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A need of the introduction of nilpotent even variables to the consistent classical supersymmetric theory is justyfied on the example
of simple supersymmetric system. It is claimed that any classical supersymmetric theory on fermionic shell is equivalent to the
corresponding nilpotent mechanics.
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Natural formulation of supersymmetric models is based on the formalism involving so called Grassmannian
coordinates [1, 2], i.e. functions taking values in an appropriate Grassmann algebra [3]. Usually nilpotence is associated to
the fermions due to the anticommutativity of objects describing them. However even in simple supersymmetric mechanical
models (for review see e.g. [4]) it turns out that we must consider nilpotent even coordinates to describe consistently the
model [5, 6] and to have nontrivial description on the fermionic shell [7]. These nilpotent even elements appear as an
extension of the field of numbers used in the formalism. In our approach such an algebra of the so called Study numbers [8]
or dual numbers [9, 10] replaces the basic field of numbers (complex or real) and resulting configuration and phase spaces
have a geometric structure which we shall catiléold.

In the present paper we want to show that the even nilpotent sector of the supersymmetric models is very important
and should not be neglected. Moreover, it is connected in a natural way to the two-time physics approach proposed by
Bars at al. [11, 12, 13]. The notion of even nilpotent “directions” as such is not new. It appears in supermanifold theory
[14, 15, 16, 17] and classical SUSY models [18, 19, 20, 21, 22, 23] (see also [24, 25, 26, 27] and [28]). Some interesting
properties of nilpotent directions in mechanics were discussed in [29, 6, 7]. A generalization of the notion of supermanifold
including even nilpotent coordinates has also been considered in [30, 31].

CLASSICAL SUPERSYMMETRY. TOY MODEL

Let us conside(1|2) dimensional superspace and in the chiral bésig™, §~) and a scalar superfiefdl (¢,60",0~)
which has the expansich (t,0",07) = q (t) +i0Ty_ (t) +i0~ ¢4 (t) + 070~ F (t), whereg (¢) is a bosonic coordinate,
F (t) is an auxiliary bosonic fielty 1 (¢) are fermionic coordinates. The superfield Lagrangian of the model with a
superpotential” (®) can be written as

L:%D+¢>.D—q>+v< ), 0

whereD* = 9/00F + i0*9/0t and the equations of motion are
1
5[DF.D7e—v' (@) =0.

The action has standard forsh= [ d¢tL, whereL = [ df~df* L is the component Lagrangian. After expansiod and
using the nondynamical equation for auxiliary fidldt) = —V"’ (g) it takes the following form

@ V(g

5~y T+ V(@ gy @

L =

From (2) the equations of motion are

q+V' (V" (@ =V" (- = 0, 3)

Ye iV (@) = 0. (4)

The bosonic equation (3) cannot be satisfied by gé#al outside trivial fermionic shell1 (¢t) = 0. Taking nontrivial
solutions of the fermionic equations of motion (4), what means that fermionic coordinates are not zero, we obtain

Yu (1) = ApeTP@B), (5)




wheresinp (go, F) = \/%;E, Vs = V' (qo (¥)), E is the energy of the system, apgl(¢) is a standard solution for one-

dimensional nonsupersymmetric system (see below (19)). In this case we obviously have

i ()¥— () = AyA_ = e = const, (6)

and therefore is a nilpotent even Grassmann numbér= 0.
On the fermionic shell the original SUSY lagrangian (2) takes the form
@ V*(q)

LFermiShell (qa V|e) = E - 2 + V” (Q) €.

Let us represent it as the one-dimensional lagrangian

U/2

-2
Linecn (¢, U) = % -0 8

U=U(gle)=V(g) +teln 9)

1
V'(q)

Thus
Lpermisnei (4, V|€) = Lviunecn (¢, U) (10)

and we see that the lagrangian of supersymmetric mechanics on fermionic shell is equal to a lagrangian with potential of
the special form (9) in which some even nilpotent part is added. We expect that such property may take place in larger class
of theories, and this equivalence can be the fundamental property of any classical supersymmetric theory on a fermionic
shell.

The lagrangian (2) is invariant with respect to the following supersymmetry transformations

dq=1i(epp- +e ), (11)
Sy =eq (—4+iV'), oY =e_(—G—iV"). (12)

On the fermionic shell the parameters take the form
e+ = ki, (13)

whereky are some even parameters. Now the form of the supersymmetry parametierfixed: they are expressed a
product of arbitrary even parameter defining the transformation and fixed odd constants of fermionic motiarnThen
the bosonic part of the supersymmetry transformation (11) becomes

iek+V°,+k“/2E_V0/2 (14)
V2E ’

which means that this transformation is pure nilpotent and numerical padaés not change. On the fermionic shell the
bosonic equation (3) takes the form

5q = ie (k. sinp (a0, E) + k— cosp (qo, E)) =

q+V' (V" (q) =V"(¢g)e=0. (15)

Therefore the bosonic solution on the fermionic shell can be written as follows

a(t) =qo(t) +eqn (t). (16)
Then forgy (t) andgy (t) we have the equations

Qo+ VgVy = 17)
av + (V) av = V3" = 0. (18)
After first integration we formally obtain

B+ = (19)
dogn + Vg'an = Vy' = (20)




whereE, andE'y are even integration constants did= V (qo). Then the trajectory of such classical system is given by

/ dqo 7 (21)
V2B, — V{2

En+V,
N 21/2Eofvo'2/d go—NT0 V/2)3/2 +O\[2Ey — V2. (22)

Let us assume thag (t),qn (t) € R (for simplicity, but more complicated cases are possible). From the above
example one can see that classical “bosonic” trajectory of supersymmetric one dimensional system takes values not in
the usual real or complex numbers litthe larger structure This structure is known as the Study numbers [8] which
form the so called dual algebid; (¢; R) with one nilpotent generator, whete= e. Dual numbers were introduced in
1873 by Clifford [32]. The dual algebr®,,(¢; R) is defined as an associative algebra with unit aigbtentgenerators
Ly eeyln, 2 =0, k= 1,...,n with commutativemultiplication ts.t,, = tymtr, k # m. The general element of
D,,(1; C) has the forma = a +22 DY <k, Qkaky by Uy, G0, Oy, € C.FOrn = 1 we haveD, (¢;C) 5
a= ag + ajt, i.e. dual (or Study) numbers Wheua, a; € C. Forn = 2 the general element @2 (¢, to; C) is written
as follows:a = ag + ait1 + aste + aiatits. A function of a dual argument is defined by its Taylor expansids) =
f(zo + thxn) = f(xo) + trxn f'(x0). The dual numbers have many applications, e.g. in such fields as 3D measurement
problem [33], Lie and Hopf algebra contractions [10, 34].

NILPOTENT MECHANICS. LAGRANGIAN FORMULATION

Let us consider the one-dimensional trajectory awial algebravalued functiof x (T), x, T€D; (¢;R) (i.e. with
values in a Banach superalgetyawith two generators, ¢, wheret? = 0 [35, 36]). Then

T=t+uy, x(T)=20(T)+ezn(T). (23)
The derivative is of the following form [35, 36]

9 _0, 9
T ot LatN’

the conjugation is defined as
0 _9 9 g_,
oT ot oty -V

and the Cauchy-Riemann conditions are

(T)_0 0xo (T)  Oxy (T)
oty o Oty

Now the full derivative is
dx (T)

dT

where dot denotes differentiation by
LetU (x) = Uy (x) + Uy (x), then thedual algebravalued lagrangiaf. has the form

=& (t) + ¢ [En (t) 4 Zo () tn],

Lzé(d’;(T“Y—U(x(T)).

Expanding in series with respectdave obtain decompositioh = Ly + ¢ Ly (cf. (7) withe = ¢), where

1
3
Ly = o (t) én () — 2w (£) Uy (w0 (8)

Ly =

2 (t) — Uy (0 (1)), (29)
) — Un (0 () + tndo (t) [Eo (t) — UG (zo ()], (30)

The prime here denotes differentiation with respect to the variable.

The second time parametey emerges naturally within this approach and suggests relation to the two-time theory
developed by Bars at al. [37, 38, 11, 12, 39, 13] and allows various holographic pictures of the supersymmetric model. We
will discuss this in the forthcoming paper. Here we consider only the simplest picture where one takes into account single
timet with ¢ty = 0.

1Dual valued variables will be written in bold.




Let us consider a model of the nilpotent mechanics defined by lagrangians (30) on hypégptan@ In this case
nilpotent mechanics is described by two lagrangians

1.
Ly = 558(2) —Uo (20), (31)

Ly = doin —xnUj (x0) — Un (@), (32)

whereLy = Lo (zo, <o) is a usual lagrangian of point particley = Ly (zo, x N, Zo, ) iS nil lagrangian which depends
on two degrees of freedofn
At the first glance we have three generalized momenta

100—67%—
78LN7
= Pie
_8LN
- Oin

-’th (33)

PN (34)

D1 = Tp. (35)

Let us notice that
D1 = Do, (36)
what is a consequence of nilpotence ahd- 0.
Equations of motion are of the form
i + Ug (z0) = 0, (37)
ij—&-xNUé' ($0)+U]/V (1‘0) =0 (38)
So we formally have aadditionalintegral of motionE
OLg

.9
) &
Cﬂoaijc0 — Ly = ?0 + Uy (z0) = Eo, (39)

. 0L . OL .
G0 4 N — Ly = do@n + 28U (20) + Un (20) = En. (40)
0o 0T N
Using (40) and/0t = i¢00/0xo we obtain
2 (EO — Uy (:130)) SC/N (!Eo) —+ U(/) (170) TN (xo) =FEny —Upy (:I,‘()) . (41)
One can see that the system has two return points
Enx — Up (x0)
U (zo)
EN = UN (3;‘0) <~ TN (1‘0) =C E() — Uo (1‘0), (43)

Eo=Uy (1‘0) <~ TN (1‘0) = (42)

whereC is integration constant. If simultaneoudy = Uy (x¢) andEx = Un (z0), thenzy (z¢) = 0.
The solution forx x () can be obtained in the explicit form

TN (.’130) =/ Ey— Uy (xo) (;/dxo En—-Un (1'0) + C) . (44)

(Eo — Uo (z0))*/*
The term withC' can be removed by shifts in parametgr and therefore we choosg = 0. Then the on-shell
lagrangians take the form

Lo = Ey — 2Uj (o) , (45)
Exn —Upn (z
Ly = Ex — 2Uy (w0) — U} (z0) v/Eo — Ug (x0) /dwo N = Un( 03)/2. (46)
(Eo — Uo (z0))
Note that we cannot put the terfy to zero using parameters of the theory, and therefore the full lagrangian of the
nilpotent mechanics always takes value in Study numbegs=£ 0).
Standard passage to the phase space is not possible for the laggangjiace its Hessian vanishes
oL
olidelid
Nevertheless, we will not use here the Dirac constraint approach (see e.g.[40]), but we will try to provide some
modification of the Legendre transformation specially for the dual spage; R) [29].

=12=0, ¢ =i, In. (47)

2We note thatco (t) andx v (t) are considered as 2 independent functions.




GENERALIZED LEGENDRE TRANSFORMATION

Let us consider a general function on dual spBGgéc; R) — D;(¢;R) y = f (x) + ¢th(x), wherex = 29 + ta .
Then

Y = Yo + tyn, (48)
Yo (z0) = f (z0) (49)
YN (JI(),QTN) = J}Nf/ ($0)+h($0) (50)

We construct the Legendre transformationgefxzo) — go (po, zo) andyn (xo, z) separately taking into account
thatyy (zo,2n) — gn (PN, D1, To, 2 N) IS @ function of two variables [41] as follows

g0 (po,T0) = poro — Yo (To), (51)
gn (PN, D1, %0, ZN) = PNZo+DP1ZN — YN (To, TN) - (52)

As usually [41] we determine parameters),py,p1 from condition of maximum of go (po,zo) and
gn (PN, D1, %0, ) as the functions aofg, 2, and obtain

0
po= 280 _ 1 zy), (59

= OuN (@0, TN) o () 4 I (), 4
(9330

0
Plz%&;xm:]ﬂ(%f (55)

PN

Equality ofpg andpy, i.e.
Do =p1 (56)

is a consequence of generalized Cauchy-Riemann conditions for the analyticity of dual number valued functions [35].

Yo o

Oyo _ Oyn
8ZEO - 8:EN. (58)

We use (52), (56) and (50) to obtain
gN = PNTo + PN — YN = PnZo + f' (o) N — xn f' (20) — b (z0) = pnzo — h (20) - (59)
Then the final form of the Legendre transformation (taking into account (56)) is

g (PN, P1, %0, TN) = go (Po, Zo) + tgn (PN, P1, 0, TN) (60)

9o (o) = Pozo (po) — f (zo (po)) (61)
gn (PN, Po) = PNZo (Po) — h (20 (po)) - (62)

The functionz (po) is determined from eq.(53). Notice that the difference between (61) and (62) is ofiliin(po))
andh (zo (po))-
NILPOTENT MECHANICS. HAMILTONIAN FORMULATION

Let us apply previously generalized Legendre transformation to the nilpotent mechanics laglangigf+ ¢ L v,
whereL, and L are given by egs. (31) and (32) respectively. In this way we obtain the following hamiltonian

H = Hy+ (tHy, (63)

2

Hy (z0,p0) = poto— Lo = %0 + Uo (20), (64)

Hy (z0,ZN,p0,PN) = PNEo+poin — Ly = popn + 2nUj (z0) + Un (20), (65)




and we have used conditign = p, (56). The resulting hamiltonian equations of motion are of the form

_0Hy . _OHy . OHy
Opo ’ 0 Opn ’ N Opo ’
. 0H0 . BHN . 8HN

0xg ’ Oxg Oxn ’

T
(66)
) pO =

Do = PN =

Analogously as fol.;y now Hpy contains all the information about motion of the system. Component energies are
defined by
Ho (z0,p0) = Eo, (67)
Hy (IOaxNapmpN) =En (68)

and the full energy is a dual valued number as \B2l= Ey + ¢F. The component phase space has two sectors with
Poisson brackets specific for each sector. Namely

0A 0B 0A 3B> (69)

9o Bpo  Opo Do

(a8 (

9A OB 8A<9B> (aAaB BAaB>‘ 70

A B}, = bl el
{4 Bly ( Orn Opo  Opo OxN

We note that in “nilpotent” sector of the phase space the Poisson bracket is related to unusual conjugation of canonical
variables

dzo dpy  Opn Do

o <> PN and TN < Po- (71)

The second Poisson bracket hefjé can lead to additional quantization rule with additional (to Plahckonstant’
using nil HamiltonianH  (65). Analogous effect is also present in the quantization over the oddons of anti-bracket (super-
symmetric) systems (cf. [42, 43] and references therein).

CONCLUSIONS

We emphasize that the dual numbers are necessary to formulate in a consistent way supersymmetric models. The
supersymmetry transformations as well as the dynamics of the model have to be written in terms of a new nilfold language.
General picture of new nilpotent models on the dual sgagé;R) corresponding tdV = 1 supersymmetric models
requires the presence of two time parameters what is related closely to the two-time approach developed by Bars at al.[37,
38]. In case ofV supersymmetries [44, 45] one should consider many-time approach. This aspect of the nilpotent mechanics
as well as its relation to th® = 11 supersymmetric mechanics and string/brane/M theory will be presented elsewhere.
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CYINIEPCUMMETPUSA, HETPUBUAJIBHASA ®EPMUOHHASA IIOBEPXHOCTH U HWIBIIOTEHTHASA
MEXAHUKA

C.A. Jymmii V), A. ®pugpymax 2

Y Xapoxosckuii nayuonanvubiti yuusepcumem um. B. H. Kapasuna, ni. Céo600vt, 4, 2. Xapvros, 61077 Yepauna

2) Hucmumym meopemuyeckoii puzuxu, ynueepcumem Bpoynasa, ni. Maxca bopua 9, 50-204Bpoynas, onvuia

HeobxoauMocTh paccMaTpiBaTh YE€THBIC HUIIBIIOTCHTHBIC HATIPABIICHNS B ITOCIEA0BATEILHON KITACCHYECKON CyIIepCHMMETPHIHON Te-
OpHH MPOAESMOHCTPUPOBAHA HA MTPUMEPE MPOCTEHILEH CynepCUMMETPUYHON MOJIEH. Y TBEPIKIAETCs, UTO JIF00ast CylepCUMMETPUYHAS
Teopust Ha (epMHOHHOIT MacCOBOM TOBEPXHOCTH YKBHBAJICHTHA COOTBETCTBYIONIEH HUIIBIIOTCHTHON MEXaHHKe.

KJIFOYEBBIE CJIOBA: cynepMexaHuka, TyalbHOE YUCIIO, HINIBIIOTEHTHOCTE, JepPMUOHHAS MAacCOBasi IOBEPXHOCTE, IIPeodpa3oBaHne
Jlexannpa, ckoOku [lyaccona




