YJ— Ql(]cga (€ Q. (20)

GAUGE TRANSFORMATIONS
The gaugd-form A = dz* A, (x) can be expanded in terms of the generators, and the gauge connection is

Ay (z) = e, (7) Po +wy (2) J +wy (2) Y + 4y (2) Qa, (21)

wheree? () is thezweibeinwhich determines the metric tensor of space-time(z) = e, (z) e}, () hap, w,, () is the
spin connectionw,, () is the gauge field corresponding to the central eleriieandy; () is the Grassmann Majorana
“gravitino” field associated witld),. Greek indices:, v ... = 0, 1 refer to the world space.

Infinitesimal gauge transformations corresponding to the full algebra (1)—(4),(8)-(11) are
0A =dQ+ [A, Q], (22)

with the gauge generator
A=y (@) Pate(x)J+z(@x)Y +&%(z) Qq, (23)

wherey® (z) are space-time translations(z) is the Lorentz boost parametenz) is the central element translation and
e (x) is the fermionic translation. From (1)—(4),(8)-(11) and (22) it follows

seft (z) = €y [—p (2) €, () + ¢ () wy ()] + Buy” () , (24)
dwy, (x) = Oup (), (25)
dwy, (z) = e}, () Y’ (z) €ap + qy, (z) % () (150) ap + 0,2 (z) (26)
oy (z) = % [p () ¥ (2) — w (2) €7 (2)] (75) 5% + Bue® (@) - @7)



The finite gauge transformations

A= A=e 2 + e PAY (28)
have the following form:
&, () = e (x) — N% () (e}, (x) — wy (z) 8" (z) — €"c0pu5° (x)) + s° (2) Dup (z) (29)
O (2) = wy (x) + Opep (), (30)
@y (7) = wy (1) — 50 () N () [ez<x>—wu< ) (sc)—e Bys° ()]
—2g [z/}f; () —wu () p* (x) + 20,07 ( va]
+ auz (5U) — @ (x)sq () ausa (37) - 2q<P( ).0 ( )aupa ( ) ) (31)
Up (2) = ¥ (@) — [V (@) — wu (@) o7 (2) + 20,07 (2) (1), 1T5™ (@) + Oup () p* (), (32)
where the notations
N (2) = 6% — (M1 (2))%,, To’ () = 00" = 8a"(2), (33)
ol @) oy (@)

with the finite Lorentz transformations for vectors and spinors respectively

M®, (z) = §*pcoshep (x) 4+ €*psinhy (z) , (35)
S.P (x) = 6aﬁcosh@ + (’ys)aﬁsinh@ (36)

are introduced.
The multiplet of the curvaturg-form is

F= %da}“ Ndz’Fy, () =dA+ANA= %da}“ Adz’ [0, 4, (z) + Al (z) Ay (2)], (37)

where antisymmentrizatiofur] is implied without the factot /2. The field strengtl¥ can be expanded in terms of the
generators

Fu (x) = Zl/ (@) Po + 71w () J + v (2) Y + 53:/ (z) Qa, (38)
with
I, (@) = 0uely (@) + €y (@) €y (z) = D (w) el (2), (39)
Tuv (LL‘) = a[uwl/] (l‘) ) (40)
v () = B (2) + 5t () ey (2) can + S0, (@) 6] () (350 ), (41)
€6, (@) = ) () — o) () () = Df, () 5 (2) (42)

whereDl{ (w) andeL (w) are covariant derivatives corresponding to boson and fermion translations#uhile) is the
strength tensor corresponding to the Lorentz boostpgndz) is the strength tensor corresponding to the central element
Y.

The components of),, (x) (39)-(42) are transformed by the adjoint representation of the fermionic generalization
(8)-(11) of the centrally extended Poinéagroup (1)-(4) as follows

i (@) = fii, () = N% (2) [£1, (@) = 1 (2) 8° (2)] (43)
Tuv () = Ty (2) (44)
v (%) = O (2) = 50 (2) N% (2) [f, (&) = 1w (2) 8 (2)]

—2q [¢], (@) =1 (2) P (2)] T5® (2) pa (), (45)
hy (2) = &5, (2) = [€], (@) = (2) 9P ()] T5™ (2) - (46)

This transformation law can be equivalently expressed in the form

FA = (U-1)A FP (47)



with

My, (z) L%, (x) s° (x) 00
A 0 1 0 0 48)
P —se@) Lo (@) se(2) L9 (2) 8" (2) + 297 (z) Ry pa(x) 1 2qRp” () py () |
0 p* (z) Ry () 0 (S7'(2))s
where
L% (x) = 6% — M% (z), R () =0."— (S H)." (2). (49)
We observe that det M
e
LAGRANGIAN AND EQUATIONS OF MOTION
An invariant Lagrangian density can be constructed using a multiplet of Lagrange multipliers
1 1
L= e naFy, (@) = 5 (nafi, (2) + mruw (2) + N3t (2) + 1a&, (2)) (51)
na = (nav 72,73, 7704)5
which obey the coadjoint transformation law = ngU?® 4, or in manifest form
Mo = (1 + N385 (2)) M4 (x) — 0384 (2) (52)
2 = N2 + (Na + M35 (2)) L% (2) 8° (x) — p* (x) Ra (x) (ns — 2amsp (), (53)
N3 = N3, (54)
o = (710" (%) (s — 2am3p5 (%)) + 2qm3p0 () (55)
The corresponding equations of motion are
A
Fp, () =0, (56)
8un” = (€% (z) s + wpu (z)n°) & (57)
1 a
Oune = ez (z) nbfab - §¢5 (z) (75)ﬁ Nas (58)
Ouns =0, (59)
a_ (1 g_ B a
Oun® = | Jwu (@) 0" = a (@) s | (15) " - (60)

The fermionic generalization of the centrally extended Poimalgebra (1)—(4),(8)-(11) in the coadjoint representation
possesses a nonsingular invariant graded metric

hap = (=1)PpPatP) ho UL gUC (61)
which has the form
haw 0 0 0
0 u —1 0
— (__1\PAPB —
hag = (-1) hpa = 0 -1 0 0 , (62)
0 0 0 —2¢C.p
det hab 1
dethap=—"—F+—"—==— 63
sdetiiap 4g2det C  4¢%’ 63)
wherep, = p(A) is a Grassmann parity of the quantiyandu is an arbitrary constant. The inverse metrit®
h*Bhpe = 60 (64)

having the propertyy4? = (—1)patre+rars pBA can be used to upper the indiogd = A4 815,
In the compact notatioX 4 = {P,, J, Y, Q. } the full algebra (1)—(4),(8)-(11) can be presented as

(XA, X} = XaXp — (-1)P*P5 XpXa = f4f Xc» (65)



wheref , ;¢ are the structure constants, and nonvanishing ones have the form

Ful = T =t S = 0 (50)ss fuf = 5 (6)" (66)
In terms ofy = n“ X 4 the equations of motion (57)—(60) can be written as
dn + [A,n] =0, (67)
whereA = AB X 5. The invariant quantity
M = — b (69

can be interpreted as the black-hole mass [7], if it is constaig from (5)). Indeed, from the equations of motion (67)
we have

1 1
AM = —nadi® = Snan®AP fpél. (69)

As a consequence of the structure constant properties we eptainAZ f, 4 = 0, and thereforé// = const.
Using the inverse metrie4 5, the set of independent Casimir operators of the algebra (65) can be presented as

K (u) = Xph*BXp = K —uY?, (70)
which is marked by the additional parametsirom (62).

CONCLUSION
Thus, we have constructed a special fermionic generalization of the lineal gravity which is not the standard super-
symmetric two-dimensional gravity [14]. We presented the algebra of generators, the field transformations and found

Lagrangian and equation of motion. We obtained the constant black hole mass and derived the Casimir operator which
depends on an additional parameter.
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O ®PEPMUOHHOM OBOBIIEHAU JIUHEMHOM I'PABUTALIUA
B ®OPMVYJIMPOBKE C HEHTPAJIbBHBIM PACHIMPEHUEM
C.A. Jlynamii', 1.B. Copoka?, B.A. Copoka?
lXapbkoecKuL? Hayuonanvrwulil ynusepcumem um. B.H.Kapasuna, ni. Ce0600vt 4, Xapvros 61077
2 Hayuonansnetii Hayunwiii Llenmp " Xaporosckuii @usuro-mexnuueckuii Hnemumym”, yn. Axademuueckas 1, Xapvros 61108

B paGore 0600maercs neHTpaisHoe pacumpenue aaredpsl [Tyarkape B (14 1) n3aMepeHusx myTeM BKIFOUeHHS QepMHOHHBIX 3apsIIOB,
KOTOpBIE YAOBJICTBOPSIOT HE CTAHAAPTHON CYNIepCHMMETPHYHOM anredpe, a CenuaabHOM rpafyHpoBaHHOM aiaredpe, KOTopas B IpaBoi
YaCTH COJCPIKUT TOJBKO IIEHTpaIbHbIC 3apsabl. [[poBepeHa caMoCOrIacoBaHHOCTh TOXAeCTB SIkoOu u momydeH oneparop Kazumupa.
Jlanee BBOZIITCS] COOTBETCTBYIOIINE KATMOPOBOYHEIE MOJIS M ITIOCTPOEHA KIacCHIecKast KaTNOPOBOYHAs TEOPHsl, OCHOBAaHHAs HA JaHHOU
rpaJyHpOBaHHOM anreGpe, MpeICTaBIeHBI IPeoOpa3oBaHms TIOJeH U MOTydeHa Macca YepHo# AbIpbl B (1 + 1) n3MepeHusx.
KJ/IFOUYEBBIE CJIOBA: anre6pa Ilyankape, muHeiiHas TpaBUTalnus, HEHTPAJIbHOE paclIupeHne, GepMUOHHBII reHepaTop, OonepaTop
Kazumupa



