ON REGULAR SOLUTIONS OF QUANTUM YANG-BAXTER EQUATION AND WEAK HOPF ALGEBRAS

Steven Duplij ${ }^{1)}$, Fang Li ${ }^{2}{ }^{\text {) }}$

${ }^{1)}$ Department of Physics and Technology, Kharkov National University, Kharkov 6107ry, Ukraine
E-mail: Steven.A.Duplij@univer.kharkov.ua. Internet: http://gluon.physik.uni-kl.de/~duplij
${ }^{2)}$ Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang 310028, China
E-mail: fangli@mail.hz.zj.cn
Received August 29, 2001
Generalization of Hopf algebra $\mathfrak{s l}_{q}(2)$ by weakening the invertibility of the generator K, i.e. exchanging its invertibility $K K^{-1}=1$ to the regularity $K \bar{K} K=K$ is studied. Two weak Hopf algebras are introduced: a weak Hopf algebra $w \mathfrak{s l}_{q}(2)$ and a J-weak Hopf algebra $v \mathfrak{s l}_{q}(2)$ which are investigated in detail. The monoids of grouplike elements of $w \mathfrak{s l}_{q}(2)$ and $v \mathfrak{s l}_{q}(2)$ are regular monoids, which supports the general conjucture on the connection betweek weak Hopf algebras and regular monoids. A quasi-braided weak Hopf algebra \bar{U}_{q}^{w} is constructed from $w \mathfrak{s l}_{q}(2)$. It is shown that the corresponding quasi- R-matrix is regular $R^{w} \hat{R}^{w} R^{w}=R^{w}$.
KEYWORDS : Hopf algebra, regularity, Yang-Baxter equation, Noetherian ring, group-like element, quasi- R matrix

A weak Hopf algebra as a generalization of a Hopf algebra [1, 2] was introduced in [3] and its characterizations and applications were studied in [4]. A k-bialgebra ${ }^{1} H=(H, \mu, \eta, \Delta, \varepsilon)$ is called a weak Hopf algebra if there exists $T \in \operatorname{Hom}_{k}(H, H)$ such that $i d * T * i d=i d$ and $T * i d * T=T$ where T is called a weak antipode of H. This concept also generalizes the notion of the left and right Hopf algebras [5, 6].

The first aim of this concept is to give a new sub-class of bialgebras which includes all of Hopf algebras such that it is possible to characterize this sub-class through their monoids of all group-like elements [3, 4]. It was known that for every regular monoid S, its semigroup algebra $k S$ over k is a weak Hopf algebra as the generalization of a group algebra [7]. The second aim is to construct some singular solutions of the quantum Yang-Baxter equation (QYBE) and research QYBE in a larger scope. On this hand, in [4] a quantum quasidouble $D(H)$ for a finite dimensional cocommutative perfect weak Hopf algebra with invertible weak antipode was built and it was verified that its quasi- R-matrix is a regular solution of the QYBE. In particular, the quantum quasi-double of a finite Clifford monoid as a generalization of the quantum double of a finite group was derived [4].

Here we construct two weak Hopf algebras in the other direction as a generalization of the quantum algebra $\mathfrak{s l}_{q}(2)[8,9]$. We show that $w \mathfrak{s l}_{2}(q)$ possesses a quasi- R-matrix which becomes a singular (in fact, regular) solution of the QYBE, with a parameter q. In this reason, we want to treat the meaning of $w \operatorname{sil}_{q}(2)$ and its quasi- R-matrix just as $\mathfrak{s l}_{q}(2)$ [10, 11]. It is interesting to note that $w \mathfrak{s l}_{q}(2)$ is a natural and non-trivial example of weak Hopf algebras.

WEAK QUANTUM ALGEBRAS

For completeness and consistency we remind the definition of the enveloping algebra $U_{q}=U_{q}\left(\mathfrak{s l}_{q}(2)\right.$) (see e.g. [11]). Let $q \in \mathbb{C}$ and $q \neq \pm 1,0$. The algebra U_{q} is generated by four variables(Chevalley generators) E, F, K, K^{-1} with the relations

$$
\begin{align*}
K^{-1} K & =K K^{-1}=1, \tag{1}\\
K E K^{-1} & =q^{2} E, \tag{2}\\
K F K^{-1} & =q^{-2} F \tag{3}\\
E F-F E & =\frac{K-K^{-1}}{q-q^{-1}} . \tag{4}
\end{align*}
$$

Now we try to generalize the invertibility condition (1). The first thought is weaken the invertibility to regularity, as it is usually made in semigroup theory [12] (see also [13, 14, 15] for higher regularity). So we will consider such weakening the algebra $U_{q}\left(\mathfrak{s l}_{q}(2)\right)$, in which instead of the set $\left\{K, K^{-1}\right\}$ we introduce a pair $\left\{K_{w}, \bar{K}_{w}\right\}$ by means of the regularity relations

$$
\begin{equation*}
K_{w} \bar{K}_{w} K_{w}=K_{w}, \quad \bar{K}_{w} K_{w} \bar{K}_{w}=\bar{K}_{w} \tag{5}
\end{equation*}
$$

[^0]If \bar{K}_{w} satisfying (5) is unique for a given K_{w}, then it is called inverse of K_{w} (see e.g. [16, 17]). The regularity relations (5) imply that one can introduce the variables

$$
\begin{equation*}
J_{w}=K_{w} \bar{K}_{w}, \quad \bar{J}_{w}=\bar{K}_{w} K_{w} \tag{6}
\end{equation*}
$$

In terms of J_{w} the regularity conditions (5) are

$$
\begin{array}{rlrl}
J_{w} K_{w} & =K_{w}, & \bar{K}_{w} J_{w}=\bar{K}_{w} \\
\bar{J}_{w} \bar{K}_{w} & =\bar{K}_{w}, & & K_{w} \bar{J}_{w}=K_{w} \tag{8}
\end{array}
$$

Since the noncommutativity of generators K_{w} and \bar{K}_{w} very much complexifies the generalized construction, we first consider the commutative case and imply in what follow that

$$
\begin{equation*}
J_{w}=\bar{J}_{w} \tag{9}
\end{equation*}
$$

Let us list some useful properties of J_{w} which will be needed below. First we note that commutativity of K_{w} and \bar{K}_{w} leads to idempotency condition $J_{w}^{2}=J_{w}$, which means that J_{w} is a projector (see e.g. [18]).
Conjecture 1. In algebras satisfying the regularity conditions (5) there exists as minimum one zero divisor $J_{w}-1$.

Therefore, in addition with unity 1 we have an idempotent analog of unity J_{w} which makes the structure of weak algebras more complicated, but simultaneously more interesting. For any variable X we will define " J-conjugation" as

$$
\begin{equation*}
X_{J_{w}} \stackrel{\text { def }}{=} J_{w} X J_{w} \tag{10}
\end{equation*}
$$

and the corresponding mapping will be written as $\mathbf{e}_{w}(X): X \rightarrow X_{J_{w}}$. Note that the mapping $\mathbf{e}_{w}(X)$ is idempotent

$$
\begin{equation*}
\mathbf{e}_{w}^{2}(X)=\mathbf{e}_{w}(X) . \tag{11}
\end{equation*}
$$

In the invertible case $K_{w}=K, \bar{K}_{w}=K^{-1}$ we have $J_{w}=1$ and $\mathbf{e}_{w}(X)=X=$ id (X) for any X, so $\mathbf{e}_{w}=$ id. It is seen from (5) that the generators K_{w} and \bar{K}_{w} are stable under " J_{w}-conjugation"

$$
\begin{equation*}
K_{J_{w}}=J_{w} K_{w} J_{w}=K_{w}, \quad \bar{K}_{J_{w}}=J_{w} \bar{K}_{w} J_{w}=\bar{K}_{w} \tag{12}
\end{equation*}
$$

Obviously, for any X

$$
\begin{equation*}
K_{w} X \bar{K}_{w}=K_{w} X_{J_{w}} \bar{K}_{w} \tag{13}
\end{equation*}
$$

and for any X and Y

$$
\begin{equation*}
K_{w} X \bar{K}_{w}=Y \Rightarrow K_{w} X_{J_{w}} \bar{K}_{w}=Y_{J_{w}} \tag{14}
\end{equation*}
$$

Another definition connected with the idempotent analog of unity J_{w} is " J_{w}-product" for any two elements X and Y, viz.

$$
\begin{equation*}
X \odot_{J_{w}} Y \stackrel{\text { def }}{=} X J_{w} Y \tag{15}
\end{equation*}
$$

From (7) it follows that " J_{w}-product" coincides with usual product, if X ends with generators K_{w} and \bar{K}_{w} on right side or Y starts with them on left side.

Let $J^{(i j)}=K_{w}^{i} \bar{K}_{w}^{j}$ then we will need a formula

$$
J_{w}^{(i j)}=K_{w}^{i} \bar{K}_{w}^{j}= \begin{cases}K_{w}^{i-j}, & i>j, \tag{16}\\ J_{w}^{j-i} & i=j, \\ \bar{K}_{w}^{j i} & i<j,\end{cases}
$$

which follows from the regularity conditions (7). The variables $J^{(i j)}$ satisfy the regularity conditions

$$
\begin{equation*}
J_{w}^{(i j)} J_{w}^{(j i)} J_{w}^{(i j)}=J_{w}^{(i j)} \tag{17}
\end{equation*}
$$

and stable under " J-conjugation" (10) $J_{w J_{w}}^{(i j)}=J_{w}^{(i j)}$. The regularity conditions (7) lead to the noncancellativity: for any two elements X and Y the following relations hold valid

$$
\begin{align*}
X=Y & \Rightarrow K_{w} X=K_{w} Y \tag{18}\\
K_{w} X=K_{w} Y & \nRightarrow X=Y \tag{19}\\
X=Y & \Rightarrow \bar{K}_{w} X=\bar{K}_{w} Y \tag{20}\\
\bar{K}_{w} X=\bar{K}_{w} Y & \nRightarrow X=Y \tag{21}\\
X=Y & \Rightarrow X_{J_{w}}=Y_{J_{w}} \tag{22}\\
X_{J_{w}}=Y_{J_{w}} & \nRightarrow X=Y \tag{23}
\end{align*}
$$

The generalization of $U_{q}\left(\mathfrak{s l}_{q}(2)\right)$ by exploiting regularity (5) instead of invertibility (1) can be done in two different ways.

Definition 2. Define $U_{q}^{w}=w \mathfrak{s l}_{q}(2)$ as the algebra generated by the four variables $E_{w}, F_{w}, K_{w}, \bar{K}_{w}$ with the relations:

$$
\begin{align*}
K_{w} \bar{K}_{w} & =\bar{K}_{w} K_{w} \tag{24}\\
K_{w} \bar{K}_{w} K_{w} & =K_{w}, \quad \bar{K}_{w} K_{w} \bar{K}_{w}=\bar{K}_{w} \tag{25}\\
K_{w} E_{w} & =q^{2} E_{w} K_{w}, \quad \bar{K}_{w} E_{w}=q^{-2} E_{w} \bar{K}_{w} \tag{26}\\
K_{w} F_{w} & =q^{-2} F_{w} K_{w}, \quad \bar{K}_{w} F_{w}=q^{2} F_{w} \bar{K}_{w} \tag{27}\\
E_{w} F_{w}-F_{w} E_{w} & =\frac{K_{w}-\bar{K}_{w}}{q-q^{-1}} \tag{28}
\end{align*}
$$

We call $w \mathfrak{s l}_{q}(2)$ a weak quantum algebra.
Definition 3. Define $U_{q}^{v}=v \operatorname{sl}_{q}(2)$ as the algebra generated by the four variables $E_{v}, F_{w}, K_{v}, \bar{K}_{v}$ with the relations $\left(J_{v}=K_{v} \bar{K}_{v}\right)$:

$$
\begin{align*}
K_{v} \bar{K}_{v} & =\bar{K}_{v} K_{v} \tag{29}\\
K_{v} \bar{K}_{v} K_{v} & =K_{v}, \quad \bar{K}_{v} K_{v} \bar{K}_{v}=\bar{K}_{v} \tag{30}\\
K_{v} E_{v} \bar{K}_{v} & =q^{2} E_{v} \tag{31}\\
K_{v} F_{v} \bar{K}_{v} & =q^{-2} F_{v} \tag{32}\\
E_{v} J_{v} F_{v}-F_{v} J_{v} E_{v} & =\frac{K_{v}-\bar{K}_{v}}{q-q^{-1}} \tag{33}
\end{align*}
$$

We call $v \mathfrak{s l}_{q}(2)$ a J-weak quantum algebra.
In these definitions indeed the first two lines (24)-(25) and (29)-(30) are called to generalize the invertibility $K K^{-1}=K^{-1} K=1$. Note that the $E K$ and $F K$ relations (31)-(32) can be written in the following form close to (26)-(27)

$$
\begin{align*}
K_{v} E_{v} J_{v} & =q^{2} J_{v} E_{v} K_{v}, \quad \bar{K}_{v} E_{v} J_{v}=q^{-2} J_{v} E_{v} \bar{K}_{v} \tag{34}\\
K_{v} F_{v} J_{v} & =q^{-2} J_{v} F_{v} K_{v}, \quad \bar{K}_{v} F_{v} J_{v}=q^{2} J_{v} F_{v} \bar{K}_{v} \tag{35}
\end{align*}
$$

Using (15) and (7) in the case of J_{v} we can also present the $v \mathfrak{s l}_{q}(2)$ algebra as an algebra with " J_{v}-product"

$$
\begin{align*}
K_{v} \odot_{J_{v}} \bar{K}_{v} & =\bar{K}_{v} \odot_{J_{v}} K_{v}, \tag{36}\\
K_{v} \odot_{J_{v}} \bar{K}_{v} \odot_{J_{v}} K_{v} & =K_{v}, \quad \bar{K}_{v} \odot_{J_{v}} K_{v} \odot_{J_{v}} \bar{K}_{v}=\bar{K}_{v}, \tag{37}\\
K_{v} \odot_{J_{v}} E_{v} \odot_{J_{v}} \bar{K}_{v} & =q^{2} E_{v}, \tag{38}\\
K_{v} \odot_{J_{v}} F_{v} \odot_{J_{v}} \bar{K}_{v} & =q^{-2} F_{v}, \tag{39}\\
E_{v} \odot_{J_{v}} F_{v}-F_{v} \odot_{J_{v}} E_{v} & =\frac{K_{v}-\bar{K}_{v}}{q-q^{-1}} . \tag{40}
\end{align*}
$$

Due to (7) the only relation where " J_{w}-product" is really plays its role is the last relation (40). From the following proposition, one can find the connection between $U_{q}^{w}=w \mathfrak{s l}_{q}(2), U_{q}^{v}=v \mathfrak{s l}_{q}(2)$ and the quantum algebra $\mathfrak{s l}_{q}(2)$.

Proposition 4. $w \mathfrak{s l}_{q}(2) /\left(J_{w}-1\right) \cong \mathfrak{s l}_{q}(2) ; v \mathfrak{s l}_{q}(2) /\left(J_{v}-1\right) \cong \mathfrak{s l}_{q}(2)$.
Proof. For cancellative K_{w} and K_{v} it is obvious.
Proposition 5. Quantum algebras wsl ${ }_{q}(2)$ and $v \mathfrak{s l}_{q}(2)$ possess zero divisors, one of which is ${ }^{2}\left(J_{w, v}-1\right)$ which annihilates all generators.

[^1]Proof. From regularity (25) and (30) it follows $K_{w, v}\left(J_{w, v}-1\right)=0$ (see also (1)). Multiplying (26) on J_{w} gives $K_{w} E_{w} J_{w}=q^{2} E_{w} K_{w} J_{w} \Rightarrow K_{w}\left(E_{w} \bar{K}_{w}\right) K_{w}=q^{2} E_{w} K_{w}$. Using second equation in (26) for term in bracket we obtain $K_{w}\left(q^{2} \bar{K}_{w} E_{w}\right) K_{w}=q^{2} E_{w} K_{w} \Rightarrow\left(J_{w}-1\right) E_{w} K_{w}=0$. For F_{w} similarly, but using equation (27). By analogy, multiplying (31) on J_{v} we have $K_{v} E_{v} \bar{K}_{v} K_{v} \bar{K}_{v}=q^{2} E_{v} J_{v} \Rightarrow K_{v} E_{v} \bar{K}_{v}=q^{2} E_{v} J_{v} \Rightarrow q^{2} E_{v}=q^{2} E_{v} J_{v}$, and so $E_{v}\left(J_{v}-1\right)=0$. For F_{v} similarly, but using equation (32).

Since $\mathfrak{s l}_{q}(2)$ is an algebra without zero divisors, some properties of $\mathfrak{s l}_{q}(2)$ cannot be upgraded to $w \mathfrak{s l}_{q}(2)$ and $v \mathfrak{s l}_{q}(2)$, e.g. the standard theorem of Ore extensions and its proof (see Theorem I.7.1 in [11]). We conjecture that in U_{q}^{w} and U_{q}^{v} there are no other than $\left(J_{w, v}-1\right)$ zero divisors which annihilate all generators. In other case thorough analysis of them will be much more complicated and very different from the standard case of non-weak algebras. We can get some properties of U_{q}^{w} and U_{q}^{v} as follows.
Lemma 6. The idempotent J_{w} is in the center of $w \mathfrak{s l}_{q}(2)$.
Proof. For K_{w} it follows from (12). Multiplying first equation in (26) on \bar{K}_{w} we derive $K_{w}\left(E_{w} \bar{K}_{w}\right)=q^{2} E_{w} J_{w}$, and the applying second equation in (26) obtain $E_{w} J_{w}=J_{w} E_{w}$. For F_{w} similarly, but using equation (27).

Lemma 7. There are unique algebra automorphism ω_{w} and ω_{v} of U_{q}^{w} and U_{q}^{v} respectively such that

$$
\begin{align*}
\omega_{w, v}\left(K_{w, v}\right) & =\bar{K}_{w, v}, & \omega_{w, v}\left(\bar{K}_{w, v}\right) & =K_{w, v} \\
\omega_{w, v}\left(E_{w, v}\right) & =F_{w, v}, & \omega_{w, v}\left(F_{w, v}\right) & =E_{w, v} \tag{41}
\end{align*}
$$

Proof. The proof is obvious, if we note that $\omega_{w}^{2}=\mathrm{id}$ and $\omega_{v}^{2}=\mathrm{id}$.
As in case of automorphism ω for $\mathfrak{s l}_{q}(2)$ [11], the mappings ω_{w} and ω_{v} can be called the weak Cartan automorphisms. Note that $\omega_{w} \neq \omega$ and $\omega_{v} \neq \omega$ in general case.

The connection between the algebras $w \mathfrak{s l}_{q}(2)$ and $v \mathfrak{s l}_{q}(2)$ can be seen from the following
Proposition 8. There exist the following partial algebra morphism $\chi: v \mathfrak{s l}_{q}(2) \rightarrow \operatorname{wsl}_{q}(2)$ such that

$$
\begin{equation*}
\chi(X)=\mathbf{e}_{v}(X) \tag{42}
\end{equation*}
$$

or more exactly: generators $X_{w}^{(v)}=J_{v} X_{v} J_{v}=X_{v J_{v}}$ for all $X_{v}=K_{v}, \bar{K}_{v}, E_{v}, F_{v}$ satisfy the same relations as X_{w} (24)-(28).

Proof. Multiplying the equation (31) on K_{v} we have $K_{v} E_{v} \bar{K}_{v} K_{v}=q^{2} E_{v} K_{v}$, and using (7) we obtain $K_{v} E_{v} J_{v}=$ $q^{2} E_{v} J_{v} K_{v} \Rightarrow K_{v} J_{v} E_{v} J_{v}=q^{2} J_{v} E_{v} J_{v} K_{v}$, and so

$$
K_{v J_{v}} E_{v J_{v}}=q^{2} E_{v J_{v}} K_{v J_{v}}
$$

which has shape of the first equation in (26). For F_{v} similarly using equation (32) we obtain

$$
K_{v J_{v}} F_{v J_{v}}=q^{-2} F_{v J_{v}} K_{v J_{v}} .
$$

The equation (33) can be modified using (7) and then applying (10), then we obtain

$$
E_{v J_{v}} F_{v J_{v}}-F_{v J_{v}} E_{v J_{v}}=\frac{K_{v J_{v}}-\bar{K}_{v J_{v}}}{q-q^{-1}}
$$

which coincides with (28).
For conjugated equations (second ones in (26)-(27)) after multiplication of (31) on \bar{K}_{v} we have $\bar{K}_{v} K_{v} E_{v} \bar{K}_{v}=q^{2} \bar{K}_{v} E_{v} \Rightarrow J_{v} E_{v} J_{v} \bar{K}_{v}=q^{2} \bar{K}_{v} J_{v} E_{v} J_{v}$ or using definition (10) and (7)

$$
\bar{K}_{v J_{v}} E_{v J_{v}}=q^{-2} E_{v J_{v}} \bar{K}_{v J_{v}} .
$$

By analogy from (32) it follows

$$
\bar{K}_{v J_{v}} F_{v J_{v}}=q^{2} F_{v J_{v}} \bar{K}_{v J_{v}}
$$

Note that the generators $X_{w}^{(v)}$ coincide with X_{w} if $J_{v}=1$ only. Therefore, some (but not all) properties of $w \mathfrak{s l}_{q}(2)$ can be extended on $v \mathfrak{s l}_{q}(2)$ as well, and below we mostly will consider $w \mathfrak{s l}_{q}(2)$ in detail.

Lemma 9. Let $m \geq 0$ and $n \in \mathbb{Z}$. The following relations hold in U_{q}^{w} :

$$
\begin{align*}
& E_{w}^{m} K_{w}^{n}=q^{-2 m n} K_{w}^{n} E_{w}^{m}, \quad F_{w}^{m} K_{w}^{n}=q^{2 m n} K_{w}^{n} F_{w}^{m}, \tag{43}\\
& E_{w}^{m} \bar{K}_{w}^{n}=q^{2 m n} \bar{K}_{w}^{n} E_{w}^{m}, \quad F_{w}^{m} \bar{K}_{w}^{n}=q^{-2 m n} \bar{K}_{w}^{n} F_{w}^{m}, \tag{44}\\
& {\left[E_{w}, F_{w}^{m}\right]=[m] F_{w}^{m-1} \frac{q^{-(m-1)} K_{w}-q^{m-1} \bar{K}_{w}}{q-q^{-1}}} \tag{45}\\
& =[m] \frac{q^{m-1} K_{w}-q^{-(m-1)} \bar{K}_{w}}{q-q^{-1}} F_{w}^{m-1}, \\
& {\left[E_{w}^{m}, F_{w}\right]=[m] \frac{q^{-(m-1)} K_{w}-q^{m-1} \bar{K}_{w}}{q-q^{-1}} E_{w}^{m-1}} \tag{46}\\
& =[m] E_{w}^{m-1} \frac{q^{m-1} K_{w}-q^{-(m-1)} \bar{K}_{w}}{q-q^{-1}} .
\end{align*}
$$

Proof. The first two relations can be resulted easily from Definition 2. The third one follows by induction using Definition 2 and

$$
\left[E_{w}, F_{w}^{m}\right]=\left[E_{w}, F_{w}^{m-1}\right] F_{w}+F_{w}^{m-1}\left[E_{w}, F_{w}\right]=\left[E_{w}, F_{w}^{m-1}\right] F_{w}+F_{w}^{m-1} \frac{K_{w}-\bar{K}_{w}}{q-q^{-1}}
$$

Applying the automorphism ω_{w} (41) to (45), one gets (46).
Note that the commutation relations (43)-(46) coincide with $\mathfrak{s l}_{q}(2)$ case. For $v \mathfrak{s l}_{q}(2)$ the situation is more complicated, because the equations (31)-(32) cannot be solved under \bar{K}_{v} due to noncancellativity (see also (18)(23)). Nevertheless, some analogous relations can be derived. Using the morphism (42) one can conclude that the similar as (43)-(46) relations hold for $X_{w}^{(v)}=J_{v} X_{v} J_{v}$, from which we obtain for $v \mathfrak{s l}_{q}(2)$

$$
\begin{align*}
& J_{v} E_{v}^{m} K_{v}^{n}=q^{-2 m n} K_{v}^{n} E_{v}^{m} J_{v}, \quad J_{v} F_{v}^{m} K_{v}^{n}=q^{2 m n} K_{v}^{n} F_{v}^{m} J_{v}, \tag{47}\\
& J_{v} E_{v}^{m} \bar{K}_{v}^{n}=q^{2 m n} \bar{K}_{v}^{n} E_{v}^{m} J_{v}, \quad J_{v} F_{v}^{m} \bar{K}_{v}^{n}=q^{-2 m n} \bar{K}_{v}^{n} F_{v}^{m} J_{v} \tag{48}\\
& J_{v} E_{v} J_{v} F_{v}^{m} J_{v}-J_{v} F_{v}^{m} J_{v} E_{v} J_{v}=[m] J_{v} F_{v}^{m-1} \frac{q^{-(m-1)} K_{v}-q^{m-1} \bar{K}_{v}}{q-q^{-1}} \tag{49}\\
&=[m] \frac{q^{m-1} K_{v}-q^{-(m-1)} \bar{K}_{v}}{q-q^{-1}} F_{v}^{m-1} J_{v} \\
& J_{v} E_{v}^{m} J_{v} F_{v} J_{v}-J_{v} F_{v} J_{v} E_{v}^{m} J_{v}=[m] \frac{q^{-(m-1)} K_{v}-q^{m-1} \bar{K}_{v}}{q-q^{-1}} E_{v}^{m-1} J_{v} \tag{50}\\
&=[m] J_{v} E_{v}^{m-1} \frac{q^{m-1} K_{v}-q^{-(m-1)} \bar{K}_{v}}{q-q^{-1}} .
\end{align*}
$$

It is important to stress that due to noncancellativity of weak algebras we cannot cancel these relations on J_{v} (see (18)-(23)).

In order to discuss the basis of $U_{q}^{w}=w \mathfrak{s l}_{q}(2)$, we need to generalize some properties of Ore extensions (see [11]).

WEAK ORE EXTENSIONS

Let R be an algebra over k and $\mathrm{R}[t]$ be the free left R -module consisting of all polynomials of the form $P=\sum_{i=0}^{n} a_{i} t^{i}$ with coefficients in R. If $a_{n} \neq 0$, define $\operatorname{deg}(P)=n$; say $\operatorname{deg}(0)=-\infty$. Let α be an algebra morphism of R . An α-derivation of R is a k-linear endomorphism δ of R such that $\delta(a b)=\alpha(a) \delta(b)+\delta(a) b$ for all $a, b \in \mathrm{R}$. It follows that $\delta(1)=0$.
Theorem 10. (i) Assume that $\mathrm{R}[t]$ has an algebra structure such that the natural inclusion of R into $\mathrm{R}[t]$ is a morphism of algebras and $\operatorname{deg}(P Q) \leq \operatorname{deg}(P)+\operatorname{deg}(Q)$ for any pair (P, Q) of elements of $\mathrm{R}[t]$. Then there exists a unique injective algebra endomorphism α of R and a unique α-derivation δ of R such that ta $=\alpha(a) t+\delta(a)$ for all $a \in \mathrm{R}$;
(ii) Conversely, given an algebra endomorphism α of R and an α-derivation δ of R , there exists a unique algebra structure on $\mathrm{R}[t]$ such that the inclusion of R into $\mathrm{R}[t]$ is an algebra morphism and ta $=\alpha(a) t+\delta(a)$ for all $a \in \mathrm{R}$.

Proof. (i) Take any $0 \neq a \in \mathrm{R}$ and consider the product $t a$. We have $\operatorname{deg}(t a) \leq \operatorname{deg}(t)+\operatorname{deg}(a)=1$. By the definition of $\mathrm{R}[t]$, there exists uniquely determined elements $\alpha(a)$ and $\delta(a)$ of R such that $t a=\alpha(a) t+\delta(a)$. This defines maps α and δ in a unique fashion. The left multiplication by t being linear, so are α and δ. Expanding both sides of the equality $(t a) b=t(a b)$ in $\mathrm{R}[t]$ using $t a=\alpha(a) t+\delta(a)$ for $a, b \in \mathrm{R}$, we get

$$
\alpha(a) \alpha(b) t+\alpha(a) \delta(b)+\delta(a) b=\alpha(a b) t+\delta(a b)
$$

It follows that $\alpha(a b)=\alpha(a) \alpha(b)$ and $\delta(a b)=\alpha(a) \delta(b)+\delta(a) b$. And, $\alpha(1) t+\delta(1)=t 1=t$. So, $\alpha(1)=1, \delta(1)=0$. Therefore, we know that α is an algebra endomorphism and δ is an α-derivation. The uniqueness of α and δ follows from the freeness of $\mathrm{R}[t]$ over R .
(ii) We need to construct the multiplication on $\mathrm{R}[t]$ as an extension of that on R such that $t a=\alpha(a) t+\delta(a)$. For this, it needs only to determine the multiplication $t a$ for any $a \in \mathrm{R}$.

Let $M=\left\{\left(f_{i j}\right)_{i, j \geq 1}: f_{i j} \in \operatorname{End}_{k}(\mathrm{R})\right.$ and each row and each column has only finitely many $\left.f_{i j} \neq 0\right\}$ and $I=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & \ddots\end{array}\right)$ is the identity of M.

For $a \in \mathrm{R}$, let $\widehat{a}: \mathrm{R} \rightarrow \mathrm{R}$ satisfying $\widehat{a}(r)=a r$. Then $\widehat{a} \in \operatorname{End}_{k}(\mathrm{R})$; and for $r \in \mathrm{R},(\alpha \widehat{a})(r)=\alpha(a r)=$ $\alpha(a) \alpha(r)=(\widehat{\alpha(a)} \alpha)(r),(\delta \widehat{a})(r)=\delta(a r)=\alpha(a) \delta(r)+\delta(a) r=(\widehat{\alpha(a)} \delta+\widehat{\delta(a)})(r)$, thus $\alpha \widehat{a}=\widehat{\alpha(a)} \alpha, \delta \widehat{a}=$ $\widehat{\alpha(a)} \delta+\widehat{\delta(a)}$ in End ${ }_{k}(\mathrm{R})$. And, obviously, for $a, b \in \mathrm{R}, \widehat{a b}=\widehat{a} \widehat{b} ; \widehat{a+b}=\widehat{a}+\widehat{b}$.

Let $T=\left(\begin{array}{ccc}\delta & & \\ \alpha & \delta & \\ & \alpha & \ddots \\ & & \ddots\end{array}\right) \in M$ and define $\Phi: \mathrm{R}[t] \rightarrow M$ satisfying $\Phi\left(\sum_{i=0}^{n} a_{i} t^{i}\right)=\sum_{i=0}^{n}\left(\widehat{a_{i}} I\right) T^{i}$. It is seen
that Φ is a k-linear map.
Lemma 11. The map Φ is injective.
Proof. Let $p=\sum_{i=0}^{n} a_{i} t^{i}$. Assume $\Phi(p)=0$. For e_{i} having 1 on i-th place and others zeroes, obviously, $\left\{e_{i}\right\}_{i \geq 1}$ are linear independent. Since $\delta(1)=0$ and $\alpha(1)=1$, we have $T e_{i}=e_{i+1}$ and $T^{i} e_{1}=e_{i+1}$ for any $i \geq 0$. Thus, $0=\Phi(P) e_{1}=\sum_{i=0}^{n}\left(\widehat{a_{i}} I\right) T^{i} e_{1}=\sum_{i=0}^{n} \widehat{a_{i}} e_{i+1}$. It means that $\widehat{a_{i}}=0$ for all i, then $a_{i}=a_{i} 1=\widehat{a_{i}} 1=0$. Hence $P=0$.

Lemma 12. The following relation holds $T(\widehat{a} I)=(\widehat{\alpha(a)} I) T+\widehat{\delta(a)} I$.
Proof. We have $T(\widehat{a} I)=\widehat{\alpha(a)} T+\widehat{\delta(a)} I=\widehat{(\alpha(a)} I) T+\widehat{\delta(a)} I$.
Now, we complete the proof of Theorem 10.
Proof. Let S denote the subalgebra generated by T and $\widehat{a} I$ (all $a \in \mathrm{R}$) in M. From Lemma 12, we see that every element of S can be generated linearly by some elements in the form as $(\widehat{a} I) T^{n}(a \in \mathrm{R}, n \geq 0)$. But $\Phi\left(a t^{n}\right)=(\widehat{a} I) T^{n}$, so $\Phi(\mathrm{R}[t])=S$, i.e. Φ is surjective. Then by Lemma $11, \Phi$ is bijective. It follows that $\mathrm{R}[t]$ and S are linearly isomorphic.

Define $t a=\Phi^{-1}(T(\widehat{a} I))$, then we can extend this formula to define the multiplication of $\mathrm{R}[t]$ with $f g=$ $\Phi^{-1}(x y)$ for any $f, g \in \mathrm{R}[t]$ and $x=\Phi(f), y=\Phi(g)$. Under this definition, $\mathrm{R}[t]$ becomes an algebra and Φ is an algebra isomorphism from $\mathrm{R}[t]$ to S. And, $t a=\Phi^{-1}(T(\widehat{a} I))=\Phi^{-1}((\widehat{\alpha(a)} I) T+\widehat{\delta(a)} I)=\alpha(a) t+\delta(a)$ for all $a \in \mathrm{R}$. Obviously, the inclusion of R into $\mathrm{R}[t]$ is an algebra morphism.

Definition 13. We call the algebra constructed from α and δ a weak Ore extension of R , denoted as $\mathrm{R}_{w}[t, \alpha, \delta]$.
Let $S_{n, k}$ be the linear endomorphism of R defined as the sum of all $\binom{n}{k}$ possible compositions of k copies of δ and of $n-k$ copies of α. By induction n, from $t a=\alpha(a) t+\delta(a)$ under the condition of Theorem 10(ii), we get $t^{n} a=\sum_{k=0}^{n} S_{n, k}(a) t^{n-k}$ and moreover, $\left(\sum_{i=0}^{n} a_{i} t^{i}\right)\left(\sum_{i=0}^{m} b_{i} t^{i}\right)=\sum_{i=0}^{n+m} c_{i} t^{i}$ where $c_{i}=\sum_{p=0}^{i} a_{p} \sum_{k=0}^{p} S_{p, k}\left(b_{i-p+k}\right)$.

Corollary 14. Under the condition of Theorem 10 (ii), the following statements hold:
(i) As a left R-module, $\mathrm{R}_{w}[t, \alpha, \delta]$ is free with basis $\left\{t^{i}\right\}_{i \geq 0}$;
(ii) If α is an automorphism, then $\mathrm{R}_{w}[t, \alpha, \delta]$ is also a right free R -module with the same basis $\left\{t^{i}\right\}_{i \geq 0}$.

Proof. (i) It follows from the fact that $\mathrm{R}_{w}[t, \alpha, \delta]$ is just $\mathrm{R}[t]$ as a left R -module.
(ii) Firstly, we can show that $\mathrm{R}_{w}[t, \alpha, \delta]=\sum_{i \geq 0} t^{i} \mathrm{R}$, i.e. for any $p \in \mathrm{R}_{w}[t, \alpha, \delta]$, there are $a_{0}, a_{1}, \cdots, a_{n} \in \mathrm{R}$ such that $p=\sum_{i=0}^{n} t^{i} a_{i}$. Equivalently, we show by induction on n that for any $b \in \mathrm{R}, b t^{n}$ can be in the form $\sum_{i=0}^{n} t^{i} a_{i}$ for some a_{i}. When $n=0$, it is obvious. Suppose that for $n \leq k-1$ the result holds. Consider the case $n=k$. Since α is surjective, there is $a \in \mathrm{R}$ such that $b=\alpha^{n}(a)=S_{n, 0}(a)$. But $t^{n} a=\sum_{k=0}^{n} S_{n, k}(a) t^{n-k}$, we get $b t^{n}=t^{n} a-\sum_{k=1}^{n} S_{n, k}(a) t^{n-k}=\sum_{i=0}^{n} t^{i} a_{i}$ by the hypothesis of induction for some a_{i} with $a_{n}=a$. For any i and $a, b \in \mathrm{R},\left(t^{i} a\right) b=t^{i}(a b)$ since $\mathrm{R}_{w}[t, \alpha, \delta]$ is an algebra. Then $\mathrm{R}_{w}[t, \alpha, \delta]$ is a right R -module. Suppose $f(t)=t^{n} a_{n}+\cdots+t a_{1}+A_{0}=0$ for $a_{i} \in \mathrm{R}$ and $a_{n} \neq 0$. Then $f(t)$ can be written as an element of $\mathrm{R}[t]$ by the formula $t^{n} a=\sum_{k=0}^{n} S_{n, k}(a) t^{n-k}$ whose highest degree term is just that of $t^{n} a_{n}=\sum_{k=0}^{n} S_{n, k}\left(a_{n}\right) t^{n-k}$, i.e. $\alpha^{n}\left(a_{n}\right) t^{n}$. From (i), we get $\alpha^{n}\left(a_{n}\right)=0$. It implies $a_{n}=0$. It is a contradiction. Hence $\mathrm{R}_{w}[t, \alpha, \delta]$ is a free right R-module.

We will need the following:
Lemma 15. Let R be an algebra, α be an algebra automorphism and δ be an α-derivation of R . If R is a left (resp. right) Noetherian, then so is the weak Ore extension $\mathrm{R}_{w}[t, \alpha, \delta]$.

The proof can be made as similarly as for Theorem I.8.3 in [11].
Theorem 16. The algebra $w \mathfrak{s l}_{q}(2)$ is Noetherian with the basis

$$
\begin{equation*}
\mathrm{P}_{w}=\left\{E_{w}^{i} F_{w}^{j} K_{w}^{l}, E_{w}^{i} F_{w}^{j} \bar{K}_{w}^{m}, E_{w}^{i} F_{w}^{j} J_{w}\right\} \tag{51}
\end{equation*}
$$

where i, j, l are any non-negative integers, m is any positive integer.
Proof. As is well known, the two-variable polynomial algebra $k\left[K_{w}, \bar{K}_{w}\right]$ is Noetherian (see e.g. [18]). Then $A_{0}=k\left[K_{w}, \bar{K}_{w}\right] /\left(J_{w} K_{w}-K_{w}, \bar{K}_{w} J_{w}-\bar{K}_{w}\right)$ is also Noetherian. For any $i, j \geq 0$ and $a, b, c \in k$, if at least one element of a, b, c does not equal $0, a K_{w}^{i}+b \bar{K}_{w}^{j}+c J_{w}$ is not in the ideal ($J_{w} K_{w}-K_{w}, \bar{K}_{w} J_{w}-\bar{K}_{w}$) of $k\left[K_{w}, \bar{K}_{w}\right]$. So, in $A_{0}, a K_{w}^{i}+b \bar{K}_{w}^{j}+c J_{w} \neq 0$. It follows that $\left\{K_{w}^{i}, \bar{K}_{w}^{j}, J_{w}: i, j \geq 0\right\}$ is a basis of A_{0}.

Let α_{1} satisfies $\alpha_{1}\left(K_{w}\right)=q^{2} K_{w}$ and $\alpha_{1}\left(\bar{K}_{w}\right)=q^{-2} \bar{K}_{w}$. Then α_{1} can be extended to an algebra automorphism on A_{0} and $A_{1}=A_{0}\left[F_{w}, \alpha_{1}, 0\right]$ is a weak Ore extension of A_{0} from $\alpha=\alpha_{1}$ and $\delta=0$. By Corollary $14, A_{1}$ is a free left A_{0}-module with basis $\left\{F_{w}^{j}\right\}_{i \geq 0}$. Thus, A_{1} is a k-algebra with basis $\left\{K_{w}^{l} F_{w}^{j}, \bar{K}_{w}^{m} F_{w}^{j}, J_{w} F_{w}^{j}: l\right.$ and j run respectively over all non-negative integers, m runs over all positive integers $\}$. But, from the definition of the weak Ore extension, we have $K_{w}^{l} F_{w}^{j}=q^{-2 l j} F_{w}^{j} K_{w}^{l}, \bar{K}_{w}^{m} F_{w}^{j}=q^{2 m j} F_{w}^{j} \bar{K}_{w}^{m}, J_{w} F_{w}^{j}=F_{w}^{j} J_{w}$. Thus, we can conclude that $\left\{F_{w}^{j} K_{w}^{l}, F_{w}^{j} \bar{K}_{w}^{m}, F_{w}^{j} J_{w}: l\right.$ and j run respectively over all non-negative integers, m runs over all positive integers $\}$ is a basis of A_{1}.

Let α_{2} satisfies $\alpha_{2}\left(F_{w}^{j} K_{w}^{l}\right)=q^{-2 l} F_{w}^{j} K_{w}^{l}, \alpha_{2}\left(F_{w}^{j} \bar{K}_{w}^{m}\right)=q^{2 m} F_{w}^{j} \bar{K}_{w}^{m}, \alpha_{2}\left(F_{w}^{j} J_{w}\right)=F_{w}^{j} J_{w}$. Then α_{2} can be extended to an algebra automorphism on A_{1}. Let δ satisfies

$$
\begin{aligned}
\delta(1) & =\delta\left(K_{w}\right)=\delta\left(\bar{K}_{w}\right)=0, \\
\delta\left(F_{w}^{j} K_{w}^{l}\right) & =\sum_{i=0}^{j-1} F_{w}^{j-1} \frac{q^{-2 i} K_{w}-q^{2 i} \bar{K}_{w}}{q-q^{-1}} K_{w}^{l}, \\
\delta\left(F_{w}^{j} \bar{K}_{w}^{l}\right) & =\sum_{i=0}^{j-1} F_{w}^{j-1} \frac{q^{-2 i} K_{w}-q^{2 i} \bar{K}_{w}}{q-q^{-1}} \bar{K}_{w}^{l}, \\
\delta\left(F_{w}^{j} J_{w}\right) & =\sum_{i=0}^{j-1} F_{w}^{j-1} \frac{q^{-2 i} K_{w}-q^{2 i} \bar{K}_{w}}{q-q^{-1}} J_{w}
\end{aligned}
$$

for $j>0$ and $l \geq 0$. Then just as in the proof of Lemma VI.1.5 in [11], it can be shown that δ can be extended to an α_{2}-derivation of A_{1} such that $A_{2}=A_{1}\left[E_{w}, \alpha_{2}, \delta\right]$ is a weak Ore extension of A_{1}. Then in A_{2},

$$
\begin{aligned}
& E_{w} K_{w}=\alpha_{2}\left(K_{w}\right) E_{w}+\delta\left(K_{w}\right)=q^{-2} K_{w} E_{w}, \quad E_{w} \bar{K}_{w}=q^{2} \bar{K}_{w} E_{w} \\
& E_{w} F_{w}=\alpha_{2}\left(F_{w}\right) E_{w}+\delta\left(F_{w}\right)=F_{w} E_{w}+\frac{K_{w}-\bar{K}_{w}}{q-q^{-1}}
\end{aligned}
$$

From these, we conclude that $A_{2} \cong U_{q}^{w}$ as algebras. Thus, from Lemma $15, U_{q}^{w}$ is Noetherian. By Corollary $14, U_{q}^{w}$ is free with basis $\left\{E_{w}^{i}\right\}_{i \geq 0}$ as a left A_{1}-module. Thus, as a k-linear space, U_{q}^{w} has the basis $\mathrm{Q}_{w}=$ $\left\{F_{w}^{j} K_{w}^{l} E_{w}^{i}, F_{w}^{j} \bar{K}_{w}^{m} E_{w}^{i}, F_{w}^{j} J_{w} E_{w}^{i}: i, j, l\right.$ run over all non-negative integers, m runs over all positive integers $\}$. By

Lemma 9 any $x \in \mathrm{P}_{w}$ (resp. Q_{w}) can be k-linearly generated by some elements of Q_{w} (resp. P_{w}), and therefore P_{w} and Q_{w} generate the same space U_{q}^{w}.

The similar theorem can be proved for $v \mathfrak{s l}_{q}(2)$ as well.
Theorem 17. The algebra $v \operatorname{sl}_{q}(2)$ is Noetherian with the basis

$$
\begin{equation*}
\mathrm{P}_{v}=\left\{J_{v} E_{v}^{i} J_{v} F_{v}^{j} K_{v}^{l}, J_{v} E_{v}^{i} J_{v} F_{v}^{j} \bar{K}_{v}^{m}, J_{v} E_{v}^{i} J_{v} F_{v}^{j} J_{v}\right\} \tag{52}
\end{equation*}
$$

where i, j, l are any non-negative integers, m is any positive integer.

$$
q=1 \mathbf{C A S E}
$$

Let $q \in \mathbb{C}$ and $q \neq \pm 1,0$. Define $U_{q}^{w \prime}$ as the algebra generated by the five variables $E_{w}, F_{w}, K_{w}, \bar{K}_{w}, L_{v}$ with the relations (for $U_{q}^{v \prime}$ the equations (55) and (56) should be exchanged with (31) and (32) respectively):

$$
\begin{align*}
K_{w} \bar{K}_{w} & =\bar{K}_{w} K_{w}, \tag{53}\\
K_{w} \bar{K}_{w} K_{w} & =K_{w}, \quad \bar{K}_{w} K_{w} \bar{K}_{w}=\bar{K}_{w}, \tag{54}\\
K_{w} E_{w} & =q^{2} E_{w} K_{w}, \quad \bar{K}_{w} E_{w}=q^{-2} E_{w} \bar{K}_{w}, \tag{55}\\
K_{w} F_{w} & =q^{-2} F_{w} K_{w}, \quad \bar{K}_{w} F_{w}=q^{2} F_{w} \bar{K}_{w}, \tag{56}\\
{\left[L_{w}, E_{w}\right] } & =q\left(E_{w} K_{w}+\bar{K}_{w} E_{w}\right), \tag{57}\\
{\left[L_{w}, F_{w}\right] } & =-q^{-1}\left(F_{w} K_{w}+\bar{K}_{w} F_{w}\right) . \tag{58}\\
E_{w} F_{w}-F_{w} E_{w} & =L_{w}, \quad\left(q-q^{-1}\right) L_{w}=\left(K_{w}-\bar{K}_{w}\right), \tag{59}
\end{align*}
$$

For $v \mathfrak{s l}_{q}(2)$ we can similarly define the algebra $U_{q}^{v \prime}$

$$
\begin{align*}
K_{v} \bar{K}_{v} & =\bar{K}_{v} K_{v} \tag{60}\\
K_{v} \bar{K}_{v} K_{v} & =K_{v}, \quad \bar{K}_{v} K_{v} \bar{K}_{v}=\bar{K}_{v} \tag{61}\\
K_{v} E_{v} \bar{K}_{v} & =q^{2} E_{v} \tag{62}\\
K_{v} F_{v} \bar{K}_{v} & =q^{-2} F_{v} \tag{63}\\
L_{v} J_{v} E_{v}-E_{v} J_{v} L_{v} & =q\left(E_{v} K_{v}+\bar{K}_{v} E_{v}\right) \tag{64}\\
L_{v} J_{v} F_{v}-F_{v} J_{v} L_{v} & =-q^{-1}\left(F_{v} K_{v}+\bar{K}_{v} F_{v}\right) \tag{65}\\
E_{v} J_{v} F_{v}-F_{v} J_{v} E_{v} & =L_{v},\left(q-q^{-1}\right) L_{v}=\left(K_{v}-\bar{K}_{v}\right), \tag{66}
\end{align*}
$$

Note that contrary to U_{q}^{w} and U_{q}^{v}, the algebras $U_{q}^{w \prime}$ and $U_{q}^{w \prime}$ are defined for all invertible values of the parameter q, in particular for $q=1$.

Proposition 18. The algebra U_{q}^{w} is isomorphic to the algebra $U_{q}^{w \prime}$ with φ_{w} satisfying $\varphi_{w}\left(E_{w}\right)=E_{w}, \varphi_{w}\left(F_{w}\right)=$ $F_{w}, \varphi_{w}\left(K_{w}\right)=K_{w}, \varphi_{w}\left(\bar{K}_{w}\right)=\bar{K}_{w}$.

The proof is similar to that of Proposition VI.2.1 in [11] for $\mathfrak{s l}_{q}(2)$. On the otherwise, we can give the following relationship between $U_{q}^{w \prime}$ and $U(\mathfrak{s l}(2))$ whose proof is easy.

Proposition 19. For $q=1$
(i) the algebra isomorphism $U(\mathfrak{s l}(2)) \cong U_{1}^{w \prime} /\left(K_{w}-1\right)$ holds;
(ii) there exists an injective algebra morphism π from U_{1}^{w} to $U(\mathfrak{s l}(2))\left[K_{w}\right] /\left(K_{w}^{3}-K_{w}\right)$ satisfying $\pi\left(E_{w}\right)=$ $X K_{w}, \pi\left(F_{w}\right)=Y, \pi\left(K_{w}\right)=K_{w}, \pi(L)=H K_{w}$.

REMARK. In Proposition 19(ii), π is only injective, but not surjective since $K^{2} \neq 1$ in $U(\mathfrak{s l}(2))[K] /\left(K^{3}-K\right)$ and then X does not lie in the image of π.

STRUCTURE OF WEAK HOPF ALGEBRAS

Here we define weak analogs in $w \mathfrak{s l}_{q}(2)$ and $v \mathfrak{s l}_{q}(2)$ for the standard Hopf algebra structures $\Delta, \varepsilon, S-$ comultiplication, counit and antipod, which should be algebra morphisms.

For the weak quantum algebra $w \mathfrak{s l}_{q}(2)$ we define the maps $\Delta_{w}: w \mathfrak{S l}_{q}(2) \rightarrow w \mathfrak{s l}_{q}(2) \otimes w \mathfrak{s l}_{q}(2), \varepsilon_{w}: w \mathfrak{s l}_{q}(2) \rightarrow$ k and $T_{w}: w \mathfrak{s l}_{q}(2) \rightarrow w \mathfrak{s l}_{q}(2)$ satisfying respectively

$$
\begin{align*}
\Delta_{w}\left(E_{w}\right) & =1 \otimes E_{w}+E_{w} \otimes K_{w}, \Delta\left(F_{w}\right)=F_{w} \otimes 1+\bar{K}_{w} \otimes F_{w} \tag{67}\\
\Delta_{w}\left(K_{w}\right) & =K_{w} \otimes K_{w}, \Delta_{w}\left(\bar{K}_{w}\right)=\bar{K}_{w} \otimes \bar{K}_{w} \tag{68}\\
\varepsilon_{w}\left(E_{w}\right) & =\varepsilon_{w}\left(F_{w}\right)=0, \varepsilon_{w}\left(K_{w}\right)=\varepsilon_{w}\left(\bar{K}_{w}\right)=1 \tag{69}\\
T_{w}\left(E_{w}\right) & =-E_{w} \bar{K}_{w}, T_{w}\left(F_{w}\right)=-K_{w} F_{w}, T\left(K_{w}\right)=\bar{K}_{w}, T_{w}\left(\bar{K}_{w}\right)=K_{w} \tag{70}
\end{align*}
$$

The difference with the standard case (we follow notations of [11]) is in substitution K^{-1} with \bar{K}_{w} and the last line, where instead of antipod S the weak antipod T_{w} is introduced [3].

Proposition 20. The relations (67)-(70) endow $w \mathfrak{s l}_{q}(2)$ with a bialgebra structure.
Proof. It can be shown by direct calculation that, through the basis in Theorem $16, \Delta$ and ε_{w} can be extended to algebra morphisms from $w \mathfrak{s l}_{q}(2)$ to $w \mathfrak{s l}_{q}(2) \otimes w \mathfrak{s l}_{q}(2)$ and from $w \mathfrak{s l}_{q}(2)$ to k, T_{w} can be extended to an anti-algebra morphism from $w \mathfrak{s l}_{q}(2)$ to $w \mathfrak{s l}_{q}(2)$ respectively. Using (67)-(70) it can be shown that

$$
\begin{align*}
\left(\Delta_{w} \otimes \mathrm{id}\right) \Delta_{w}(X) & =\left(\mathrm{id} \otimes \Delta_{w}\right) \Delta_{w}(X) \tag{71}\\
\left(\varepsilon_{w} \otimes \mathrm{id}\right) \Delta_{w}(X) & =\left(\mathrm{id} \otimes \varepsilon_{w}\right) \Delta_{w}(X)=X \tag{72}
\end{align*}
$$

for any $X=E_{w}, F_{w}, K_{w}$ or \bar{K}_{w}. Let μ_{w} and η_{w} be the product and the unit of $w \mathfrak{s l}{ }_{q}(2)$ respectively. Hence $\left(w \mathfrak{s l}_{q}(2), \mu_{w}, \eta_{w}, \Delta_{w}, \varepsilon_{w}\right)$ becomes into a bialgebra.

Next we introduce the star product in the bialgebra $\left(w \mathfrak{s l}_{q}(2), \mu_{w}, \eta_{w}, \Delta_{w}, \varepsilon_{w}\right)$ in the similar to the standard way (see e.g. [11])

$$
\begin{equation*}
\left(A \star_{w} B\right)(X)=\mu_{w}[A \otimes B] \Delta_{w}(X) \tag{73}
\end{equation*}
$$

Proposition 21. T_{w} satisfies the regularity conditions

$$
\begin{align*}
\left(\mathrm{id} \star_{w} T_{w} \star_{w} \mathrm{id}\right)(X) & =X \tag{74}\\
\left(T_{w} \star_{w}\right. & \left.\operatorname{id} \star_{w} T_{w}\right)(X) \tag{75}
\end{align*}=T_{w}(X)=
$$

for any $X=E_{w}, F_{w}, K_{w}$ or \bar{K}_{w}. It means that T_{w} is a weak antipode
Proof. Follows from (67)-(70) by tedious calculations. For $X=K_{w}, \bar{K}_{w}$ it is easy, and so we consider $X=E_{w}$, as an example. We have

$$
\begin{aligned}
& \left(\mathrm{id} \star_{w} T_{w} \star_{w} \mathrm{id}\right)\left(E_{w}\right)=\mu_{w}\left[\left(\mathrm{id} \star_{w} T_{w}\right) \otimes \mathrm{id}\right] \Delta_{w}\left(E_{w}\right) \\
& =\mu_{w}\left[\left(\mathrm{id} \star_{w} T_{w}\right) \otimes \mathrm{id}\right]\left(1 \otimes E_{w}+E_{w} \otimes K_{w}\right) \\
& =\left(\operatorname{id} \star_{w} T_{w}\right)(1) \operatorname{id}\left(E_{w}\right)+\left(\mathrm{id} \star_{w} T_{w}\right)\left(E_{w}\right) \operatorname{id}\left(K_{w}\right) \\
& =\mu_{w}\left[\mathrm{id} \otimes T_{w}\right] \Delta_{w}(1) \operatorname{id}\left(E_{w}\right)+\mu_{w}\left[\mathrm{id} \otimes T_{w}\right] \Delta_{w}\left(E_{w}\right) \operatorname{id}\left(K_{w}\right) \\
& =\mu_{w}\left[\operatorname{id} \otimes T_{w}\right](1 \otimes 1) \operatorname{id}\left(E_{w}\right)+\mu_{w}\left[\operatorname{id} \otimes T_{w}\right]\left(1 \otimes E_{w}+E_{w} \otimes K_{w}\right) \operatorname{id}\left(K_{w}\right) \\
& =T_{w}(1) \operatorname{id}\left(E_{w}\right)+\operatorname{id}(1) T_{w}\left(E_{w}\right) \operatorname{id}\left(K_{w}\right)+\operatorname{id}\left(E_{w}\right) T_{w}\left(K_{w}\right) \operatorname{id}\left(K_{w}\right) \\
& =E_{w}-E_{w} \bar{K}_{w} \cdot K_{w}+E_{w} \cdot \bar{K}_{w} \cdot K_{w}=E_{w}=\operatorname{id}\left(E_{w}\right) .
\end{aligned}
$$

By analogy, for (75) and $X=E_{w}$ we obtain

$$
\begin{aligned}
& \left(T_{w} \star_{w} \mathrm{id} \star_{w} T_{w}\right)\left(E_{w}\right)=\mu_{w}\left[\left(T_{w} \star_{w} \mathrm{id}\right) \otimes T_{w}\right] \Delta_{w}\left(E_{w}\right) \\
& =\mu_{w}\left[\left(T_{w} \star_{w} \mathrm{id}\right) \otimes T_{w}\right]\left(1 \otimes E_{w}+E_{w} \otimes K_{w}\right) \\
& =\left(T_{w} \star_{w} \mathrm{id}\right)(1) T_{w}\left(E_{w}\right)+\left(T_{w} \star_{w} \mathrm{id}\right)\left(E_{w}\right) T_{w}\left(K_{w}\right) \\
& =\mu_{w}\left[T_{w} \otimes \mathrm{id}\right](1 \otimes 1) T_{w}\left(1 E_{w} 1\right)+\mu_{w}\left[T_{w} \otimes \mathrm{id}\right]\left(1 \otimes E_{w}+E_{w} \otimes K_{w}\right) T_{w}\left(K_{w}\right) \\
& =T_{w}(1) T_{w}\left(E_{w}\right)+T_{w}(1) \mathrm{id}\left(E_{w}\right) T_{w}\left(K_{w}\right)+T_{w}\left(E_{w}\right) \operatorname{id}\left(K_{w}\right) T_{w}\left(K_{w}\right) \\
& =-E_{w} \bar{K}_{w}+E_{w} \bar{K}_{w}-E_{w} \bar{K}_{w} K_{w} \bar{K}_{w}=-E_{w} \bar{K}_{w}=T_{w}\left(E_{w}\right) .
\end{aligned}
$$

Corollary 22. The bialgebra $w \mathfrak{s l}_{q}(2)$ is a weak Hopf algebra with the weak antipode T_{w}.

We can get an inner endomorphism as follows.
Proposition 23. T_{w}^{2} is an inner endomorphism of the algebra $w \mathfrak{s l}_{q}(2)$ satisfying for any $X \in w \mathfrak{s l}_{q}(2)$

$$
\begin{equation*}
T_{w}^{2}(X)=K_{w} X \bar{K}_{w} \tag{76}
\end{equation*}
$$

especially

$$
\begin{equation*}
T_{w}^{2}\left(K_{w}\right)=\operatorname{id}\left(K_{w}\right), \quad T_{w}^{2}\left(\bar{K}_{w}\right)=\operatorname{id}\left(\bar{K}_{w}\right) . \tag{77}
\end{equation*}
$$

Proof. Follows from (70).
Assume that with the operations $\mu_{w}, \eta_{w}, \Delta_{w}, \varepsilon_{w}$ the algebra $w \mathfrak{s l}_{q}(2)$ would possess an antipode S so as to become a Hopf algebra, which should satisfy $\left(S \star_{w}\right.$ id $)\left(K_{w}\right)=\eta_{w} \varepsilon_{w}\left(K_{w}\right)$, and so it should follow that $S\left(K_{w}\right) K_{w}=1$. But, it is not possible to hold since $S\left(K_{w}\right)$ can be written as a linearly sum of the basis in Theorem 16. It implies that $w \mathfrak{s l}_{q}(2)$ is impossible to become a Hopf algebra about the operations above.

Corollary 24. $w \mathfrak{s l}_{q}(2)$ is an example for a non-commutative and non-cocommutative weak Hopf algebra which is not a Hopf algebra.

In order to become $U_{q}^{w \prime}$ into a weak Hopf algebra, it is enough to define $\Delta_{w}\left(E_{w}\right), \Delta_{w}\left(F_{w}\right), \Delta_{w}\left(K_{w}\right)$, $\Delta_{w}\left(\bar{K}_{w}\right), \varepsilon_{w}\left(E_{w}\right), \varepsilon_{w}\left(F_{w}\right), \varepsilon_{w}\left(K_{w}\right), \varepsilon_{w}\left(\bar{K}_{w}\right), T_{w}\left(E_{w}\right), T_{w}\left(F_{w}\right), T_{w}\left(K_{w}\right), T_{w}\left(\bar{K}_{w}\right)$ just as in $w \mathfrak{s l} l_{q}(2)$ and define

$$
\Delta_{w}\left(L_{w}\right)=\frac{1}{q-q^{-1}}\left(K_{w} \otimes K_{w}-\bar{K}_{w} \otimes \bar{K}_{w}\right), \varepsilon_{w}\left(L_{w}\right)=0, T_{w}\left(L_{w}\right)=\frac{\bar{K}_{w}-K_{w}}{q-q^{-1}}
$$

From Proposition 18 we conclude that $w \mathfrak{s l}_{q}(2)$ is isomorphic to the algebra $U_{q}^{w \prime}$ with φ_{w}. Moreover, one can see easily that φ_{w} is an isomorphism of weak Hopf algebras from $w \mathfrak{s l}_{q}(2)$ to $U_{q}^{w^{q}}$.

For J-weak quantum algebra $v \mathfrak{s l}_{q}(2)$ we suppose that some additional J_{v} should appear even in the definition of comultiplication and antipod. A thorough analysis gives the following nontrivial definitions

$$
\begin{align*}
\Delta_{v}\left(E_{v}\right) & =J_{v} \otimes J_{v} E_{v} J_{v}+J_{v} E_{v} J_{v} \otimes K_{v} \tag{78}\\
\Delta_{v}\left(F_{v}\right) & =J_{v} F_{v} J_{v} \otimes J_{v}+\bar{K}_{v} \otimes J_{v} F_{v} J_{v} \tag{79}\\
\Delta_{v}\left(K_{v}\right) & =K_{v} \otimes K_{v}, \Delta_{v}\left(\bar{K}_{v}\right)=\bar{K}_{v} \otimes \bar{K}_{v} \tag{80}\\
\varepsilon_{v}\left(E_{v}\right) & =\varepsilon_{v}\left(F_{v}\right)=0, \quad \varepsilon_{v}\left(K_{v}\right)=\varepsilon_{v}\left(\bar{K}_{v}\right)=1, \tag{81}\\
T_{v}\left(E_{v}\right) & =-J_{v} E_{v} \bar{K}_{v}, \quad T_{v}\left(F_{v}\right)=-K_{v} F_{v} J_{v} \tag{82}\\
T_{v}\left(K_{v}\right) & =\bar{K}_{v}, \quad T_{v}\left(\bar{K}_{v}\right)=K_{v} \tag{83}
\end{align*}
$$

Note that from (80) it follows that

$$
\begin{equation*}
\Delta_{v}\left(J_{v}\right)=J_{v} \otimes J_{v}, \tag{84}
\end{equation*}
$$

and so J_{v} is a group-like element.
Proposition 25. The relations (78)-(83) endow $v \mathfrak{s l}_{q}(2)$ with a bialgebra structure.
Proof. First it is easy to check that Δ_{v} defines a morphism of algebras from $v \mathfrak{s l}_{q}(2) \otimes v \mathfrak{s l}_{q}(2)$ into $v \mathfrak{s l}_{q}(2)$. Then it can be shown that $\Delta_{v}(X)$ is coassociative

$$
\begin{equation*}
\left(\Delta_{v} \otimes \mathrm{id}\right) \Delta_{v}(X)=\left(\mathrm{id} \otimes \Delta_{v}\right) \Delta_{v}(X) \tag{85}
\end{equation*}
$$

Proof that the counit ε defines a morphism of algebras from $v \mathfrak{s l}_{q}(2)$ onto k is straithforward. Moreover, it can be shown that $\left(\varepsilon_{v} \otimes \mathrm{id}\right) \Delta_{v}(X)=\left(\mathrm{id} \otimes \varepsilon_{v}\right) \Delta_{v}(X)=X$ for $X=E_{v}, F_{v}, K_{v}, \bar{K}_{v}$. Further it can be checked that T_{v} defines an anti-morphism of algebras from $v \mathfrak{s l}_{q}(2)$ to $v \mathfrak{s}_{q}^{o p}(2)$. Therefore, we conclude that $\left(v \mathfrak{s l}_{q}(2), \mu_{v}, \eta_{v}, \Delta_{v}, T_{v}\right)$ has a structure of a bialgebra.

The following property of T_{v} is crucial for understanding the structure of the bialgebra $\left(v \operatorname{sl}_{q}(2), \mu_{v}, \eta_{v}, \Delta_{v}, T_{v}\right)$.
Proposition 26. For any $X \in v \operatorname{sl}_{q}(2)$ we have (cf. (76)-(77))

$$
\begin{align*}
T_{v}^{2}\left(K_{v}\right) & =\mathbf{e}_{v}\left(K_{v}\right), T_{v}^{2}\left(\bar{K}_{v}\right)=\mathbf{e}_{v}\left(\bar{K}_{v}\right), \tag{86}\\
T_{v}^{2}\left(E_{v}\right) & =K_{v} E_{v} \bar{K}_{v}, T_{v}^{2}\left(F_{v}\right)=K_{v} F_{v} \bar{K}_{v} \tag{87}
\end{align*}
$$

where $\mathbf{e}_{v}(X)$ is defined in (10).

Proof. Follows from (7) and (82)-(83). As an example for E_{v} we have $T_{v}^{2}\left(E_{v}\right)=T_{v}\left(-J_{v} E_{v} \bar{K}_{v}\right)=$ $-T_{v}\left(\bar{K}_{v}\right) T_{v}\left(E_{v}\right) T_{v}\left(J_{v}\right)=K_{v}\left(J_{v} E_{v} \bar{K}_{v}\right) J_{v}=K_{v} E_{v} \bar{K}_{v}$.

The star product in $\left(v \mathfrak{s l}_{q}(2), \mu_{v}, \eta_{v}, \Delta_{v}, T_{v}\right)$ has the form

$$
\begin{equation*}
\left(A \star_{v} B\right)(X)=\mu_{v}[A \otimes B] \Delta_{v}(X) \tag{88}
\end{equation*}
$$

Proposition 27. T_{v} satisfies the regularity conditions

$$
\begin{align*}
& \left(\mathbf{e}_{v} \star_{v} T_{v} \star_{v} \mathbf{e}_{v}\right)(X)=\mathbf{e}_{v}(X) \tag{89}\\
& \left(T_{v} \star_{v} \mathbf{e}_{v} \star_{v} T_{v}\right)(X)=T_{v}(X) \tag{90}
\end{align*}
$$

for any $X=E_{v}, F_{v}, K_{v}$ or \bar{K}_{v}.
Proof. Follows from (78)-(83) and (88). For $X=K_{v}, \bar{K}_{v}$ it is easy, and so we consider $X=E_{v}$, as an example. We have

$$
\begin{aligned}
& \left(\mathbf{e}_{v} \star_{v} T_{v} \star_{v} \mathbf{e}_{v}\right)\left(E_{v}\right)=\mu_{v}\left[\left(\mathbf{e}_{v} \star_{v} T_{v}\right) \otimes \mathbf{e}_{v}\right] \Delta_{v}\left(E_{v}\right) \\
& =\mu_{v}\left[\left(\mathbf{e}_{v} \star_{v} T_{v}\right) \otimes \mathbf{e}_{v}\right]\left(J_{v} \otimes J_{v} E_{v} J_{v}+J_{v} E_{v} J_{v} \otimes K_{v}\right) \\
& =\left(\mathbf{e}_{v} \star_{v} T_{v}\right)\left(J_{v}\right) \mathbf{e}_{v}\left(J_{v} E_{v} J_{v}\right)+\left(\mathbf{e}_{v} \star_{v} T_{v}\right)\left(J_{v} E_{v} J_{v}\right) \mathbf{e}_{v}\left(K_{v}\right) \\
& =\mu_{v}\left[\mathbf{e}_{v} \otimes T_{v}\right] \Delta_{v}\left(J_{v}\right) \mathbf{e}_{v}\left(J_{v} E_{v} J_{v}\right)+\mu_{v}\left[\mathbf{e}_{v} \otimes T_{v}\right] \Delta_{v}\left(E_{v}\right) \mathbf{e}_{v}\left(K_{v}\right) \\
& =\mu_{v}\left[\mathbf{e}_{v} \otimes T_{v}\right]\left(J_{v} \otimes J_{v}\right) \mathbf{e}_{v}\left(E_{v}\right)+\mu_{v}\left[\mathbf{e}_{v} \otimes T_{v}\right]\left(J_{v} \otimes J_{v} E_{v} J_{v}+J_{v} E_{v} J_{v} \otimes K_{v}\right) \mathbf{e}_{v}\left(K_{v}\right) \\
& =\mathbf{e}_{v}\left(J_{v}\right) T_{v}\left(J_{v}\right) \mathbf{e}_{v}\left(E_{v}\right)+\mathbf{e}_{v}\left(J_{v}\right) T_{v}\left(J_{v} E_{v} J_{v}\right) \mathbf{e}_{v}\left(K_{v}\right)+\mathbf{e}_{v}\left(E_{v}\right) T_{v}\left(K_{v}\right) \mathbf{e}_{v}\left(K_{v}\right) \\
& =J_{v} \cdot J_{v} \cdot J_{v} E_{v} J_{v}-J_{v} \cdot J_{v} J_{v} E_{v} \bar{K}_{v} \cdot J_{v} K_{v} J_{v}+J_{v} E_{v} J_{v} \cdot \bar{K}_{v} \cdot J_{v} K_{v} J_{v} \\
& =J_{v} E_{v} J_{v}=\mathbf{e}_{v}\left(E_{v}\right) .
\end{aligned}
$$

By analogy, for (90) and $X=E_{v}$ we obtain

$$
\begin{aligned}
& \left(T_{v} \star_{v} \mathbf{e}_{v} \star_{v} T_{v}\right)\left(E_{v}\right)=\mu_{v}\left[\left(T_{v} \star_{v} \mathbf{e}_{v}\right) \otimes T_{v}\right] \Delta_{v}\left(E_{v}\right) \\
& =\mu_{v}\left[\left(T_{v} \star_{v} \mathbf{e}_{v}\right) \otimes T_{v}\right]\left(J_{v} \otimes J_{v} E_{v} J_{v}+J_{v} E_{v} J_{v} \otimes K_{v}\right) \\
& =\left(T_{v} \star_{v} \mathbf{e}_{v}\right)\left(J_{v}\right) T_{v}\left(J_{v} E_{v} J_{v}\right)+\left(T_{v} \star_{v} \mathbf{e}_{v}\right)\left(E_{v}\right) T_{v}\left(K_{v}\right) \\
& =\mu_{v}\left[T_{v} \otimes \mathbf{e}_{v}\right]\left(J_{v} \otimes J_{v}\right) T_{v}\left(J_{v} E_{v} J_{v}\right) \\
& +\mu_{v}\left[T_{v} \otimes \mathbf{e}_{v}\right]\left(J_{v} \otimes J_{v} E_{v} J_{v}+J_{v} E_{v} J_{v} \otimes K_{v}\right) T_{v}\left(K_{v}\right) \\
& =T_{v}\left(J_{v}\right) \mathbf{e}_{v}\left(J_{v}\right) T_{v}\left(J_{v} E_{v} J_{v}\right)+T_{v}\left(J_{v}\right) \mathbf{e}_{v}\left(J_{v} E_{v} J_{v}\right) T_{v}\left(K_{v}\right) \\
& +T_{v}\left(J_{v} E_{v} J_{v}\right) \mathbf{e}_{v}\left(K_{v}\right) T_{v}\left(K_{v}\right)=-J_{v} \cdot J_{v} \cdot J_{v}\left(J_{v} E_{v} \bar{K}_{v}\right) J_{v}+J_{v} \cdot J_{v} E_{v} J_{v} \cdot \bar{K}_{v} \\
& -J_{v}\left(J_{v} E_{v} \bar{K}_{v}\right) J_{v} \cdot J_{v} K_{v} J_{v} \cdot \bar{K}_{v}=-J_{v} E_{v} \bar{K}_{v}=T_{v}\left(E_{v}\right)
\end{aligned}
$$

From (89)-(90) it follows that $v \mathfrak{s l}_{q}(2)$ is not a weak Hopf algebra in the definition of [3]. So we will call it J-weak Hopf algebra and T_{v} a J-weak antipode. As it is seen from (74)-(75) and (89)-(90) the difference between them is in the exchange id with \mathbf{e}_{v}.
$R E M A R K$. The variable \mathbf{e}_{v} can be treated as $n=2$ example of the "tower identity" $e_{\alpha \beta}^{(n)}$ introduced for semisupermanifolds in $[19,13]$ or the "obstructor" $\mathbf{e}_{X}^{(n)}$ for general mappings, categories and Yang-Baxter equation in $[14,15,20]$.

Comparing (67)-(70) with (78)-(83) we conclude that the connection of $\Delta_{w}, T_{w}, \varepsilon_{w}$ and $\Delta_{v}, T_{v}, \varepsilon_{v}$ can be written in the following way

$$
\begin{align*}
\Delta_{v}(X) & =\Delta_{w}\left(\mathbf{e}_{v}(X)\right), \tag{91}\\
T_{v}(X) & =T_{w}\left(\mathbf{e}_{v}(X)\right), \tag{92}\\
\varepsilon_{v}(X) & =\varepsilon_{w}\left(\mathbf{e}_{v}(X)\right), \tag{93}
\end{align*}
$$

which means that additionally to the partially algebra morphism (42) there exists a partial coalgebra morphism which is described by (91)-(93).

GROUP-LIKE ELEMENTS

Now, we discuss the set $G\left(w \mathfrak{s l}_{q}(2)\right)$ of all group-like elements of $w \mathfrak{s l}_{q}(2)$. As is well-known (see e.g. [21]) a semigroup S is called an inverse semigroup if for every $x \in S$, there exists a unique $y \in S$ such that $x y x=x$ and $y x y=y$, and a monoid is a semigroup with identity. We will show the following
Proposition 28. The set of all group-like elements $G\left(w \mathfrak{s l}_{q}(2)\right)=\left\{J^{(i j)}=K_{w}^{i} \bar{K}_{w}^{j}: i, j\right.$ run over all non-negative integers $\}$, which forms a regular monoid under the multiplication of $w \mathfrak{s l}_{q}(2)$.

Proof. Suppose $x \in w \mathfrak{s l}_{q}(2)$ is a group-like element, i.e. $\Delta_{w}(x)=x \otimes x$. By Theorem 16, x can be written as $x=\sum_{i, j, l, m} \alpha_{i j l} E_{w}^{i} F_{w}^{j} K_{w}^{l}+\beta_{i j m} E_{w}^{i} F_{w}^{j} \bar{K}_{w}^{m}+\gamma_{i j} E_{w}^{i} F_{w}^{j} J_{w}$. Here and in the sequel, every α, β and γ with subscripts is in the field k and does not equal zero. Then

$$
\begin{aligned}
\Delta_{w}(x) & =\sum_{i, j, l, m}\left[\alpha_{i j l} \Delta_{w}\left(E_{w}^{i} F_{w}^{j} K_{w}^{l}\right)+\Delta_{w}\left(\beta_{i j m} E_{w}^{i} F_{w}^{j} \bar{K}_{w}^{m}\right)+\Delta_{w}\left(\gamma_{i j} E_{w}^{i} F_{w}^{j} J_{w}\right)\right] \\
& =\sum_{i, j, l, m}\left[\alpha_{i j l}\left(1 \otimes E_{w}+E_{w} \otimes K_{w}\right)^{i}\left(F_{w} \otimes 1+\bar{K}_{w} \otimes F_{w}\right)^{j}\left(K_{w} \otimes K_{w}\right)^{l}\right. \\
& +\beta_{i j m}\left(1 \otimes E_{w}+E_{w} \otimes K_{w}\right)^{i}\left(F_{w} \otimes 1+\bar{K}_{w} \otimes F_{w}\right)^{j}\left(\bar{K}_{w} \otimes \bar{K}_{w}\right)^{m} \\
& \left.+\gamma_{i j}\left(1 \otimes E_{w}+E_{w} \otimes K_{w}\right)^{i}\left(F_{w} \otimes 1+\bar{K}_{w} \otimes F_{w}\right)^{j} J_{w}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
x \otimes x & =\left(\sum_{i, j, l, m} \alpha_{i j l} E_{w}^{i} F_{w}^{j} K_{w}^{l}+\beta_{i j m} E_{w}^{i} F_{w}^{j} \bar{K}_{w}^{m}+\gamma_{i j} E_{w}^{i} F_{w}^{j} J_{w}\right) \\
& \otimes\left(\sum_{i, j, l, m} \alpha_{i j l} E_{w}^{i} F_{w}^{j} K_{w}^{l}+\beta_{i j m} E_{w}^{i} F_{w}^{j} \bar{K}_{w}^{m}+\gamma_{i j} E_{w}^{i} F_{w}^{j} J_{w}\right)
\end{aligned}
$$

It is seen that if $i \neq 0$ or $j \neq 0, \Delta_{w}(x)$ is impossible to equal $x \otimes x$. So, $i=0$ and $j=0$. We get $x=\sum_{l, m} \alpha_{l} K_{w}^{l}+\beta_{m} \bar{K}_{w}^{m}+J_{w}$. Then

$$
\begin{aligned}
\Delta_{w}(x) & =\sum_{l, m}\left[\alpha_{l} K_{w}^{l} \otimes K_{w}^{l}+\beta_{m} \bar{K}_{w}^{m} \otimes \bar{K}_{w}^{m}+J_{w} \otimes J_{w}\right] \\
x \otimes x & =\sum_{l, l^{\prime}, m, m^{\prime}}\left[\alpha_{l} \alpha_{l^{\prime}} K_{w}^{l} \otimes K_{w}^{l^{\prime}}+\alpha_{l} \beta_{m^{\prime}} K_{w}^{l} \otimes \bar{K}_{w}^{m^{\prime}}+\alpha_{l} K_{w}^{l} \otimes J_{w}\right. \\
& +\alpha_{l^{\prime}} \beta_{m} \bar{K}_{w}^{m} \otimes K_{w}^{l^{\prime}}+\beta_{m} \beta_{m^{\prime}} \bar{K}_{w}^{m} \otimes \bar{K}_{w}^{m^{\prime}}+\beta_{m} \bar{K}_{w}^{m} \otimes J_{w} \\
& \left.+\alpha_{l^{\prime}} J_{w} \otimes K_{w}^{l^{\prime}}+\beta_{m^{\prime}} J_{w} \otimes \bar{K}_{w}^{m^{\prime}}+J_{w} \otimes J_{w}\right]
\end{aligned}
$$

If there exists $l \neq l^{\prime}$, then $x \otimes x$ possesses the monomial $K_{w}^{l} \otimes K_{w}^{l^{\prime}}$, which does not appear in $\Delta_{w}(x)$. It contradicts to $\Delta_{w}(x)=x \otimes x$. Hence we have only a unique l. Similarly, there exists a unique m. Thus $x=\alpha_{l} K_{w}^{l}+\beta_{m} \bar{K}_{w}^{m}+J_{w}$. Moreover, it is easy to see that $\alpha_{l} K_{w}^{l}, \beta_{m} \bar{K}_{w}^{m}$ and J_{w} can not appear simultaneously in the expression of x. Therefore, we conclude that $x=\alpha_{l} K_{w}^{l}, \beta_{m} \bar{K}_{w}^{m}$ or J_{w} (no summation) and we have

$$
\begin{equation*}
\Delta_{w}\left(J_{w}^{(i j)}\right)=J_{w}^{(i j)} \otimes J_{w}^{(i j)} \tag{94}
\end{equation*}
$$

It follows that $G\left(w \mathfrak{s l}_{q}(2)\right)=\left\{J_{w}^{(i j)}=K_{w}^{i} \bar{K}_{w}^{j}: i, j\right.$ run over all non-negative integers $\}$.
For any $J^{(i j)}=K_{w}^{i} \bar{K}_{w}^{j} \in G\left(w \mathfrak{s l}_{q}(2)\right)$, one can find $J^{(j i)}=K_{w}^{j} \bar{K}_{w}^{i} \in G\left(w \mathfrak{s l}_{q}(2)\right)$ such that the regularity (17) takes place $J_{w}^{(i j)} J_{w}^{(j i)} J_{w}^{(i j)}=J_{w}^{(i j)}$, which means that $G\left(w \mathfrak{s l} l_{q}(2)\right)$ forms a regular monoid under the multiplication of $w \mathfrak{s l}_{q}(2)$.

For $v \operatorname{sl}_{q}(2)$ we have a similar statement.
Proposition 29. The set of all group-like elements $G\left(v \operatorname{sl}_{q}(2)\right)=\left\{J_{v}^{(i j)}=K_{v}^{i} \bar{K}_{v}^{j}: i, j\right.$ run over all non-negative integers $\}$, which forms a regular monoid under the multiplication of $v \mathfrak{s l}_{q}(2)$.
Proof. Suppose $x \in v \operatorname{sl}_{q}(2)$ is a group-like element, i.e. $\Delta_{v}(x)=x \otimes x$. By Theorem 17, x can be written as $x=\sum_{i, j, l, m} \alpha_{i j l} J_{v} E_{v}^{i} J_{v} F_{v}^{j} K_{v}^{l}+\beta_{i j m} J_{v} E_{v}^{i} J_{v} F_{v}^{j} \bar{K}_{v}^{m}+\gamma_{i j} J_{v} E_{v}^{i} J_{v} F_{v}^{j} J_{v}$. Here and in the sequel, every α, β and γ
with subscripts is in the field k and does not equal zero. Then

$$
\begin{aligned}
\Delta_{v}(x) & =\sum_{i, j, l, m}\left[\alpha_{i j l} \Delta_{v}\left(J_{v} E_{v}^{i} J_{v} F_{v}^{j} K_{v}^{l}\right)\right. \\
& \left.+\Delta_{v}\left(\beta_{i j m} J_{v} E_{v}^{i} J_{v} F_{v}^{j} \bar{K}_{v}^{m}\right)+\Delta_{v}\left(\gamma_{i j} J_{v} E_{v}^{i} J_{v} F_{v}^{j} J_{v}\right)\right] \\
& =\sum_{i, j, l, m}\left[\alpha_{i j l}\left(J_{v} \otimes J_{v}\right)\left(J_{v} \otimes J_{v} E_{v} J_{v}+J_{v} E_{v} J_{v} \otimes K_{v}\right)^{i}\right. \\
& \times\left(J_{v} \otimes J_{v}\right)\left(J_{v} F_{v} J_{v} \otimes J_{v}+\bar{K}_{v} \otimes J_{v} F_{v} J_{v}\right)^{j}\left(K_{v} \otimes K_{v}\right)^{l} \\
& +\beta_{i j m}\left(J_{v} \otimes J_{v}\right)\left(J_{v} \otimes J_{v} E_{v} J_{v}+J_{v} E_{v} J_{v} \otimes K_{v}\right)^{i} \\
& \times\left(J_{v} \otimes J_{v}\right)\left(J_{v} F_{v} J_{v} \otimes J_{v}+\bar{K}_{v} \otimes J_{v} F_{v} J_{v}\right)^{j}\left(\bar{K}_{v} \otimes \bar{K}_{v}\right)^{m} \\
& +\gamma_{i j}\left(J_{v} \otimes J_{v}\right)\left(J_{v} \otimes J_{v} E_{v} J_{v}+J_{v} E_{v} J_{v} \otimes K_{v}\right)^{i} \\
& \left.\times\left(J_{v} \otimes J_{v}\right)\left(J_{v} F_{v} J_{v} \otimes J_{v}+\bar{K}_{v} \otimes J_{v} F_{v} J_{v}\right)^{j} J_{v}\right] ;
\end{aligned}
$$

and

$$
\begin{aligned}
x \otimes x & =\left(\sum_{i, j, l, m} \alpha_{i j l} J_{v} E_{v}^{i} J_{v} F_{v}^{j} K_{v}^{l}+\beta_{i j m} J_{v} E_{v}^{i} J_{v} F_{v}^{j} \bar{K}_{v}^{m}+\gamma_{i j} J_{v} E_{v}^{i} J_{v} F_{v}^{j} J_{v}\right) \\
& \otimes\left(\sum_{i, j, l, m} \alpha_{i j l} J_{v} E_{v}^{i} J_{v} F_{v}^{j} K_{v}^{l}+\beta_{i j m} J_{v} E_{v}^{i} J_{v} F_{v}^{j} \bar{K}_{v}^{m}+\gamma_{i j} J_{v} E_{v}^{i} J_{v} F_{v}^{j} J_{v}\right) .
\end{aligned}
$$

It is seen that if $i \neq 0$ or $j \neq 0, \Delta_{v}(x)$ is impossible to equal $x \otimes x$. So, $i=0$ and $j=0$. We get $x=\sum_{l, m} \alpha_{l} K_{v}^{l}+\beta_{m} \bar{K}_{v}^{m}+J_{v}$. Then

$$
\begin{aligned}
\Delta_{v}(x) & =\sum_{l, m}\left[\alpha_{l} K_{v}^{l} \otimes K_{v}^{l}+\beta_{m} \bar{K}_{v}^{m} \otimes \bar{K}_{v}^{m}+J_{v} \otimes J_{v}\right] \\
x \otimes x & =\sum_{l, l^{\prime}, m, m^{\prime}}\left[\alpha_{l} \alpha_{l^{\prime}} K_{v}^{l} \otimes K_{v}^{l^{\prime}}+\alpha_{l} \beta_{m^{\prime}} K_{v}^{l} \otimes \bar{K}_{v}^{m^{\prime}}+\alpha_{l} K_{v}^{l} \otimes J_{v}\right. \\
& +\alpha_{l^{\prime}} \beta_{m} \bar{K}_{v}^{m} \otimes K_{v}^{l^{\prime}}+\beta_{m} \beta_{m^{\prime}} \bar{K}_{v}^{m} \otimes \bar{K}_{v}^{m^{\prime}}+\beta_{m} \bar{K}_{v}^{m} \otimes J_{v} \\
& \left.+\alpha_{l^{\prime}} J_{v} \otimes K_{v}^{l^{\prime}}+\beta_{m^{\prime}} J_{v} \otimes \bar{K}_{v}^{m^{\prime}}+J_{v} \otimes J_{v}\right] .
\end{aligned}
$$

If there exists $l \neq l^{\prime}$, then $x \otimes x$ possesses the monomial $K_{v}^{l} \otimes K_{v}^{l^{\prime}}$, which does not appear in $\Delta_{v}(x)$. It contradicts to $\Delta_{v}(x)=x \otimes x$. Hence we have only a unique l. Similarly, there exists a unique m. Thus $x=\alpha_{l} K_{v}^{l}+\beta_{m} \bar{K}_{v}^{m}+J_{v}$ Moreover, it is easy to see that $\alpha_{l} K_{v}^{l}, \beta_{m} \bar{K}_{v}^{m}$ and J_{v} can not appear simultaneously in the expression of x. Therefore, we conclude that $x=\alpha_{l} K_{v}^{l}, \beta_{m} \bar{K}_{v}^{m}$ or J_{v} (no summation) and we have

$$
\begin{equation*}
\Delta_{v}\left(J_{v}^{(i j)}\right)=J_{v}^{(i j)} \otimes J_{v}^{(i j)} \tag{95}
\end{equation*}
$$

It follows that $G\left(v \operatorname{sl}_{q}(2)\right)=\left\{J_{v}^{(i j)}=K_{v}^{i} \bar{K}_{v}^{j}: i, j\right.$ run over all non-negative integers $\}$.
For any $J_{v}^{(i j)}=K_{v}^{i} \bar{K}_{v}^{j} \in G\left(v \mathfrak{s l}_{q}(2)\right)$, one can find $J_{v}^{(j i)}=K_{v}^{j} \bar{K}_{v}^{i} \in G\left(v \mathfrak{s l}_{q}(2)\right)$ such that the regularity (17) takes place $J_{v}^{(i j)} J_{v}^{(j i)} J_{v}^{(i j)}=J_{v}^{(i j)}$, which means that $G\left(v \mathfrak{s l}_{q}(2)\right)$ forms a regular monoid under the multiplication of $v \mathfrak{s l}_{q}(2)$.

These results show that $w \mathfrak{s l}_{q}(2)$ and $v \mathfrak{s l}_{q}(2)$ are examples of a weak Hopf algebra whose monoid of all group-like elements is a regular monoid. It incarnates further the corresponding relationship between weak Hopf algebras and regular monoids [7].

REGULAR QUASI- R-MATRIX

From Proposition 4 we have seen that $w \mathfrak{s l}_{q}(2) /\left(J_{w}-1\right)=\mathfrak{s l}_{q}(2)$. Now, we give another relationship between $w \mathfrak{s l}_{q}(2)$ and $\mathfrak{s l}_{q}(2)$ so as to construct a non-invertible universal R^{w}-matrix from $w \mathfrak{s l}_{q}(2)$.

Theorem 30. $w_{s l}(2)$ possesses an ideal W and a sub-algebra Y satisfying $w \mathfrak{s l}_{q}(2)=Y \oplus W$ and $W \cong \mathfrak{s l}_{q}(2)$ as Hopf algebras.
Proof. Let W be the linear sub-space generated by $\left\{E_{w}^{i} F_{w}^{j} K_{w}^{l}, E_{w}^{i} F_{w}^{j} \bar{K}_{w}^{m}, E_{w}^{i} F_{w}^{j} J_{w}\right.$: for all $i \geq 0, j \geq 0, l>0$ and $m>0\}$, and Y is the linear sub-space generated by $\left\{E_{w}^{i} F_{w}^{j}: i \geq 0, j \geq 0\right\}$. It is easy to see that $w \mathfrak{s l}_{q}(2)=Y \oplus W$;
$w \mathfrak{s l}_{q}(2) W w \mathfrak{s l}_{q}(2) \subseteq W$, thus, W is an ideal; and, Y is a sub-algebra of $w \mathfrak{s l}_{q}(2)$. Note that the identity of W is J_{w}. Moreover, W is a Hopf algebra with the unit J_{w}, the comultiplication Δ_{w}^{W} satisfying

$$
\begin{align*}
\Delta_{w}^{W}\left(E_{w}\right) & =J_{w} \otimes E_{w}+E_{w} \otimes K_{w} \tag{96}\\
\Delta_{w}^{W}\left(F_{w}\right) & =F_{w} \otimes J_{w}+\bar{K}_{w} \otimes F_{w} \tag{97}\\
\Delta_{w}^{W}\left(K_{w}\right) & =K_{w} \otimes K_{w}, \quad \Delta_{w}^{W}\left(\bar{K}_{w}\right)=\bar{K}_{w} \otimes \bar{K}_{w} \tag{98}
\end{align*}
$$

and the same counit, multiplication and antipode as in $w \mathfrak{s l}_{q}(2)$. Let ρ be the algebra morphism from $\mathfrak{s l}_{q}(2)$ to W satisfying $\rho(E)=E_{w}, \rho(F)=F_{w}, \rho(K)=K_{w}$ and $\rho\left(K^{-1}\right)=\bar{K}_{w}$. Then ρ is, in fact, a Hopf algebra isomorphism since $\left\{E_{w}^{i} F_{w}^{j} K_{w}^{l}, E_{w}^{i} F_{w}^{j} \bar{K}_{w}^{m}, E_{w}^{i} F_{w}^{j} J_{w}\right.$: for all $i \geq 0, j \geq 0, l>0$ and $\left.m>0\right\}$ is a basis of W by Theorem 16.

Let us assume here that q is a root of unity of order d in the field k where d is an odd integer and $d>1$.
Set $I=\left(E_{w}^{d}, F_{w}^{d}, K_{w}^{d}-J_{w}\right)$ the two-sided ideal of U_{q}^{w} generated by $E_{w}^{d}, F_{w}^{d}, K_{w}^{d}-J_{w}$. Define the algebra $\bar{U}_{q}^{w}=U_{q}^{w} / I$.
REMARK. Note that $\bar{K}_{w}^{d}=J_{w}$ in $\bar{U}_{q}^{w}=U_{q}^{w} / I$ since $K_{w}^{d}=J_{w}$.
It is easy to prove that I is also a coideal of U_{q} and $T_{w}(I) \subseteq I$. Then I is a weak Hopf ideal. It follows that \bar{U}_{q}^{w} has a unique weak Hopf algebra structure such that the natural morphism is a weak Hopf algebra morphism, so the comultiplication, the counit and the weak antipode of \bar{U}_{q}^{w} are determined by the same formulas with U_{q}^{w}. We will show that \bar{U}_{q}^{w} is a quasi-braided weak Hopf algebra. As a generalization of a braided bialgebra and R-matrix we have the following definitions [3].

Definition 31. Let in a k-linear space H there are k-linear maps $\mu: H \otimes H \rightarrow H, \eta: k \rightarrow H, \Delta: H \rightarrow H \otimes H, \varepsilon:$ $H \rightarrow k$ such that (H, μ, η) is a k-algebra and (H, Δ, ε) is a k-coalgebra. We call H an almost bialgebra, if Δ is a k-algebra morphism, i.e. $\Delta(x y)=\Delta(x) \Delta(y)$ for every $x, y \in H$.
Definition 32. An almost bialgebra $H=(H, \mu, \eta, \Delta, \varepsilon)$ is called quasi-braided, if there exists an element R of the algebra $H \otimes H$ satisfying

$$
\begin{equation*}
\Delta^{o p}(x) R=R \Delta(x) \tag{99}
\end{equation*}
$$

for all $x \in H$ and

$$
\begin{align*}
\left(\Delta \otimes \operatorname{id}_{H}\right)(R) & =R_{13} R_{23} \tag{100}\\
\left(\operatorname{id}_{H} \otimes \Delta\right)(R) & =R_{13} R_{12} \tag{101}
\end{align*}
$$

Such R is called a quasi- R-matrix.
By Theorem 30, we have $\bar{U}_{q}^{w}=U_{q}^{w} / I=Y / I \oplus W / I \cong Y /\left(E_{w}^{d}, F_{w}^{d}\right) \oplus \widetilde{U}_{q}$ where $\widetilde{U}_{q}=\mathfrak{s l}_{q}(2) /\left(E_{w}^{d}, F_{w}^{d}, K^{d}-1\right)$ is a finite Hopf algebra. We know in [11] that the sub-algebra \widetilde{B}_{q} of \widetilde{U}_{q} generated by $\left\{E_{w}^{m} K_{w}^{n}: 0 \leq m, n \leq d-1\right\}$ is a finite dimensional Hopf sub-algebra and \widetilde{U}_{q} is a braided Hopf algebra as a quotient of the quantum double of \widetilde{B}_{q}. The R-matrix of \widetilde{U}_{q} is

$$
\widetilde{R}=\frac{1}{d} \sum_{0 \leq i, j, k \leq d-1} \frac{\left(q-q^{-1}\right)^{k}}{[k]!} q^{k(k-1) / 2+2 k(i-j)-2 i j} E_{w}^{k} K_{w}^{i} \otimes F_{w}^{k} K_{w}^{j}
$$

Since $\mathfrak{s l}_{q}(2) \stackrel{\rho}{\cong} W$ was Hopf algebras and $\left(E_{w}^{d}, F_{w}^{d}, K^{d}-1\right) \stackrel{\rho}{\cong} I$, we get $\widetilde{U}_{q} \cong W / I$ as Hopf algebras under the induced morphism of ρ. Then W / I is a braided Hopf algebra with a R-matrix

$$
R^{w}=\frac{1}{d} \sum_{0 \leq k \leq d-1 ; 1 \leq i, j \leq d} \frac{\left(q-q^{-1}\right)^{k}}{[k]!} q^{k(k-1) / 2+2 k(i-j)-2 i j} E_{w}^{k} K_{w}^{i} \otimes F_{w}^{k} K_{w}^{j}
$$

Because the identity of W / I is J_{w}, there exists the inverse \hat{R}^{w} of R^{w} such that $\hat{R}^{w} R^{w}=R^{w} \hat{R}^{w}=J_{w}$. Then we have

$$
\begin{align*}
& R^{w} \hat{R}^{w} R^{w}=R^{w} \tag{102}\\
& \hat{R}^{w} R^{w} \hat{R}^{w}=\hat{R}^{w} \tag{103}
\end{align*}
$$

which shows that this R-matrix is regular in \bar{U}_{q}. It obeys the following relations

$$
\begin{equation*}
\Delta_{w}^{o p}(x) R^{w}=R^{w} \Delta_{w}(x) \tag{104}
\end{equation*}
$$

for any $x \in W / I$ and

$$
\begin{align*}
\left(\Delta_{w} \otimes \mathrm{id}\right)\left(R^{w}\right) & =R_{13}^{w} R_{23}^{w} \tag{105}\\
\left(\mathrm{id} \otimes \Delta_{w}\right)\left(R^{w}\right) & =R_{13}^{w} R_{12}^{w} \tag{106}
\end{align*}
$$

which are also satisfied in \bar{U}_{q}. Therefore R^{w} is a von Neumann's regular quasi- R-matrix of \bar{U}_{q}. So, we get the following

Theorem 33. \bar{U}_{q} is a quasi-braided weak Hopf algebra with

$$
R^{w}=\frac{1}{d} \sum_{0 \leq k \leq d-1 ; 1 \leq i, j \leq d} \frac{\left(q-q^{-1}\right)^{k}}{[k]!} q^{k(k-1) / 2+2 k(i-j)-2 i j} E_{w}^{k} K_{w}^{i} \otimes F_{w}^{k} K_{w}^{j}
$$

as its quasi- R-matrix, which is regular.
The quasi- R-matrix from J-weak Hopf algebra $v \mathfrak{s l}_{q}(2)$ has more complicated structure and will be considered elsewhere.

Acknowledgements. F.L. thanks M. L. Ge and P. Trotter for fruitful discussions. S.D. is thankful to A. Kelarev, V. Lyubashenko, W. Marcinek and B. Schein for useful remarks. S.D. is grateful to the Zhejiang University for kind hospitality? where this work was done, and the National Natural Science Foundation of China for financial support.

REFERENCES

1. Sweedler M. E. Hopf Algebras. New York. Benjamin, 1969. 336 p.
2. Abe E. Hopf Algebras. Cambridge. Cambridge Univ. Press, 1980.
3. Li F. // Weak Hopf algebras and new solutions of Yang-Baxter equation. J. Algebra. 1998. V. 208. № 1. P. 72-100.
4. Li F. // Solutions of Yang-Baxter equation in endomorphism semigroup and quasi-(co)braided almost bialgebras. Comm. Algebra. 2000. V. 28. № 5. P. 2253-2270.
5. Nichols W. D., Taft E. J. The Left Antipodes of a Left Hopf Algebra. Contemp. Math. 13 Providence. Amer. Math Soc., 1982.
6. Green J. A., Nicols W. D., Taft E. J. // Left Hopf algebras. J. Algebra. 1980. V. 65. P. 399-411.
7. Li F. // Weak Hopf algebras and regular monoids. J. Math. Research and Exposition. 1999. V. 19. № 2. P. 325-331.
8. Lustig G. // On quantum groups. J. Algebra. 1990. V. 131. P. 466-475.
9. Bernstein J., Khovanova T. // On quantum group $S L_{q}(2)$. Cambridge, 1994.19 p. (Preprint / MIT, hep-th/9412056).
10. Shnider S., Sternberg S. Quantum Groups. Boston. International Press, 1993.
11. Kassel C. Quantum Groups. New York. Springer-Verlag, 1995. 531 p.
12. Lawson M. V. Inverse Semigroups: The Theory of Partial Symmetries. Singapore. World Sci., 1998. 412 p.
13. Duplij S. Semisupermanifolds and semigroups. Kharkov. Krok, 2000. 220 p.
14. Duplij S., Marcinek W. // Higher regularity properties of mappings and morphisms. Wrocław, 2000. 12 p. (Preprint / Univ. Wrocław; IFT UWr 931/00, math-ph/0005033).
15. Duplij S., Marcinek W. // On higher regularity and monoidal categories. Kharkov State University Journal (Vestnik KSU), ser. Nuclei, Particles and Fields. 2000. V. 481. № 2(10). P. 27-30.
16. Petrich M. Inverse Semigroups. New York. Wiley, 1984. 214 p.
17. Goodearl K. Von Neumann Regular Rings. London. Pitman, 1979.
18. Hungerford T. W. Algebra. New York. Springer-Verlag, 1980.
19. Duplij S. // On semi-supermanifolds. Pure Math. Appl. 1998. V. 9. № 3-4. P. 283-310.
20. Duplij S., Marcinek W. // Noninvertibility, semisupermanifolds and categories regularization. Noncommutative Structures in Mathematics and Physics. Dordrecht. Kluwer, 2001. P. 125-140.
21. Howie J. M. Fundamentals of Semigroup Theory. Oxford. Clarendon Press, 1995. 362 p.

О РЕГУЛЯРНЫХ РЕШЕНИЯХ КВАНТОВОГО УРАВНЕНИЯ ЯНГА-БАКСТЕРА И СЛАБЫХ АЛГЕБРАХ ХОПФА

C. А. Дуплий ${ }^{1)}$, Фанг Ли ${ }^{2)}$

${ }^{1)}$ Физико-технический факультет, Харьковский национальный университет им. В. Н. Каразина, пл. Свободы, 4, г. Харъков, 610 77 , Украина
${ }^{2)}$ Математический факультет, университет Жеянг, Ханчжоу 310028, Китай

Изучаются обобщения алгебры Хопфа $\mathfrak{s l}_{q}(2)$ путем ослабления обратимости генератора K, т. е. заменой обратимости $K K^{-1}=1$ на регулярность $K \bar{K} K=K$. Веедено две алгебры Хопфа: слабая алгебра Хопфа $w \mathfrak{s l}_{q}(2)$ и J-слабая алгебра Хопфа $v \mathfrak{s l}_{q}(2)$ которые детально исследованы. Показано, что моноид групповых элементов для $w \mathfrak{s l}{ }_{q}(2)$ и $v \mathfrak{s l}_{q}(2)$ является регулярным. Построена quasi-braided слабая алгебра Хопфа \bar{U}_{q}^{w} и показано, что соответствующая квази- R-матрица является регулярной $R^{w} \hat{R}^{w} R^{w}=R^{w}$.
КЛЮЧЕВЫЕ СЛОВА: алгебра Хопфа, регулярность, уравнение Янга-Бакстера, нетерово кольцо, групповой элемент, квази- R-матрица

[^0]: ${ }^{1}$ In this paper, k always denotes a field.

[^1]: ${ }^{2}$ We denote by $X_{w, v}$ one of the variables X_{w} or X_{v}.

