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A need of the introduction of nilpotent even variables to the consistent classical supersymmetric theory is justyfied on the example
of simple supersymmetric system. It is claimed that any classical supersymmetric theory on fermionic shell is equivalent to the
corresponding nilpotent mechanics.
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Natural formulation of supersymmetric models is based on the formalism involving so called Grassmannian
coordinates [1, 2], i.e. functions taking values in an appropriate Grassmann algebra [3]. Usually nilpotence is associated to
the fermions due to the anticommutativity of objects describing them. However even in simple supersymmetric mechanical
models (for review see e.g. [4]) it turns out that we must consider nilpotent even coordinates to describe consistently the
model [5, 6] and to have nontrivial description on the fermionic shell [7]. These nilpotent even elements appear as an
extension of the field of numbers used in the formalism. In our approach such an algebra of the so called Study numbers [8]
or dual numbers [9, 10] replaces the basic field of numbers (complex or real) and resulting configuration and phase spaces
have a geometric structure which we shall call anilfold.

In the present paper we want to show that the even nilpotent sector of the supersymmetric models is very important
and should not be neglected. Moreover, it is connected in a natural way to the two-time physics approach proposed by
Bars at al. [11, 12, 13]. The notion of even nilpotent “directions” as such is not new. It appears in supermanifold theory
[14, 15, 16, 17] and classical SUSY models [18, 19, 20, 21, 22, 23] (see also [24, 25, 26, 27] and [28]). Some interesting
properties of nilpotent directions in mechanics were discussed in [29, 6, 7]. A generalization of the notion of supermanifold
including even nilpotent coordinates has also been considered in [30, 31].

CLASSICAL SUPERSYMMETRY. TOY MODEL

Let us consider(1|2) dimensional superspace and in the chiral basis(t, θ+, θ−) and a scalar superfieldΦ (t, θ+, θ−)
which has the expansionΦ (t, θ+, θ−) = q (t) + iθ+ψ− (t) + iθ−ψ+ (t) + θ+θ−F (t), whereq (t) is a bosonic coordinate,
F (t) is an auxiliary bosonic field,ψ± (t) are fermionic coordinates. The superfield Lagrangian of the model with a
superpotentialV (Φ) can be written as

L =
1

2
D+Φ ·D−Φ + V (Φ) , (1)

whereD± = ∂/∂θ∓ + iθ±∂/∂t and the equations of motion are

1

2

[
D+, D−

]
Φ− V ′ (Φ) = 0.

The action has standard formS =
∫
dtL, whereL =

∫
dθ−dθ+L is the component Lagrangian. After expansion inθ and

using the nondynamical equation for auxiliary fieldF (t) = −V ′ (q) it takes the following form

L =
q̇2

2
− V ′2 (q)

2
+ iψ+ψ̇− + V ′′ (q)ψ+ψ−. (2)

From (2) the equations of motion are

..
q + V ′ (q)V ′′ (q)− V ′′′ (q)ψ+ψ− = 0, (3)

ψ̇± ± iV ′′ (q)ψ± = 0. (4)

The bosonic equation (3) cannot be satisfied by realq (t) outside trivial fermionic shellψ± (t) = 0. Taking nontrivial
solutions of the fermionic equations of motion (4), what means that fermionic coordinates are not zero, we obtain

ψ± (t) = λ±e∓ip(q0,E), (5)



wheresin p (q0, E) =
V ′0√
2E
, V ′0 = V ′ (q0 (t)), E is the energy of the system, andq0 (t) is a standard solution for one-

dimensional nonsupersymmetric system (see below (19)). In this case we obviously have

ψ+ (t)ψ− (t) = λ+λ− = e = const, (6)

and thereforee is a nilpotent even Grassmann numbere2 = 0.
On the fermionic shell the original SUSY lagrangian (2) takes the form

LFermiShell (q, V |e) =
q̇2

2
− V ′2 (q)

2
+ V ′′ (q) e. (7)

Let us represent it as the one-dimensional lagrangian

LNilMech (q,U) =
q̇2

2
− U′2

2
, (8)

where

U ≡ U (q|e) = V (q) + e ln
1

V ′ (q)
. (9)

Thus
LFermiShell (q, V |e) = LNilMech (q,U) (10)

and we see that the lagrangian of supersymmetric mechanics on fermionic shell is equal to a lagrangian with potential of
the special form (9) in which some even nilpotent part is added. We expect that such property may take place in larger class
of theories, and this equivalence can be the fundamental property of any classical supersymmetric theory on a fermionic
shell.

The lagrangian (2) is invariant with respect to the following supersymmetry transformations

δq = i (ε+ψ− + ε−ψ+) , (11)

δψ+ = ε+ (−q̇ + iV ′) , δψ− = ε− (−q̇ − iV ′) . (12)

On the fermionic shell the parametersε± take the form

ε± = k±λ±, (13)

wherek± are some even parameters. Now the form of the supersymmetry parametersε± is fixed: they are expressed a
product of arbitrary even parameterk± defining the transformation and fixed odd constants of fermionic motionλ±. Then
the bosonic part of the supersymmetry transformation (11) becomes

δq = ie (k+ sin p (q0, E) + k− cos p (q0, E)) = ie
k+V

′
0 + k−

√
2E − V ′ 20√

2E
, (14)

which means that this transformation is pure nilpotent and numerical part ofq does not change. On the fermionic shell the
bosonic equation (3) takes the form

..
q + V ′ (q)V ′′ (q)− V ′′′ (q) e = 0. (15)

Therefore the bosonic solution on the fermionic shell can be written as follows

q (t) = q0 (t) + eqN (t) . (16)

Then forq0 (t) andqN (t) we have the equations

..
q0 + V ′0V

′′
0 = 0, (17)

..
qN + (V ′0V

′′
0 )
′
qN − V ′′′0 = 0. (18)

After first integration we formally obtain

q̇2
0 + V ′ 20 = 2E0, (19)

q̇0q̇N + V ′′0 qN − V ′′0 = EN , (20)



whereE0 andEN are even integration constants andV0 ≡ V (q0). Then the trajectory of such classical system is given by

t =

∫
dq0√

2E0 − V ′ 20

, (21)

qN = 2
√

2E0 − V ′ 20

∫
dq0

EN + V ′′0
(2E0 − V ′ 20 )

3/2
+ C

√
2E0 − V ′ 20 . (22)

Let us assume thatq0 (t) , qN (t) ∈ R (for simplicity, but more complicated cases are possible). From the above
example one can see that classical “bosonic” trajectory of supersymmetric one dimensional system takes values not in
the usual real or complex numbers butin the larger structure. This structure is known as the Study numbers [8] which
form the so called dual algebraD1(ι;R) with one nilpotent generator, whereι = e. Dual numbers were introduced in
1873 by Clifford [32]. The dual algebraDn(ι;R) is defined as an associative algebra with unit andnilpotentgenerators
ι1, . . . , ιn, ι

2
k = 0, k = 1, . . . , n with commutativemultiplication ιkιm = ιmιk, k 6= m. The general element of

Dn(ι;C) has the forma = a0 +
∑2n−1
p=1

∑
k1<...<kp

ak1...kpιk1
...ιkp , a0, ak1...kp ∈ C.Forn = 1 we haveD1(ι1;C) 3

a= a0 + a1ι1, i.e. dual (or Study) numbers, whena0, a1 ∈ C. Forn = 2 the general element ofD2(ι1, ι2;C) is written
as follows:a = a0 + a1ι1 + a2ι2 + a12ι1ι2. A function of a dual argument is defined by its Taylor expansionf (x) =
f(x0 + ιkxN ) = f(x0) + ιkxNf

′(x0). The dual numbers have many applications, e.g. in such fields as 3D measurement
problem [33], Lie and Hopf algebra contractions [10, 34].

NILPOTENT MECHANICS. LAGRANGIAN FORMULATION

Let us consider the one-dimensional trajectory as adual algebravalued function1 x (T), x,T∈D1(ι;R) (i.e. with
values in a Banach superalgebraΛ0 with two generators1, ι, whereι2 = 0 [35, 36]). Then

T = t+ ιtN , x (T) = x0 (T) + ιxN (T) . (23)

The derivative is of the following form [35, 36]

∂

∂T
=

∂

∂t
+ ι

∂

∂tN
, (24)

the conjugation is defined as
∂

∂T̄
=

∂

∂t
− ι ∂

∂tN
, T̄ = tN , (25)

and the Cauchy-Riemann conditions are

∂x0 (T)

∂tN
= 0,

∂x0 (T)

∂t
=
∂xN (T)

∂tN
. (26)

Now the full derivative is
dx (T)

dT
= ẋ0 (t) + ι [ẋN (t) + ẍ0 (t) tN ] , (27)

where dot denotes differentiation byt.
Let U (x) = U0 (x) + ιUN (x), then thedual algebravalued lagrangianL has the form

L =
1

2

(
dx (T)

dT

)2

−U (x (T)) . (28)

Expanding in series with respect toι we obtain decompositionL = L0 + ιLN (cf. (7) with e = ι), where

L0 =
1

2
ẋ2

0 (t)− U0 (x0 (t)) , (29)

LN = ẋ0 (t) ẋN (t)− xN (t)U ′0 (x0 (t))− UN (x0 (t)) + tN ẋ0 (t) [ẍ0 (t)− U ′0 (x0 (t))] , (30)

The prime here denotes differentiation with respect to the variable.
The second time parametertN emerges naturally within this approach and suggests relation to the two-time theory

developed by Bars at al. [37, 38, 11, 12, 39, 13] and allows various holographic pictures of the supersymmetric model. We
will discuss this in the forthcoming paper. Here we consider only the simplest picture where one takes into account single
time t with tN = 0.

1Dual valued variables will be written in bold.



Let us consider a model of the nilpotent mechanics defined by lagrangians (30) on hyperplanetN = 0. In this case
nilpotent mechanics is described by two lagrangians

L0 =
1

2
ẋ2

0 − U0 (x0) , (31)

LN = ẋ0ẋN − xNU ′0 (x0)− UN (x0) , (32)

whereL0 = L0 (x0, ẋ0) is a usual lagrangian of point particle,LN = LN (x0, xN , ẋ0, ẋN ) is nil lagrangian which depends
on two degrees of freedom2.

At the first glance we have three generalized momenta

p0 =
∂L0

∂ẋ0
= ẋ0, (33)

pN =
∂LN

∂ẋ0
= ẋN , (34)

p1 =
∂LN

∂ẋN
= ẋ0. (35)

Let us notice that
p1 = p0, (36)

what is a consequence of nilpotence andι2 = 0.
Equations of motion are of the form

ẍ0 + U ′0 (x0) = 0, (37)

ẍN + xNU
′′
0 (x0) + U ′N (x0) = 0. (38)

So we formally have anadditional integral of motionEN

ẋ0
∂L0

∂ẋ0
− L0 =

ẋ2
0

2
+ U0 (x0) = E0, (39)

ẋ0
∂LN

∂ẋ0
+ ẋN

∂LN

∂ẋN
− LN = ẋ0ẋN + xNU

′
0 (x0) + UN (x0) = EN . (40)

Using (40) and∂/∂t = ẋ0∂/∂x0 we obtain

2 (E0 − U0 (x0))x′N (x0) + U ′0 (x0)xN (x0) = EN − UN (x0) . (41)

One can see that the system has two return points

E0 = U0 (x0)⇐⇒ xN (x0) =
EN − UN (x0)

U ′0 (x0)
, (42)

EN = UN (x0)⇐⇒ xN (x0) = C
√
E0 − U0 (x0), (43)

whereC is integration constant. If simultaneouslyE0 = U0 (x0) andEN = UN (x0), thenxN (x0) = 0.
The solution forxN (x0) can be obtained in the explicit form

xN (x0) =
√
E0 − U0 (x0)

(
1

2

∫
dx0

EN − UN (x0)

(E0 − U0 (x0))
3/2

+ C

)
. (44)

The term withC can be removed by shifts in parametertN and therefore we chooseC = 0. Then the on-shell
lagrangians take the form

L0 = E0 − 2U0 (x0) , (45)

LN = EN − 2UN (x0)− U ′0 (x0)
√
E0 − U0 (x0)

∫
dx0

EN − UN (x0)

(E0 − U0 (x0))
3/2

. (46)

Note that we cannot put the termLN to zero using parameters of the theory, and therefore the full lagrangian of the
nilpotent mechanics always takes value in Study numbers (LN 6= 0).

Standard passage to the phase space is not possible for the lagrangianL, since its Hessian vanishes∣∣∣∣ ∂L

∂q̇i∂q̇j

∣∣∣∣ = ι2 = 0, q̇i = ẋ0, ẋN . (47)

Nevertheless, we will not use here the Dirac constraint approach (see e.g.[40]), but we will try to provide some
modification of the Legendre transformation specially for the dual spaceD1(ι;R) [29].

2We note thatx0 (t) andxN (t) are considered as 2 independent functions.



GENERALIZED LEGENDRE TRANSFORMATION

Let us consider a general function on dual spaceD1(ι;R) → D1(ι;R) y = f (x) + ιh (x), wherex = x0 + ιxN .
Then

y = y0 + ιyN , (48)

y0 (x0) = f (x0) , (49)

yN (x0, xN ) = xNf
′ (x0) + h (x0) . (50)

We construct the Legendre transformation fory0 (x0)→ g0 (p0, x0) andyN (x0, xN ) separately taking into account
thatyN (x0, xN )→ gN (pN , p1, x0, xN ) is a function of two variables [41] as follows

g0 (p0, x0) = p0x0 − y0 (x0) , (51)

gN (pN , p1, x0, xN ) = pNx0 + p1xN − yN (x0, xN ) . (52)

As usually [41] we determine parametersp0, pN , p1 from condition of maximum of g0 (p0, x0) and
gN (pN , p1, x0, xN ) as the functions ofx0, xN , and obtain

p0 =
∂y0 (x0)

∂x0
= f ′ (x0) , (53)

pN =
∂yN (x0, xN )

∂x0
= xNf

′′ (x0) + h′ (x0) , (54)

p1 =
∂yN (x0, xN )

∂xN
= f ′ (x0) . (55)

Equality ofp0 andp1, i.e.
p0 = p1 (56)

is a consequence of generalized Cauchy-Riemann conditions for the analyticity of dual number valued functions [35].

∂y0

∂xN
= 0, (57)

∂y0

∂x0
=
∂yN

∂xN
. (58)

We use (52), (56) and (50) to obtain

gN = pNx0 + p0xN − yN = pNx0 + f ′ (x0)xN − xNf ′ (x0)− h (x0) = pNx0 − h (x0) . (59)

Then the final form of the Legendre transformation (taking into account (56)) is

g (pN , p1, x0, xN ) = g0 (p0, x0) + ιgN (pN , p1, x0, xN ) , (60)

where

g0 (p0) = p0x0 (p0)− f (x0 (p0)) , (61)

gN (pN , p0) = pNx0 (p0)− h (x0 (p0)) . (62)

The functionx0 (p0) is determined from eq.(53). Notice that the difference between (61) and (62) is only inf (x0 (p0))
andh (x0 (p0)).

NILPOTENT MECHANICS. HAMILTONIAN FORMULATION

Let us apply previously generalized Legendre transformation to the nilpotent mechanics lagrangianL = L0 + ιLN ,
whereL0 andLN are given by eqs. (31) and (32) respectively. In this way we obtain the following hamiltonian

H = H0 + ιHN , (63)

where

H0 (x0, p0) = p0ẋ0 − L0 =
p2

0

2
+ U0 (x0) , (64)

HN (x0, xN , p0, pN ) = pN ẋ0 + p0ẋN − LN = p0pN + xNU
′
0 (x0) + UN (x0) , (65)



and we have used conditionp1 = p0 (56). The resulting hamiltonian equations of motion are of the form

ẋ0 =
∂H0

∂p0
, ẋ0 =

∂HN

∂pN
, ẋN =

∂HN

∂p0
,

ṗ0 = −∂H0

∂x0
, ṗN = −∂HN

∂x0
, ṗ0 = −∂HN

∂xN
.

(66)

Analogously as forLN nowHN contains all the information about motion of the system. Component energies are
defined by

H0 (x0, p0) = E0, (67)

HN (x0, xN , p0, pN ) = EN (68)

and the full energy is a dual valued number as wellE = E0 + ιEN . The component phase space has two sectors with
Poisson brackets specific for each sector. Namely

{A,B}0 =

(
∂A

∂x0

∂B

∂p0
− ∂A

∂p0

∂B

∂x0

)
(69)

and

{A,B}N =

(
∂A

∂x0

∂B

∂pN
− ∂A

∂pN

∂B

∂x0

)
+

(
∂A

∂xN

∂B

∂p0
− ∂A

∂p0

∂B

∂xN

)
. (70)

We note that in “nilpotent” sector of the phase space the Poisson bracket is related to unusual conjugation of canonical
variables

x0 ↔ pN and xN ↔ p0. (71)

The second Poisson bracket hereωijN can lead to additional quantization rule with additional (to Planck~) constant~N
using nil HamiltonianHN (65). Analogous effect is also present in the quantization over the oddons of anti-bracket (super-
symmetric) systems (cf. [42, 43] and references therein).

CONCLUSIONS

We emphasize that the dual numbers are necessary to formulate in a consistent way supersymmetric models. The
supersymmetry transformations as well as the dynamics of the model have to be written in terms of a new nilfold language.
General picture of new nilpotent models on the dual spaceD1(ι;R) corresponding toN = 1 supersymmetric models
requires the presence of two time parameters what is related closely to the two-time approach developed by Bars at al.[37,
38]. In case ofN supersymmetries [44, 45] one should consider many-time approach. This aspect of the nilpotent mechanics
as well as its relation to theD = 11 supersymmetric mechanics and string/brane/M theory will be presented elsewhere.
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СУПЕРСИММЕТРИЯ, НЕТРИВИАЛЬНАЯ ФЕРМИОННАЯ ПОВЕРХНОСТЬ И НИЛЬПОТЕНТНАЯМЕХАНИКА
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Необходимость рассматривать четные нильпотентные направления в последовательной классической суперсимметричной те-ории продемонстрирована на примере простейшей суперсимметричной модели. Утверждается, что любая суперсимметричнаятеория на фермионной массовой поверхности эквивалентна соответствующей нильпотентной механике.
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