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Generalization of Hopf algebra sl, (2) by weakening the invertibility of the generator K, i.e. exchanging its
invertibility KK ' = 1 to the regularity KKK = K is studied. Two weak Hopf algebras are introduced: a weak
Hopf algebra wsl, (2) and a J-weak Hopf algebra vsly (2) which are investigated in detail. The monoids of group-
like elements of wsly (2) and vsl, (2) are regular monoids, which supports the general conjucture on the connection
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wsly (2). Tt is shown that the corresponding quasi- R-matrix is regular R¥ R¥R" = R".
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A weak Hopf algebra as a generalization of a Hopf algebra [1, 2] was introduced in [3] and its
characterizations and applications were studied in [4]. A k-bialgebra! H = (H, pu,n, A, €) is called a weak Hopf
algebra if there exists T € Hom (H, H) such that id « T * id = id and T *id « T = T where T is called a weak
antipode of H. This concept also generalizes the notion of the left and right Hopf algebras [5, 6].

The first aim of this concept is to give a new sub-class of bialgebras which includes all of Hopf algebras
such that it is possible to characterize this sub-class through their monoids of all group-like elements [3, 4]. It
was known that for every regular monoid S, its semigroup algebra kS over k is a weak Hopf algebra as the
generalization of a group algebra [7]. The second aim is to construct some singular solutions of the quantum
Yang-Baxter equation (QYBE) and research QYBE in a larger scope. On this hand, in [4] a quantum quasi-
double D(H) for a finite dimensional cocommutative perfect weak Hopf algebra with invertible weak antipode
was built and it was verified that its quasi-R-matrix is a regular solution of the QYBE. In particular, the
quantum quasi-double of a finite Clifford monoid as a generalization of the quantum double of a finite group
was derived [4].

Here we construct two weak Hopf algebras in the other direction as a generalization of the quantum algebra
sl4(2) [8, 9]. We show that wsls(q) possesses a quasi-R-matrix which becomes a singular (in fact, regular) solution
of the QYBE, with a parameter ¢. In this reason, we want to treat the meaning of wsl,(2) and its quasi- R-matrix
just as sl4(2) [10, 11]. It is interesting to note that wsl,(2) is a natural and non-trivial example of weak Hopf
algebras.

WEAK QUANTUM ALGEBRAS

For completeness and consistency we remind the definition of the enveloping algebra U, = Uy (sl4(2)) (see
e.g. [11]). Let ¢ € C and g # £1,0. The algebra U, is generated by four variables(Chevalley generators) E, F,
K, K~ with the relations

K'K=KK*'=1, (1)
KEK™' = ¢°E, (2)
KFK~!'=¢7?F, (3)

_ p—1
EF-FE="2"F_ (4)
a—q

Now we try to generalize the invertibility condition (1). The first thought is weaken the invertibility to
regularity, as it is usually made in semigroup theory [12] (see also [13, 14, 15] for higher regularity). So we
will consider such weakening the algebra U, (sl4(2)), in which instead of the set {K, K~'} we introduce a pair
{Ku,,?w} by means of the regularity relations

KyKyKy =Ky, KoKoKy,=K,. (5)

'In this paper, k always denotes a field.



If K, satisfying (5) is unique for a given K, then it is called inverse of K., (see e.g. [16, 17]). The regularity
relations (5) imply that one can introduce the variables

J = KuKu, T = KoK (6)
In terms of J,, the regularity conditions (5) are

JuKy = Ky, KyJyw = Ky, (7

JwKy =Ky, KyJy = Ky. (8)

Since the noncommutativity of generators K, and Ko very much complexifies the generalized construction,
we first consider the commutative case and imply in what follow that

Jw = Ju (9)

Let us list some useful properties of J,, which will be needed below. First we note that commutativity of
K., and K, leads to idempotency condition J2 = .J,,, which means that .J,, is a projector (see e.g. [18]).

Conjecture 1. In algebras satisfying the regularity conditions (5) there exists as minimum one zero divisor
Ju — 1.

Therefore, in addition with unity 1 we have an idempotent analog of unity J,, which makes the structure
of weak algebras more complicated, but simultaneously more interesting. For any variable X we will define
“J-conjugation” as

d
X5 1.X 7, (10)

and the corresponding mapping will be written as e, (X) : X — X, . Note that the mapping e, (X) is
idempotent
e (X) =e, (X). (11)

In the invertible case K,, = K, K, = K~' we have J, = 1 and e, (X) = X = id (X) for any X, so
e, = id. It is seen from (5) that the generators K,, and K, are stable under “J,-conjugation”

KJw = ']wKw']w = Kuu FJW = J’wfuﬂ]w = Fw- (12)
Obviously, for any X o o
KwXKw - Ku)XJwva (13)
and for any X and Y
KwXFw =Y = KwXJwKw - YJwv (14)

Another definition connected with the idempotent analog of unity .J,, is “J,-product” for any two elements

X and Y, viz.

Xo, Y™ x5y (15)

From (7) it follows that “.J,,-product” coincides with usual product, if X ends with generators K,, and K,
on right side or Y starts with them on left side.

Let J) = Ki K then we will need a formula

_ K, i>j,
I =K Ky =4 Ju 1=, (16)
F{;i i <7,

which follows {rom the regularity conditions (7). The variables J (i7) satisfy the regularity conditions

I I I = I (17

and stable under “J-conjugation” (10) Jgj,) = J$9 The regularity conditions (7) lead to the noncancellativity:
for any two elements X and Y the following relations hold valid

X=Y =K,X =K,Y (18)

K, X=K,Y%X=Y (19)

X=Y=K,X=K,Y (20)

Ko X=K, Y&X=Y (21)

X=Y=>X, =Y, (22)

X5, =Y, #» X =Y. (23)

Jw w



The generalization of U, (s1,(2)) by exploiting regularity (5) instead of invertibility (1) can be done in two
different ways.

Definition 2. Define Uy’ = wsl,(2) as the algebra generated by the four variables E,, Fy,, Ky, K, with the
relations:

KoKy = KoKy, (24)

KoKowKy =Ky, KoKoKy =Ky, (25)

KwEy = (*EyKy, KowEy=q 2E Ko, (26)

KoFy =q 2F,Ky, KuoFy=¢F,Ky, (27)

EwFy — FyEy = L{iw (28)
q—q

We call wsl,(2) a weak quantum algebra.

Definition 3. Define U; = vsly(2) as the algebra generated by the four variables E,, F,, K., K, with the
relations (J, = K,K,):

vav = Fvaa (29)
K’UF’UK’U = K'Ua Fva?v = F’u: (30)
KUE’UF’U = qQEva (31)
K’UF’UF’U = q_sza (32)

K, - K,
E'UJUF’U - F’L)J'UE’U == ﬁ (33)

We call vsly(2) a J-weak quantum algebra.

In these definitions indeed the first two lines (24)—(25) and (29)—(30) are called to generalize the invertibility
KK~!= K~'K = 1. Note that the EK and FK relations (31)—(32) can be written in the following form close
0 (26)—(27)

K,E,J, = QQJUEUK’U) F’UEU‘]’U = qu'J'UE’UF’Ua (34)
K, F,J, :q_2JvFva; ?vFvJv :qQJvFvFU- (35)

Using (15) and (7) in the case of J, we can also present the vs(,(2) algebra as an algebra with “J,-product”

K'U ®JU ?v = FU ®Ju Km (36)
K, O, ?’u O, K, = Kva ?v ®J, K, ©J, FU = FW (37)
Kv QJU Ev QJU ?v = qum (38)
Kv @.]U Fv @JU fv = q_2F'U7 (39)
K, - K,
Ev QJU E} - E) ®J,, EU = ﬁ (40)

Due to (7) the only relation where “.J,-product” is really plays its role is the last relation (40). From the

following proposition, one can find the connection between Uy’ = wsl,(2), U, = vsl,(2) and the quantum algebra
sly(2).

Proposition 4. wsly(2)/(J, — 1) = sl,(2); vsly(2)/(J, — 1) = sl,(2).
Proof. For cancellative K,, and K, it is obvious. O

Proposition 5. Quantum algebras wsl,(2) and vsl,(2) possess zero divisors, one of which is® (Jy, — 1) which
annthilates all generators.

2We denote by Xu,v one of the variables Xy, or X,.



Proof. From regularity (25) and (30) it follows Ky, , (Jw., — 1) = 0 (see also (1)). Multiplying (26) on J,, gives
KyEwJy = PEyKyly = Ky (EwKw) Ky = ¢*EyK,,. Using second equation in (26) for term in bracket we
obtain K, (q2FwEw) Ky = ?EyKy = (Jy — 1) Ey,K,, = 0. For F,, similarly, but using equation (27). By
analogy, multiplying (31) on J, we have K,E,K,K,K, = ¢°E,J, = K,E,K, = ¢*E,J, = ¢*E, = ¢*E,J,,,
and so E, (J, — 1) = 0. For F, similarly, but using equation (32). O

Since sl,(2) is an algebra without zero divisors, some properties of sl,(2) cannot be upgraded to wsl,(2)
and vsl,(2), e.g. the standard theorem of Ore extensions and its proof (see Theorem 1.7.1 in [11]). We conjecture
that in U;” and U] there are no other than (Jw,o — 1) zero divisors which annihilate all generators. In other case
thorough analysis of them will be much more complicated and very different from the standard case of non-weak
algebras. We can get some properties of U;” and U, as follows.

Lemma 6. The idempotent J,, is in the center of wsly(2).

Proof. For K, it follows from (12). Multiplying first equation in (26) on K, we derive K, (waw) =¢?*EyJu,
and the applying second equation in (26) obtain E.,,J,, = J, E,,. For F,, similarly, but using equation (27). O

Lemma 7. There are unique algebra automorphism w., and w, of U and U respectively such that

ww,v(Kw, )

v) = Kw,v; ww,’u(fw,v) = Kw.,v»
wwA,v(Ew,'u) = Fw, ) ww,v(Fw,v) = Ew,v' (41)
Proof. The proof is obvious, if we note that w2 =id and w? =id. O

As in case of automorphism w for s(,(2) [11], the mappings w, and w, can be called the weak Cartan
automorphisms. Note that w,, # w and w, # w in general case.
The connection between the algebras wsl;(2) and vsl,(2) can be seen from the following

Proposition 8. There exist the following partial algebra morphism x : vsly(2) — wsl,(2) such that
X (X) = ey (X) (42)

or more exactly: generators XL(UU) = J, XoJy = Xyy, for all X, = K, K, E, F, satisfy the same relations as
Xw (24)-(28).

Proof. Multiplying the equation (31) on K, we have K, E,K ,K, = ¢?E,K,, and using (7) we obtain K,E,.J, =
PE T Ky = Ky JyEyJy = ¢2JyEyJy Ky, and so

Ky, Bog, = ¢ Evy, Ko,
which has shape of the first equation in (26). For F, similarly using equation (32) we obtain
Ky, For, = q 2 Foy, Ky,
The equation (33) can be modified using (7) and then applying (10), then we obtain

K o -K o
EvJU Fv.]v - FUJL,EUJU = #

which coincides with (28). B
~ For conjugated equations (second ones in (26)-(27)) after multiplication of (31) on K, we have
K,K,E,K, =¢*K,E, = J,E,J,K, = ¢°K,J,E,J, or using definition (10) and (7)

_ 9 _
K?)JUEWJ“ =q EUJUKUJU-

By analogy from (32) it follows o o
Koy Fot, =@ Foy, Koy,
]

Note that the generators qu,v) coincide with X, if J, = 1 only. Therefore, some (but not all) properties of
wsly(2) can be extended on vsl,(2) as well, and below we mostly will consider wsl,(2) in detail.



Lemma 9. Let m > 0 and n € Z. The following relations hold in U’ :

ENKL =q *™KJE]), FIKL=¢""KLF), (43)
E"K. = @™ K.E™  F"K. =q *"K.,F", (44)
7(m71)K — g™ 1K
(B, Fi2] = [m)F 4 ool v (45)
q—q
— [m] qnlile - qi(mil)K’w Fm71
q- q_l w )
7(m71)K — g™ 1K
[, Fy) = [m) 2 v L e g (46)
q—q
_ [m]Em_l qm—le - q_(m_l)?w
v q—q! '

Proof. The first two relations can be resulted easily from Definition 2. The third one follows by induction using
Definition 2 and

K, — Ky
q—qt
Applying the automorphism w,, (41) to (45), one gets (46). O

[Bw, F™] = [Ey, F" Y Fy + FE™YEy, Fy] = [Ew, F7 Y Fy + F 1

Note that the commutation relations (43)-(46) coincide with sl, (2) case. For vsl,;(2) the situation is more
complicated, because the equations (31)—(32) cannot be solved under K, due to noncancellativity (see also (18)—
(23)). Nevertheless, some analogous relations can be derived. Using the morphism (42) one can conclude that

the similar as (43)—(46) relations hold for xP = JyXyJy, from which we obtain for vsl,(2)

J,E"K" = ¢ *""K"E™],, J,F"K"=¢""K"F"],, (47)
JLE'K, ="K, E™J,, J,F"K, =q *"K,F™J],, (48)
7(m71)K — g™ 1K
JoEyJyF™ Iy — JF™ Iy EyJy = [m]J,Fm—14 p _”q_? v (49)
m-1p _ 7(m71)f
= [m]? 2_‘;_1 v pmel g,
7(m71)KU _ mflfv
JUE;’)TLJUE)JW - JUF‘vJvE:;nJv == [m}q q— q_? Eqr,nilt]v (50)
o [m}(] E7n71 qulKU - qi(mil)F’z)
- v 1 .
v q—qt

It is important to stress that due to noncancellativity of weak algebras we cannot cancel these relations on
Jy (see (18)—(23)).
In order to discuss the basis of U;” = wsl,(2), we need to generalize some properties of Ore extensions (see

[11]).

WEAK ORE EXTENSIONS

Let R be an algebra over k and R[t] be the free left R-module consisting of all polynomials of the form
P = 3" a;it' with coefficients in R. If a, # 0, define deg(P) = n; say deg(0) = —oco. Let a be an algebra
morphism of R. An a-derivation of R is a k-linear endomorphism 6 of R such that d(ab) = a(a)d(b) + §(a)b for
all a,b € R. Tt follows that 6(1) = 0.

Theorem 10. (i) Assume that R[t] has an algebra structure such that the natural inclusion of R into R[t] is a
morphism of algebras and deg(PQ) < deg(P)+deg(Q) for any pair (P, Q) of elements of R[t]. Then there exists
a unique injective algebra endomorphism « of R and a unique a-derivation 6 of R such that ta = a(a)t + 6(a)
for all a € R;

(ii) Conwversely, given an algebra endomorphism o of R and an a-derivation 0 of R, there exists a unique
algebra structure on R[t] such that the inclusion of R into R[t] is an algebra morphism and ta = a(a)t + §(a) for
all a € R.



Proof. (i) Take any 0 # a € R and consider the product ta. We have deg(ta) < deg(t) + deg(a) = 1. By the
definition of R[t], there exists uniquely determined elements a(a) and §(a) of R such that ta = a(a)t+d(a). This
defines maps « and § in a unique fashion. The left multiplication by ¢ being linear, so are a and J. Expanding
both sides of the equality (ta)b = t(ab) in R[t] using ta = a(a)t + d(a) for a,b € R, we get

a(a)a(b)t + a(a)d(b) + §(a)b = a(ab)t + d(ab).

It follows that a(ab) = a(a)a(b) and 6(ab) = a(a)d(b)+d(a)b. And, a(1)t+d(1) =tl =t. So, a(1) =1, 6(1) = 0.
Therefore, we know that « is an algebra endomorphism and ¢ is an a-derivation. The uniqueness of o« and §
follows from the freeness of R[t] over R.
(ii) We need to construct the multiplication on R[t] as an extension of that on R such that ta = a(a)t+4d(a).
For this, it needs only to determine the multiplication ta for any a € R.
Let M = {(fij)ij>1 : fij € End(R) and each row and each column has only finitely many f;; # 0} and
1

I= 1 is the identity of M.

For a € R, let @ : R — R satisfying a(r) = ar. Then a € End(R); and for r € R, («a)(r) = alar)

—_— -

a(a)a(r) = (oz/(z)oz)(r), (6a)(r) = d(ar) = a(a)d(r) + é(a)r = (ala)d +A5(a))(r), thus aa = ala)a, da =

a(a)s + 8(a) in End 4(R). And, obviously, for a,b € R, ab=ab; a+ b =a + b. O
4]
a 0
Let T = 0 - € M and define @ : R[t] — M satisfying (Y"1, a;t") = > i (a;])T". 1t is seen

that ® is a k-linear map.
Lemma 11. The map ® is injective.

Proof. Let p = > a;t'. Assume ®(p) = 0. For e; having 1 on i-th place and others zeroes, obviously, {e;}i>1
are linear independent. Sinqe 4(1) =0 and a(1) = 1, we have Te; = e;41 and T"e; = e; 41 for any ¢ > 0. Thus,
0=®(P)er = Y i y(@)Te1 = > i aiei+1. It means that @; = 0 for all ¢, then a; = a;1 = @;1 = 0. Hence
P=0. |

— —

Lemma 12. The following relation holds T(al) = (a(a))T + §(a)l.

Proof. We have T'(al) = a(a)T + 6(a)l = (a(a)])T + 6(a)l. O
Now, we complete the proof of Theorem 10.
Proof. Let S denote the subalgebra generated by T and @l (all @ € R) in M. From Lemma 12, we see that
every element of S can be generated linearly by some elements in the form as (aI)T™ (a € R, n > 0). But
O(at™) = (al)T™, so (R[t]) = 5, i.e.  is surjective. Then by Lemma 11, ® is bijective. It follows that R[t] and
S are linearly isomorphic.
Define ta = ®~1(T'(al)), then we can extend this formula to define the multiplication of R[t] with fg =
&~ !(zy) for any f,g € R[t] and 2 = ®(f), y = ®(g). Under this definition, R[¢] becomes an algebra and @ is
an algebra isomorphism from R[t] to S. And, ta = ®~Y(T'(al)) = @~ ((a(a))T + &(a)I) = a(a)t + §(a) for all
a € R. Obviously, the inclusion of R into R[t] is an algebra morphism. (I

Definition 13. We call the algebra constructed from « and § a weak Ore extension of R, denoted as Ry|t, o, 0].

Let S, be the linear endomorphism of R defined as the sum of all possible compositions of

n
k
k copies of 0 and of n — k copies of a. By induction n, from ta = «(a)t + 6(a) under the condition of
Theorem 10(ii), we get t"a = >p_ySnx(a)t"* and moreover, (31 a;it") (37, bit?) = S770" ¢it' where

¢ = Z;:() ap 3o Spk (Dipsi)-
Corollary 14. Under the condition of Theorem 10(ii), the following statements hold:

(i) As a left R-module, Ry [t, o, d] is free with basis {t'};>0;
(ii) If o is an automorphism, then Ry [t, a, d] is also a right free R-module with the same basis {t'};>0.



Proof. (i) It follows from the fact that Ry, [¢, o, d] is just R[t] as a left R-module.

(ii) Firstly, we can show that Ry[t,a,d8] = >, t'R, i.e. for any p € Ry[t, a, 8], there are ag,a1, - -,a, € R
such that p = Y7 t'a;. Equivalently, we show by induction on n that for any b € R, bt" can be in the form
S o tla; for some a;. When n = 0, it is obvious. Suppose that for n < k — 1 the result holds. Consider the
case n = k. Since « is surjective, there is a € R such that b = a"(a) = Sno(a). But t"a = Y} _; Spx(a)t"*,
we get bt" = t"a — > p_; Sp(a)t" % =31 t'a; by the hypothesis of induction for some a; with a,, = a. For
any i and a,b € R, (t'a)b = t'(ab) since Ry|[t, o, d] is an algebra. Then R [t, @, d] is a right R-module. Suppose
f) =t"an + - +tag + Ag = 0 for a; € R and a,, # 0. Then f(¢) can be written as an element of R[t] by
the formula t"a = >} Sp.k(a)t" =% whose highest degree term is just that of t"a, = >oheo Spr(an)t"F ie.
a™(an)t". From (i), we get " (a,) = 0. It implies a,, = 0. It is a contradiction. Hence R, [t, o, d] is a free right
R-module. O

We will need the following:

Lemma 15. Let R be an algebra, o be an algebra automorphism and § be an a-derivation of R. If R is a left
(resp. right) Noetherian, then so is the weak Ore extension Ry|[t, o, d].

The proof can be made as similarly as for Theorem 1.8.3 in [11].

Theorem 16. The algebra wsly(2) is Noetherian with the basis

P, ={E.FIK. EFIK E'FJJ,}, (51)

wTw wTw wTw
where i, j,1 are any non-negative integers, m is any positive integer.

Proof. As is well known, the tvlo—variabk polynomial algebra k[K,, K,] is Noetherian (see e.g. [18]). Then
Ao = k[Ky, K]/ (JwKw — Ky Ko Jw ) is also Noetherian. For any 4,7 > 0 and a, b, ¢ e k, if at least one

element of a, b, c does not equal 0, aKl +bK +¢Jy is not in the ideal (J, Ky — Ko, Ko Jw — Ky) of k[Ky, Kl

So, in Ao, aK? + K., + ¢Jy # 0. It follows that {K? Kw, Jw 14,7 > 0} is a basis of Ag.

Let oy satisfies al(K ) = ¢*K,, and ozl( ) = ¢ ?K,. Then a; can be extended to an algebra
automorphism on Ag and A; = Ag[Fy, a1, 0] is a weak Ore extension of Ag from oo = a7 and 6 = 0. By Corollary
14, A; is a free left Ag-module with basis {FJ }i>o. Thus, A, is a k-algebra with basis { K’ FJ, K. FJ, J,Fi : 1
and j run respectively over all non-negative integers, m runs over all positive integers}. But, from the definition
of the weak Ore extension, we have KL Fi = ¢ 2 FiKL K. Fi = ™ FiK.  J,Fi = Fg;Jw. Thus, we can
conclude that {FinwF&Fg, FJJ, : 1l and j run respectively over all non-negative integers, m runs over all
positive integers} is a basis of A;.

Let o satisfies ao(FIKL) = ¢ 2FIKL, ao(FiK, ) = ¢*"FiK. , as(Fi.J,) = Fi.J,. Then ay can be
extended to an algebra automorphism on A;. Let ¢ satisfies

5(1) = 6(Ky) = 06(K,) =0,
Jj—1 —2i 2T
(FLKY) = 3 Rt e R

=0

2 2
Kw Z j 12 w : le

w —1 w?

F]

w

=0

%K — R
F‘]J Zﬂi—lq w _ql ’wa
i=0 =4

for j > 0 and I > 0. Then just as in the proof of Lemma VI.1.5 in [11], it can be shown that ¢ can be extended
to an ao-derivation of A; such that Ay = A1[Ey, as,d] is a weak Ore extension of A;. Then in A,,
EyKy = a3(Ky)Ey + 0(Ky) = ¢ *KyBy, EyKy=¢KyEy,
KLU KLU
Ewa - OQ(F'LU)Ew + 5(Fw) - FuJEw + ﬁ

From these, we conclude that Ay = U’ as algebras. Thus, from Lemma 15, U’ is Noetherian. By Corollary
14, Uy is free with basis {E!};>0 as a left A;-module. Thus, as a k-linear space, Uy has the basis Q, =
{FJ Kl E! Fi Kw Ei FJJ,E! :i,35,1 run over all non-negative integers, m runs over all positive integers}. By



Lemma 9 any « € Py, (resp. Q) can be k-linearly generated by some elements of Q,, (resp. P, ), and therefore
P, and Q. generate the same space U’ O

The similar theorem can be proved for vsly(2) as well.

Theorem 17. The algebra vsly(2) is Noetherian with the basis
P, = {J,EJ,FIK! J,E J,FIK,  J,E.J,FiJ,}, (52)
where 1, j,1 are any non-negative integers, m is any positive integer.

¢=1 CASE

Let ¢ € C and ¢ # £1,0. Define U}’ as the algebra generated by the five variables E., Fi,, Ky, Ky, L,
with the relations (for U} the equations (55) and (56) should be exchanged with (31) and (32) respectively):

KoKy, = KoKy, (53)
KoKoKy =Ky, KoKoKy=Ky, (54)
KwEyw = ¢*EyKy, KuoEBy=q ?E,Ky, (55)

KywFy =q ?FyKy, KoFy=¢F,Ky, (56)

[Lw, Bw] = ¢(BwKy + KywEy), (57)

[Lw, Fol = —q¢ Y (FuKy + KW Fy). (58)
EwFy—FyEy =Ly, (—q )Ly = (Ky—Ky), (59)

For vsly(2) we can similarly define the algebra U,”

KK, = K,K,, (60)
K, K, K, =K,, K,K/K,=K,, (61)
K,E,K, = ¢E,, (62)
K,F,K, =q°F,, (63)

LyJyEy — EyJyLy = q(E, Ky + Ky E,), (64)

LyJuFy = FyJyLy = —q  (Fu Ky + Ko F,). (65)

E,J,F, — F,J,E, = L,, (¢—q ")L, = (K, — K,), (66)

Note that contrary to U,” and U/, the algebras Ué"’ and U;”’ are defined for all invertible values of the
parameter ¢, in particular for ¢ = 1.

Proposition 18. The algebra U’ is isomorphic to the algebra U with @., satisfying ouw(Ew) = Ew, ¢u(Fy) =

Fw; ‘Pw(K'w) = Kw; @w(?w) = K'w-
The proof is similar to that of Proposition VI.2.1 in [11] for s[,(2). On the otherwise, we can give the
following relationship between U;”" and U (sl(2)) whose proof is easy.

Proposition 19. Forqg=1

(i) the algebra isomorphism U (sl(2)) = U’ /(K — 1) holds;

(ii) there exists an injective algebra morphism 7 from UY to U(sl(2))[Ky]/ (K2 — Ky) satisfying m(E,) =
XKy, 1(Fy) =Y, 1(Ky) = Ky, 7(L) = HK,.

REMARK. In Proposition 19(ii), 7 is only injective, but not surjective since K2 # 1 in U(sl(2))[K]/(K? — K)
and then X does not lie in the image of .
STRUCTURE OF WEAK HOPF ALGEBRAS

Here we define weak analogs in wsl,(2) and vsl,(2) for the standard Hopf algebra structures A,e, S —
comultiplication, counit and antipod, which should be algebra morphisms.



For the weak quantum algebra wsl,(2) we define the maps A, : ws(,(2) — wsl,(2)Qws(,(2), £, : wsly(2) —
k and T, : ws(y(2) — wsl,(2) satisfying respectively

w(Bw) =1® By 4 By ® Ky, A(Fy) = Fy @1+ Ky ® Fy, (67)
Aw( w): ®Kw7 A ( ):Kw ®Fw7 (68)
cw(Ew) = cw(Fy) =0, ey(Ky) = 5w(Fw) =1, (69)
Tw(Ey) =—E wKw, Tw (Fy) = —-K,F,, T(K,)= K., Tw(Fw) = K,. (70)

The difference with the standard case (we follow notations of [11]) is in substitution K ~! with K, and the
last line, where instead of antipod S the weak antipod T, is introduced [3].

Proposition 20. The relations (67)—(70) endow wsl,(2) with a bialgebra structure.

Proof. Tt can be shown by direct calculation that, through the basis in Theorem 16, A and ¢,, can be extended
to algebra morphisms from wsl,(2) to wsl,(2) ® wsly(2) and from wsl,(2) to k, T, can be extended to an
anti-algebra morphism from wsl,(2) to wsl,(2) respectively. Using (67)—(70) it can be shown that

(Ay ®1d)Ay(X) = (id @ Ay)A,(X), (71)
(tw @id)AL(X) = (id ®ey)Ap(X) =X (72)

for any X = E,, F,,, K, or K,,. Let p,, and 7, be the product and the unit of wsly(2) respectively. Hence
(wslg(2), thaw, Ny A, €w) becomes into a bialgebra. O

Next we introduce the star product in the bialgebra (wsly(2), tw, Tw, Aw, €w) in the similar to the standard
way (see e.g. [11])
(Axy B)(X) = p [A® B] Ay (X). (73)

Proposition 21. T, satisfies the regularity conditions

(id %y T %o id)(X) = X, (74)
(T o id % To)(X) = T (X) (75)

for any X = B, Fy, Ky or K. It means that Ty, is a weak antipode

Proof. Follows from (67)—(70) by tedious calculations. For X = K,,,K,, it is easy, and so we consider X = E,,,
as an example. We have

(ld *w Eu *w ld)(Ew) = ,uw [(ld *w w) ® ld] Aw( w)

= iy [(id %y Ty) ®id] (1 ® By + By ® Ky)

= (id % Tw) (1)id (Ey) + (id %y Tw) (Ey)id (K,)

= o [id @ T] Ay (1)id (Ey) + pro [id @ To] Ay (Ey)id (Ko)

= f [id @ T ] (1@ 1)id (By) + piw [id @ Tp] (1 @ Ey + By @ Ky id (Ky)
=T, (1)id (Ey) +id (1) Ty (Ew) id (Kw) +id (Ew) Tw (Kw) id (Kw)
=Ey—EyKy Ky +Ey Ky Ky=E,=id (Ey).

By analogy, for (75) and X = E,, we obtain

(T *w 1d % Top) (Bw) = o [(To *w 1d) @ Top] Ay (Ew)

= iy [(Toy *p 1d) @ Toy] (1 @ By + By @ Kyy)

= (T % id) ()T (Bw) + (T % i) (Bu) Ty (Ku)

= ,uw [Tw ® ld} (1 ® 1) T'w (1Ewl) + ,UJw [Tw ® ld] (1 ® Ew + Ew ® Kw) Tw (Kw)
=T (1) Tw (Bw) + T (1) id (Ew) Ty (Kw) + Tw (Ew) id (Kuw) Tw (Kuw)

= —EyKy+EyKy — BuyKyKyKy = —EyKy = Tw(Ey).

Corollary 22. The bialgebra wsl,(2) is a weak Hopf algebra with the weak antipode T,.



We can get an inner endomorphism as follows.

Proposition 23. T2 is an inner endomorphism of the algebra wsl,(2) satisfying for any X € wsl,(2)

T2(X) = Ky XK., (76)

especially o o
T2 (K,) =id (K,), T2 (K,)=id (K). (77)
Proof. Follows from (70). O

Assume that with the operations fiy, 7w, Aw,&w the algebra wsl,(2) would possess an antipode S so as
to become a Hopf algebra, which should satisfy (S %, id)(Kw) = Nwew(Kyw), and so it should follow that
S(Kyw)Kyw = 1. But, it is not possible to hold since S(K,,) can be written as a linearly sum of the basis in
Theorem 16. It implies that wsl,(2) is impossible to become a Hopf algebra about the operations above.

Corollary 24. wsl,(2) is an example for a non-commutative and non-cocommutative weak Hopf algebra which
is not a Hopf algebra.

In order to become U(}”’ into a weak Hopf algebra, it is enough to define A, (Ey), Ay (Fu), Aw(Ky),
Ay (Kw), ew(Bw), w(Fu), ew(Kw), €w(Kw), Tw(Ew), Tw(Fu), Tw(Kw), Tw(K.,) just as in wsly(2) and define

Au(Lw) = — (K @ Koy~ Ky ©Fo), (L) = 0, Ty(Ly) = 2B
q—4q q—4q
From Proposition 18 we conclude that wsl,(2) is isomorphic to the algebra U;”’ with ¢,,. Moreover, one
can see easily that ¢, is an isomorphism of weak Hopf algebras from wsl,(2) to U;“”’ .
For J-weak quantum algebra vsl,(2) we suppose that some additional J,, should appear even in the definition
of comultiplication and antipod. A thorough analysis gives the following nontrivial definitions

A(Ey) = Jo @ JoEyJy + JoEoJy @ Ko, (78)

Ay(Fy) = JuFpdy ® Jy + Ky @ JuFy s, (79)

v( v):K @ Ky, Ay ( ) Kv@Kva (80)

E'U( 1)) = )( 1;) - O 51}(K’1;) == 61)(?11> = 17 (81)

T’U( U) = _J E K’U) TU(F’U) = _KUF’U‘]’lH (82)

Ty (Ky) = T,(K,) = K,. (83)

Note that from (80) it follows that

Av(t]u) = Jv 0y Jva (84)

and so J,, is a group-like element.
Proposition 25. The relations (78)—(83) endow vsly(2) with a bialgebra structure.

Proof. First it is easy to check that A, defines a morphism of algebras from vsly(2) ® vsly(2) into vsly(2). Then
it can be shown that A, (X) is coassociative

(Ay @id) Ay (X) = (id ® Ay) Ay (X) (85)

Proof that the counit ¢ defines a morphism of algebras from vsly(2) onto k is straithforward. Moreover,
it can be shown that (g, ® id)A,(X) = (id ® £,)A,(X) = X for X = E,, F,,K,,K,. Further it can be
checked that T, defines an anti-morphism of algebras from wvsl,;(2) to vsl;”(2). Therefore, we conclude that
(vsly(2), v, v, Ay, T,y) has a structure of a bialgebra. O

The following property of T, 1is crucial for wunderstanding the structure of the bialgebra
(v5[4(2)7#077]v7AmTv)~

Proposition 26. For any X € vsly(2) we have (cf. (76)-(77))
(Ky) = ey (Ky), T2 (K,) = e, (K,), (86)

T2
T'vz (EU) = K’UEUFTM TE (Fv) = KvFv?wa (87)

where e, (X) is defined in (10).



Proof. Follows from (7) and (82)-(83). As an example for E, we have T2 (E,) = T, (-J,E,K,) =
T, (Ky) Ty (By) T, (Jy) = Ky (JoEyKy) Jy = KyEy K. O

The star product in (vsly(2), ty, My, Ay, Tyy) has the form
Proposition 27. T, satisfies the regularity conditions

(y *y Ty *y €,)(X) =€, (X), (89)
(Ty >y €y *y Tp)(X) =Ty (X) (90)

for any X = E,, F,, K, or K,.

Proof. Follows from (78)—(83) and (88). For X = K,,K, it is easy, and so we consider X = E,, as an example.
We have

(ey *y Ty *y €)(Ey) = fy [(€y %0 Typ) ® €] Ay(E,)

— iy (€0 %0 T) ® €] (Jo ® JuEudy + T, By ® K,)

= (ev ko To) (o) € (Lo Buy) + (€0 w0 T0) (JuEuy) ey (K,

= Mo [ev ® Tv] Au(Jv)ev (JvaJv) + Uy [ev & Tv] Av(Ev)ev (Ku)

= L (€0 @ Ty] (Jp @ Jyy) €y (Ey) + fiy [€ @ Tyy] (Jy @ JyEyJy + JuEyJ, @ Ky) €y (Ky)
= e, (Jo) Ty (Ju) €y (By) + e, (Jo) Ty (Jo By o) €, (Ky) + ey (B,) Ty, (Ky) e, (Ky)
=Jy Jy  JoEyJy — Jy - JoJoEy Ky - Jo Ky Jy + JoEyJy - Ky - Ju Ky Jy

=J,E,J, = e, (E,).

By analogy, for (90) and X = FE, we obtain

(T 0 €0 %0 To)(Bu) = i [Ty o ©) © To] Ay(B)

=y [(Ty %0 €) @ Ty] (Jp @ JyEyJy + JyEyJ, @ Ky)

= (Ty *v €) (Jo) Ty (Ju EyJy) + (T %0 €4) (E)Ty (Ky)

= o [Ty @ ] (Jy @ Jy) Ty (Jo By )

+ oy [Ty @ €] (Jy @ JyEydy + JyEydy @ Kyy) Ty (Ky)

=T, (Jv) ey (Jo) Ty (JuEyJy) + Ty (Jy) €y (JoEyJy) Ty (Ky)

+ Ty (JuEydy) ey (Ky) Ty (Ky) = —Jy - Jy -y (‘]’UEUFU) Jo+ Jo - JuEyJy - Ky
—Jo (JoEoKy) Jy - JuKyJy - Ky = —=J,E K, = T,(E,).

O

From (89)—(90) it follows that vsl;(2) is not a weak Hopf algebra in the definition of [3]. So we will call it
J-weak Hopf algebra and T, a J-weak antipode. As it is seen from (74)—(75) and (89)—(90) the difference between
them is in the exchange id with e,.

REMARK. The variable e, can be treated as n = 2 example of the “tower identity” egg introduced for
semisupermanifolds in [19, 13] or the “obstructor” eg?) for general mappings, categories and Yang-Baxter equation
in [14, 15, 20].

Comparing (67)—(70) with (78)—(83) we conclude that the connection of A,,, Ty, e, and A,, Ty, e, can be

written in the following way

Ay (X) = Ay (ey (X)), (91)
T, (X) =Ty (ev (X)) ) (92)
ev (X) = eu (v (X)), (93)

which means that additionally to the partially algebra morphism (42) there exists a partial coalgebra morphism
which is described by (91)—(93).



GROUP-LIKE ELEMENTS

Now, we discuss the set G(wsl;(2)) of all group-like elements of wsl,(2). As is well-known (see e.g. [21]) a
semigroup S is called an inverse semigroup if for every x € S, there exists a unique y € S such that zyx = z
and yxy = y, and a monoid is a semigroup with identity. We will show the following

Proposition 28. The set of all group-like elements G(wsl,(2)) = {J) = K} K 1,7 run over all non-negative

w w

integers}, which forms a regular monoid under the multiplication of wsly(2).

Proof. Suppose & € wsly(2) is a group-like element, i.e. A,(z) = 2 ® 2. By Theorem 16, 2 can be written
as x = Y, o i BLFIKL + BijmELFIK . 4 ~i;EL Fi J,. Here and in the sequel, every o, § and  with
subscripts is in the field £ and does not equal zero. Then

Ay(x) = Y [aipAuw(BLFLKL) + Au(Bijm By FUK ) + A (vi EL Fl Jw)]

,5,L,m

= > i1 ® By + By ® Ky)' (Fu @ 1+ Ky @ Fy) (K ® Ky

i,5,l,m

+ Bijm(1® By + By @ Ku)' (Fuy @ 1+ Koy ® Fip)? (K @ Kop)™
+ 71](1 & Ew + Ew ® Kw)i(Eu & 1 + ?w X Eu)jjw];
and
r@x=(Y B, FiK, + BijmELFIK, +%i; By F)Jw)
i,7,l,m
© (Y apBLFLK Y, + Bim By FUK y + v By Fl ).
i,5,l,m

It is seen that if i # 0 or j # 0, A,(z) is impossible to equal  ® z. So, i = 0 and j = 0. We get
T = Zl,m Oéqulu + BmKZ + Ju,. Then

Ay(@) = KL, @ Kl + Ky @ Ky + Juw ® Jul;
l,m

rTRQxr = Z [OZLOél/KfU ® Kllll, + Oélﬁm,’Kiu ®F$ + alK’iU ® Ju

Ll m,m’
+ al’ﬂmfgb 24 quil; + ﬁm.ﬁnﬂfz; & F:ﬁ + ﬁmfz;b 2y Jw
+apdy, ® Ki: + B Juw ®FZ: + Ju ® Jw]

If there exists [ # I, then x®x possesses the monomial K, ®Kf,:, which does not appear in A, (). It contradicts
—-—m
to A, (z) = z®z. Hence we have only a unique [. Similarly, there exists a unique m. Thus z = oy K., + 8, K, +J.
—-=m
Moreover, it is easy to see that ayK', 3,,K, and J, can not appear simultaneously in the expression of .

Therefore, we conclude that r = oK), 3,,K,, or J, (no summation) and we have

Au(I7) = I @ I (94)

It follows that G(wsly(2)) = {qufj) = K,’UFZU : 4,7 run over all non-negative integers}.

For any J() = Ki K € G(wsl,(2)), one can find JU) = Ki K, € G(wsl,(2)) such that the regularity (17)
takes place JED gG» gD = 1(0”), which means that G(wsl,(2)) forms a regular monoid under the multiplication
of wsly(2). O

For vsl,(2) we have a similar statement.

Proposition 29. The set of all group-like elements G(vsl,(2)) = {Jq(,ij) = KLF?, 21,7 run over all non-negative
integers}, which forms a regular monoid under the multiplication of vs(y(2).

Proof. Suppose x € vsly(2) is a group-like element, i.e. A,(x) = z ® . By Theorem 17, = can be written as
T=3 i m i1y LI FIKL + Bijm Jy EL I FIK, + i ]y ELJ,F1J,. Here and in the sequel, every a, § and 7

)



with subscripts is in the field ¥ and does not equal zero. Then
Ay(z) = Y [eijlo(JoELJFIK))
i,7,l,m
+ Ay (BijmJu EL T I ) 4 Ay (vij Jo B T, FI )]
= Z [aijl(Jv ® Jv)(Jv & JvaJv + JvaJu ® Kv)i
i,7,l,m
X (Jy @ o) (JoFpJy @ Jy + Ky @ JFyJy ) (K, @ K)!
+ Bijm(t]v b2y J’U)(Jv ® JUE’UJU + J’UE’UJ’U ® Kv)l
X (Jy @ J ) (JoFody @ Jy + Ky @ JyFudy ) (Ky @ K,)™
+ ’Yij(Jv oy Jv)(Jv & JvaJv + JvaJv ® Kv)i
X (Jv ® Jy)(JvaJv ® Jv “F?v & JvFvJv)ij];
and
c@x =Y ouloELT,FIK,+ Bijm T ELTFIK, + i JuEL T, F)J,)
i,7,l,m
® (Y B FIKL + Bijm JyEL FIK, + i3 oL Ju Fl ).

i,3,L,m

It is seen that if i # 0 or j # 0, A,(z) is impossible to equal z ® z. So, i = 0 and j = 0. We get
T = Zl,m aqul; + ﬂmKT + Jy. Then

Ay(z) =) (KL ® KL+ K, @K, +J, @ J);

l,m

TRx= Z [y Kl @ Kf,/ + KL 9K, +aK! ®J,

Ll mm/’
+ Ky QKL + BB Ky @Ko + K. @J,
tordy@KY + By @K+ Jy @ ).

If there exists [ # I, then z®x possesses the monomial K. ® K" | which does not appear in A, (z). It contradicts to
—=m
A,(r) = z®z. Hence we have only a unique /. Similarly, there exists a unique m. Thus = oK. + 8, K, + J,
——=m
Moreover, it is easy to see that oy K!, fBmK, and J, can not appear simultaneously in the expression of .

Therefore, we conclude that = = olef}, Bm K, or J, (no summation) and we have

A (JED) = gD g gid), (95)

It follows that G(vsly(2)) = {Jl(,ij) = Kﬁ?ﬂ 1,7 run over all non-negative integers}.

For any J$7) = KiK' € G(vsl,(2)), one can find J¥ = KiK, € G(vsl,(2)) such that the regularity (17)
takes place JSD JG0 5§ = qum, which means that G(vsl(;(2)) forms a regular monoid under the multiplication
of vsly(2). O

These results show that wsl,(2) and vsl,(2) are examples of a weak Hopf algebra whose monoid of all
group-like elements is a regular monoid. It incarnates further the corresponding relationship between weak Hopf
algebras and regular monoids [7].

REGULAR QUASI-R-MATRIX

From Proposition 4 we have seen that wsly(2)/(J, —1) = s(;(2). Now, we give another relationship between
wsl,(2) and s1,(2) so as to construct a non-invertible universal R*-matrix from ws(,(2).

Theorem 30. wsl,(2) possesses an ideal W and o sub-algebra Y satisfying wsly(2) =Y @ W and W = s[,(2)
as Hopf algebras.

Proof. Let W be the linear sub-space generated by {E% Fi K!  E! FiK. E.Fi.J, :foralli>0,7>0,1>0and

wT w w? wTw w wr wYw

m > 0}, and Y is the linear sub-space generated by {E{ FJ :i > 0,5 > 0}. It is easy to see that wsl,(2) = Y &W;



wsly (2)Wuwsl,(2) C W, thus, W is an ideal; and, Y is a sub-algebra of wsl,(2). Note that the identity of W is
Jw. Moreover, W is a Hopf algebra with the unit .J,,, the comultiplication A satisfying

AW(Ey) = Ju @ By + By ® Ky, (96)
Ay (Fu) = Fuy ® Ju + Ko ® Fy, (97)
AV(Ky) =Ky @Ky, AV(Ky,) =Ky @Ky (98)

and the same counit, multiplication and antipode as in wsl;(2). Let p be the algebra morphism from s0,(2)
to W satisfying p(E) = Ey, p(F) = Fy, p(K) = K,, and p(K~') = K,,. Then p is, in fact, a Hopf algebra

isomorphism since {E% FI Kl EiFiK. E.FiJ, :foralli>0,j>0,1>0and m > 0} is a basis of W by

wTwTtw? wTw w wTw

Theorem 16. O
Let us assume here that ¢ is a root of unity of order d in the field k where d is an odd integer and d > 1.
Set I = (E4, F% K2 — J,) the two-sided ideal of Uy’ generated by Ed Fd K2 — J,. Define the algebra
u, =U7/1
REMARK. Note that Ko, = J,, in Uy = U/I since K& = J,,.
It is easy to prove that I is also a coideal of U, and T,(I) C I. Then I is a weak Hopf ideal. It follows that
U;U has a unique weak Hopf algebra structure such that the natural morphism is a weak Hopf algebra morphism,

so the comultiplication , the counit and the weak antipode of U:IU are determined by the same formulas with

Uy'. We will show that U;ﬂ is a quasi-braided weak Hopf algebra. As a generalization of a braided bialgebra and
R-matrix we have the following definitions [3].

Definition 31. Let in a k-linear space H there are k-linearmaps p: HH — Hn:k— H A:H — H®QH,¢c:
H — k such that (H, p,n) is a k-algebra and (H, A, ¢) is a k-coalgebra. We call H an almost bialgebra, if A is
a k-algebra morphism, i.e. A (xy) = A () A (y) for every z,y € H.

Definition 32. An almost bialgebra H = (H, u,n, A, ) is called quasi-braided, if there exists an element R of
the algebra H ® H satisfying

A°P(z)R = RA(x) (99)

for all x € H and
(A®id g)(R) = Ri3Ras, (100)
(id g ® A)(R) = RizRio. (101)

Such R is called a quasi-R-matrix.

By Theorem 30, we have U, = U¥ /I = Y/I®&W/I 2 Y/(EL, Fd)®U, where U, = sl,(2)/(E%, Fe, K¢ 1)
is a finite Hopf algebra. We know in [11] that the sub-algebra Eq of ﬁq generated by {EM K" : 0 < m,n <d-—1}
is a finite dimensional Hopf sub-algebra and ﬁ] is a braided Hopf algebra as a quotient of the quantum double
of éq. The R-matrix of 17,1 is

~ 1 (q—q )" k(k—1)/2+2k(i—5)—2ij pk 1 k oj
R - 5 Z Tq EwKw ® E1)K1v‘
0<i,j,k<d—1 [ ]

P p ~
Since sl,(2) & W was Hopf algebras and (E%, F4, K% — 1) = I, we get U, = W/I as Hopf algebras under

w? w?

the induced morphism of p. Then W/I is a braided Hopf algebra with a R-matrix
w_ 1 (g—q )" k(k—1)/2+42k(i—j)—2ij ok i k1
RY =~ Z Tq / ]EwKw ® Fngu'
0<k<d—1;1<i,j<d

Because the identity of W/I is J,,, there exists the inverse R™ of R* such that R*R* = RYRY = J,,.
Then we have

RYRYR" = R, (102)
RYRYR" = R, (103)



which shows that this R-matrix is regular in U,. It obeys the following relations

AP(z)R"Y = R¥Ay(z) (104)

for any z € W/I and
(A ®id)(R") = Ri3R3; (105)
(id ® Ay)(R") = Ri3 R (106)

which are also satisfied in U,. Therefore R is a von Neumann’s regular quasi-R-matrix of U,. So, we get the
following

Theorem 33. U, is a quasi-braided weak Hopf algebra with

—1\k
LS %quk—l)/2+2k<i—j>—2ingK; ® FLK,
0<k<d—1;1<4,5<d Lk

as its quasi-R-matriz, which is reqular.

The quasi- R-matrix from J-weak Hopf algebra vsl,(2) has more complicated structure and will be considered
elsewhere.
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O PETWVJIAPHBIX PEINTEHNAX KBAHTOBOI'O YPABHEHUSA AHTA-BAKCTEPA
N CJIABBIX AJITEBPAX XOII®A

C. A. JynauitV), ®anr JIn?



Y dusumo-mesnuvecruti garyavmem, Xapvroscrul nayuonasonod ynusepcumem um. B. H. Kapasuna,
na. Ceo60dw, 4, 2. Xapvros, 61077, Yrpauna
D Mamemamusecrud Paxysvmem, ynusepcumem XKeane, Xanvworcoy 310028, Kumai

Uzywatorca 0606merms anrebpbr Xomda slg (2) myrem ocmabnenus o6parnmocTn rereparopa K T. e. 3aMeHoil 06paTuMo-
cru KK ™' =1 na peryasippocrs KKK = K. Beezieno age anre6pst Xonda: ciabast anre6pa Xonda wsl, (2) m J-cnabas
ayrebpa Xonda vsly (2) KoTopble jieTajibHO ucceoBatbl. 1[0Ka3aHo, YT0 MOHOU/I, IPYIIIOBbIX 3/1eMeHToB g wsly (2) u
vslg (2) asnserca perymaprabiM. [TocTpoena quasi-braided crabas anre6pa Xomda U;ﬂ 7 TIOKA3aHO, YITO COOTBETCTBYIONIAS
kBa3w- R-MaTpuma ssisercs peryasproit RV RYRY = RY.

KJIFOYEBBIE CJIOBA: anrebpa Xomda, perynsipHocTs, ypasHenue fura-Bakcrepa, HeTepoBO KOJIBIO, MPYNIIIOBO
3JIEMEHT, KBa3u- R-MaTpuIa



