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Various aspects of noncommutative geometry which became recently an important tool of building theoretical models of elementary
particle physics on noncommutative space-time are studied. The way of consistent construction of codifferential calculi, a dual analog

of differential calculi, which is the ground of any particle model, is shown. The dual analog of derivation, a coderivation, and covariant
maps are introduced and corresponding consistency equations are presented for coalgebras and comoduli. Concrete examples for some
finite groups, which are important for particle physics models on discrete space-time, are developed manifestly. Codifferential calculi on
finite groups are constructed, where covariant conditions lead to some special system of functional equations which are solved in various
cases. It is outlined that further investigation can be connected with properly dualizing of corresponding complexes and bicomplexes.
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Recently field theories on nhoncommutative spaces gained a lot of interest because of the appearance of such theories
as certain limits of string, D-brane and M-theory (see [1, 2] and the refs therein). In view of application of noncommutative
geometry [3, 4, 5, 6, 7] and quantum groups [8, 9, 10] in modern theoretical models of particle physics [11, 12, 13, 14, 15]
the extension of the notion of derivation is very important and promising. In the noncommutative geometry one replaces the
algebra of smooth functions on a manifold by some associative and nhoncommutative ggelichin search of analogs
of vector fields one defines them as derivationgioSuch a point of view has been pioneered by Robert Hermann [16]. In
order to be able to formulate dynamics and field theories on or with such ‘generalized spaces’, a convenient tool appears
to be a ‘differential calculus’ [17, 18, 19, 20] on it which is an algebraic analogue of the calculus of differential forms on
a manifold (see also [21, 22]). From another side discrete spaces play a fundamental role in the building of elementary
particle models in the framework of noncommutative geometry [23, 24, 25, 26]. However the algebra of functions on a
finite set do not admit any derivation besides the trivial one which maps everything to zero. In some special cases there is
a distinguished set of maps which satisfy a modified derivation rules, but a suitable general concept is missing.

In this paper we consider another approach which starts from observation [27] that a derivation of an algebra induces
a coderivation on a subspace of its dual [28, 29]. We study generalization of coderivation to comodules of coalgebras,
coderivations between bicomodules, and then generalized bicovariant maps from which coderivations emerge as special
cases. Then we apply these results to maps between spaces associated with differential calculi over finite groups and prove
some useful statements.

COALGEBRAS AND HOPF ALGEBRAS

Here we review some properties of coalgebras and Hopf algebras [30, 31] starting with definitions to make the paper
self-contained. An (associativae)gebrais a triple(A, m, ) (usually denoted byA), whereA is a linear space over a field
K together with the tensor produgk and two mapsn : AxA — A andn : K — A such that 1)m andy are linear;
2y m(mex 1) = m(1®xm) (associativity); 3m(1®xn) = m(n®x1) = id (unit). The producta®xb andm(a®xb) are usually
denoted bya®b anda - b (or abfor obvious cases), and so the associativitg (sc) = (ab) c, a, b, c € A. Property 3) is an
unusual way of saying thafl has a unit element, for letRac ARK ~ A, thenm(n®1l)(a®a) = n(a)a which by property
3) is equal towa. This means thaf(a) = « - 1 where 1 is the unit element ofl. Let (A, M#,n4) and (B, mg, ng) be
two algebras, then the tensor product spd@es is naturally endowed with the structure of an algebra. The multiplication
Mags ONARSB is defined bymzes = (MA®Mg)(197®1) wherer is the so called flip map(agb) = b®a, or more explicitly
multiplication onA®B readga;®b,) - (a20by) = (a1 - a2)R(b: - by). It follows that the set of algebras is closed under taking
tensor products. The algebra is calimmutativeif m= mo 7 (or ab = ba).

Despite these abstract algebras are of considerable importance themselves, in physics one is primarily interested in
their representations, the homomorphisms from the algebra to an algebra of linear operators on some vector space. Let
(A, mn) be an algebray a linear space and a map from#A to the space of linear operators\) then(V, p) is called
a representatiorof A if 1) p is linear; 2)p(xy) = p(X)p(y). In physics it often happens that one has to compose two
representations (for example when adding angular momenta). This happens when two physical systems each within a
certain representation interact (for example two shi particles). Mathematically this means that one must consider
tensor product representations of the underlying abstract algebra. Syppoée andy,, V,) are two representations of
an algebraA. How do we define an action ofi anV,®V, usingy; andy, ? There are only two reasonable possibilities:



1) the action ofa € A onvi®V, € Vi®Vs is: a- (vidve) = (Y1(avi)R(p2(a)ve); 2) the action ofa on vi®v; is a -

(Vi®vo) = yi(a)vi®vs + vi®y(a)ve. Definition 1) certainly does not satisfy the required properties since such a tensor
product representation would not be linear. Definition 2) has the problem that the homomorphism property does not hold
unless the multiplication o is antisymmetric (as is the case in for example a Lie algebra). There seems no way out, we
have to endow the algebra with sometra structurethat is comultiplicatiomA which makes it possible to define tensor
product representations. Consider a mapA — ARA and define the tensor product representatioi’by (y1®y2)A,
whereV is linear, satisfy the homomorphism property and the representgiasd/,)®V; and Vi®(Vo®V3) are equal,
therefore the set of representations becomes a ring. These requirements lead to the following conditidpa @nlinear;

2) A(ab) = A(a)A(b) (algebra homomorphism); ARid )A = (id®A)A (coassociativity). A map : A — ARA with

these properties is calleccamultiplication(or coproducj. Associated with the multiplication ofi there is a mag whose
properties signaled the existence of a uni@inAnalogously, @ounitis amape : A — K such tha{l®e)A = (e®1)A = id.

The se{A, A, ¢) is called acoalgebra and the setA, m, A, n, €) is called aialgebra if all the above properties are satisfied.

A coalgebra izocommutativéf A = 7o A. In the Heyneman-Sweedler notation [2L{c) = }; ¢x) ® ¢z (usually dropping
summation symbol). IA(c) = c® cande(c) = 1, then the element € A is calledgrouplike Let (A, mg,n4) and

(8, mg, ng) be algebras, than the linear map A — Bis analgebra mapif fomg = mgo f (or f (a-b) = f (a)- f (b)) and
fona=ng(orf(lg) =1g),ac A be B.Let(C,Ac, ec) and(D, Ap, ep) be coalgebras, than the linear mapC — D

is acoalgebra mapif Ap (f (c)) = f (cq)) ® f (cz) andep (f (c)) = ec (C), € € C. A coalgebra map is isomorphism, if it

is one-one and onto. AlSB® D is a coalgebra withh (c® d) = (¢ ® duy) ® (Cr) ® dizy) ande (@ d) = g¢ (C) ep (d). A

star multiplicationx is defined by(f % g) (c) = f (c(1)) 9(cz)) = m(f ® g) A.

Let C* be the space of linear mapgs— K and(, ) denotes the pairing. If we define a linear map: C* ® C* —» K
by m" (a" ® b*) = a*b*, where(a*b*, c) = (a* ® b*, A(c)) = (a", cp)) (b*, ¢p)), a*,b* € C, n* (1) = e andA (c) = ¢y ® C),
then the tripleC*, m*, %) is the dual algebra of the coalgel{@ A, ¢).

An analog of inverse for groups, a mégrom the group to itself such thafg)g = gl(g) = e, wheree is the unit
element of the group, there is an extra structure called an antipode or coinvétspf Algebrais a bialgebrd A, m,n, A, €)
together with a maf® : A — A called anantipode with the propertyn(Sgid )A = m(id ®SA = n o €S As an example
one can considds as a compact topological group with the space of continuous functio@sd@moted byC(G), which is
a Hopf algebra together with the maffsh)(g) = f(g)h(g), A(f)(0:1992) = f(9102), n(X) = XL wherel(g) = 1 for all geG,
&(f) = f(e), whereeis the unit element oB, (f)(g) = f(g™%), whereg;, g2, g € G, x e C andf,h € C(G).

Suppose thatH, m A, n, &, S) is a Hopf algebra and th&{* is its dual space, then using the structure mapq ane
defines the structure magsi‘, A*, n*,&*S") on H* as follows:(m*(a*®b*),a) = (a*®b*, A(a)), (A*(a*), a®b) = (a*, ab),
n*(a),a) = a.g(a), @) = @,1), (S@),a = @, Sa), wherea*,b* € H* anda,b € H. The dual contraction
betweenH* and/H satisfiega*®b*, agh) = (a*, a)(b*, b). It is easy, using the fact tha&{ is a Hopf algebra, to verify that
H* is also a Hopf algebra. Note thatf is commutative thefH* is cocommutative, and i is cocommutative thef*
is commutative. This is so because the multiplicatior#6imduces the comultiplication oi(*, and the comultiplication
onH induces the multiplication ofi{*.

CODERIVATIONS AND COALGEBRAS
A linear endomorphisnd : A — A of an algebrd A, m, 5) is aderivationof A, if 6 (a-b) =a-d(b) + 5 (a) - bor
dom=mo (id ®6) + mo(6®id). Q)

Dualizing this definition we obtain the notion of coderivation. A linear endomorpliismC — C of a coalgebra
(C, A, &) is acoderivationof C, if
Aodpr=(id®6a)0o A+ (a®id) 0 A, 2

which can be called eo-Leibniz rule The duals, : C* — C* of 6, is determined by the pairing
(6*Ac*, c) = (C", 6AC). (3)
If 57, is a derivation olC*, thend, is a coderivation o€, which is seen from the following identities
(65 (@ - b%).c) = (@ - b".650) = (a". (5a0)w)) (b". (5a0)z)) = (&' ® b", A (650)) (4)
and
(@ ob", (id ®6a) o A(C) + (5o ®id) o A(c))

(@, c) (63b". ) + (s, ey ) (B". )

@, cu) <b*, (5AC)(2)> + <a*, (5AC)(1)> (b*,c) =
((63a) - b +a (63b7).c). ®)



wherea’,b* € C*, ¢ € C. Thusé, — &) presents a one-one correspondence between the coalgebra derivatiandf
the continuouderivations ofC*. From coassociativitfA®id )A = (id ®A)A and the identity

((@-b")-c,c)
@ (®b"®c), (id®A) o Ac)

(@ -b)ec,Ac)y=((@" ®b’)®c", (A®id) o Ac) =
@ ® (b -c),idec) =@ - (b*-c"),c)

it follows the associativity of the product if*, and conversely, associativity of the dual algef@a m*, z*) implies the
coassociativity of the coalgeb(@, A, &).
A natural generalization of the derivation (1)is-derivation[28] defined bys*” (a- b) = p(a)-6 (b) + 6 (a) - o (b) or

7 om=mo (p®7)+mo (& ®0), (6)

wherep, o are algebra homomorphisni8 — K. By analogy dualizing (6) we define @-coderivationas a linear
endomorphisnd,” : C — C of the coalgebréC, A, ¢) by

Ao =(uedy)oA+(dy ®v)oA, @)

wherey, v are coalgebra homomorphisiis— K. Similarly (4)—(5) we derivep = y* andn = v*.
If (C,Ac,ec) and(D, Ap, ep) are two coalgebras, then we define a covariant &ié’p: C > Dhy

Ap o 65 = (id ®65°) 0 Ac + (65P ®id ) 0 Ac, ®)

which can be used to study various properties of coalgebras. Note that the structure of the right-hand side of (8) requires
Ap:D - (CD)®(D®C) C (D D).

CODERIVATIONS AND COMODULES

Let (C, A, €) be a coalgebra over a field of characteristic zero. Aeft C-comodulg My, AL) is a linear space ovét
with a linear mapA_ : M. — C ® M, such that

(id®A) oA =(A®id) o A,. 9)
A right C-comodule Mg, AR) is a linear space ovék with a linear map\r : Mg — Mg ® C such that
(Ar®id) o Agr = (id ® A) o Ag. (20)

A C-bicomodule(M, AL, AR) is a left and rightC-comodule. Notice that itself is a leftC-comodule withA| = A
and a rightC-comodule withAg = A, or aC-bicomodule withA| = A, Ag = A.

Let us consider covariant maps between comodules. In (@ekeA ) and (M’L,A’L) are two leftC-comodules, a
comodule malﬁk - My — M is calledleft-covariant if

Al 085 = (id @) 0 AL (11)
For (Mg, AR) and(M’R, A’R) are two rightC-comodules, a comodule méﬁ - Mg — Mg is calledright-covariant if
Ago 8y = (6] ®id) o Ar. (12)

In case(M, AL, Ar) and(M’,A’L,A’R) are twoC-bicomodules, a magtR : M — M’ is calledbicovariant if
(AL +AR) 0 657 = (id ® 557) 0 AL + (857 ®id ) 0 Ar. (13)

Some generalization of (13) can be made if consider a map to the coalgebra, indeedy'ife’) is a coalgebra, a
linear maps? : M — €’ is calledbicovariant if

A 0 60 = (id ®67°) o AL + (60 id ) 0 Ar. (14)

SettingA” = A] + Aj the conditions of left- (11) and right-covariance (12) 6§F°V implies (14). Additionally, the
coassociativity of\’ leads to thecompatibility conditiorof A_ andAg

(id ® AR) o AL = (AL ®id) 0 Ag. (15)



If (M, AL, AR) is aC-bicomodule with the compatibility condition, a linear maff°v?®" : M — C satisfying (14)
with A’ = A . ‘ A
Ao 62|covder: (id ® 6g|covder) o AL + (62|covder® id) o Agr. (16)

is called abicomodule coderivatiarThus, dirst order codifferential calculuen a coalgebr& consists of &-bicomodule
(M, AL, AR) and a bicomodule coderivatioiiico"de’satisfying (16). Note that covariant maps subject to one of the above
conditions form a linear space ov&r

In a coordinate language [32, 33] a left comodule with a bi@gjds defined by

) =L®e, (17)
whereC-valued matrix eIemenlB‘k have to satisfy the following relations (see e.qg. [30])
ALY = Lo L, s(L) =0
A right comodule structurer can be encoded by
rR(E) = 8 @R, (18)

with ' ' ' '
AR =Ry @R &(R) = 6y

The compatibility condition (15) reads as
LeR"=L"oR. (19)

Writing a bicomodule coderivation @§°°Vde" = & & gy, the relation (16) becomes a restriction on the coefficiéints
as

AK) = LL®6 + 6 ®R.. (20)

In analogy with the algebra case, the elements of the bicomodule can beletdlend cofieldsand the (left) dual can
be called (leftyvector cofield$32]. With any vector cofielX = X' ® g one can associate an endomorphishe EndC

X =5o0X=X 4. (21)

which is the dual counterpart of the Cartan formula (see e.g.[34]).
A given a groupGs with product+ determines a coprodugt: A — A® A on the algebraA of functions on the group

A(f)(g.9) = f(g=9). (22)

wheref € A, 9.9 € G which is an algebra homomorphism. This coproduct encodes all the information about the
underlying group structure on the level of the algelftaMoreover, this ‘reformulation’ of the group product allows
deformations which, in particular, is the origin of ‘quantum symmetries’.

Let(C, AL) be a leftA-comodule. This means thatis a leftA-module and\| : C —» A®C is a linear map such that

AL(f-a) = A(f) 0 A(a)

orall f e Aanda € C. Let(C, Ar) be a rightA-comodule. This means thatis a rightA-module and\g : C > C® A is
a linear map such that
Ar(a - ) = Ar(a) o A(f)

forall f e Aanda € C. Let(C, AL, Ar) be anA-bicomodule. This is a left and rigtfi-comodule such that

Af-a-f)
AR(f - a- 1)

A(f) o AL(@) o A(F)
A(f) o Ar(@) o A(f")

forall f, f € Aanda € C. Special examples of (bi)comodules are determined by first order bicovariant differential calculi
on Hopf algebras [20] and in particular on finite groups [35]. Indeed, the derivdtioR” — Q™ of a left- (or right-)
covariant differential calculus is a left- (right-) covariant map [20]. For a bicovariant differential calcufluen satisfies

(11) and (12), which imply (14) witl\’ = A| + Ag on the spac&! of 1-forms (see also [36]). In the following we explore

the meaning of other covariant maps associated with spaces determined by differential calculi on Hopf algebras and in
particular on finite groups [35].



COMODULES AND COVARIANT MAPS ASSOCIATED WITH FINITE GROUPS

Let A be the set of.-valued functions on a finite group. With each elemerg € G we associate a functicgd € A
via e¥(g') = 63 Then

fed =99 f, Zegzl

geG
wherel is the unit inA. Every functionf on G can be written as

f=> fge
geG
with fg € C. The group structure oG induces a coprodudt : A — A® A via (22). In particular, we obtain
A() = Z dede.
heG

Let us consider a self-mafa : A — A with the action on functione? determined by

Sa(€9) = Z Foe. (23)

heG

This map is covariant in the sense of (16). Inserting (23) gives
-1 -1 ,
Fo=F 9+F" | VhiheG. (24)

The general solution has the form
FJ = o(h™tg) - d(gh™) (25)

with an arbitrary functiord : G — C. Moreover, ifG is a finite group (that is our case), then every solution of (24) has the
form (25). To prove this fact we change variables and rewrite (24) in the form

9_ 9 h™igh
Fo=Fnw—-Fy -
Notice that left-hand side does not depend figrand then take finite sum over &l € G, which gives
9_ |1 g h-*ght
Fh—|G |Z(th’_Fh’ )
heG

After summing the right-hand side and introducing a new function of one variable

o(g) = -1GI* ) FE"
heG
we obtain (25). So that the solution for the coderivation fafs
5a(e9) = > [w(hg) — d(gh™)] €. (26)
heG

SinceA(1) = 1® 1, we have in particular

Aoda(l) = 1@6a(1) +6a(D) @ 1

and
oa(1) = 6a(D &) = ) 0a(&) .
geG geG
Using (26), we obtain
sa(1) = 0.

Moreover, directly from (26) it follows that for commutative finite groups, whi(e™1g) = ®(gh™), the only solution of
(24) is trivial oneFﬁl = 0andéd, = 0. Thus, the map, “measure” noncommutativity of a finite gro



DIFFERENTIAL CALCULI ON FINITE GROUPS

A differential calculuson A is an extension ofA to a differential algebrdQ, d). HereQ = EBZO Q" is a graded
associative algebra whef¥® = A. Q"' is generated as aA-bimodule via the action of a linear operatbr. Q" — Q'*1
satisfyingd® = 0, d1 = 0, and the graded Leibniz ruld{pe’) = (dp) ¢’ + (-1) ¢ dy’ wherep € Q'. We introduce the
special 1-forms (see e.g. [35])

€99 = 9 deY, (9#9), e99=0 (27)

O # gi+1 (i = 1,...,r—1) then constitute a basis ov@rof Qlforr > 1. Every other differential calculus dais obtained
from Q as the quotient with respect to some two-sided differential ideal. Up to first order, i.e., the level of 1-forms, every
differential calculus oG is obtained by setting some of te&9 to zero, which induces relations for forms of higher grade.
In addition, or alternatively, one may also factor out ideals generated by forms of higher grade. Every first order differential
calculus onG can be described by a (di)graph the vertices of which are the eleme@tarad there is an arrow pointing
from a vertexg to a vertexy' iff €29 # 0.
A differential calculus orG (or, more generally, any Hopf algeh#) is calledleft-covariant[20] if there is a linear
mapA, : Q! - A® Q! such that

A(fof)=AHAWAF) VT eA pel

and
A od=(ded)oA.

As a consequence of (27) and (28), we obtain

AL(SY) = Y & g (29)

heG

Hence, in order to find the left-covariant differential calculi®@nwe have to determine the orbits of all elements of
(G x G) where the prime indicates omission of the diagonal ({@x G)’ = (Gx G) \ {(9,9) | g € G}) with respect to
the left action(g, g’) — (hg, hg). In the graph picture, left-covariant first order differential calculi are obtained from the
universal one (which is left-covariant) by deleting corresponding orbits of arrows.

A differential calculus orG is calledright-covariant[20] if there is a linear mapg : Q' — Q' ® A such that

Ar(f o ) = A(F) Ar(@) A(f'), Arod=(d®id)oA .

This implies
AR(€29) = Z ehdh g™ (30)
heG
A differential calculus is calleticovariantif it is left- and right-covariant.

CODIFFERENTIAL CALCULI ON FINITE GROUPS

A first order codifferential calculu®n a finite groupG consists of a space of various forms having structure of
bicomodule and a bicomodule coderivatignsatisfying

A05A=(id ®6A)OAL+(5A®id)OAR. (31)

Let us consider concrete finite group examples of solution of (31).
Bicovariant maps Q! — A. In order to determine the corresponding bicovariant mﬁiﬁs Q! - A, we have to
evaluate
Ao 5 (e9) = (id®61°) o AL(EPY) + (5,° ® id) o AR(E2Y). (32)

Writing
50(e@) = 3 FI9 &

heG



with Fﬁ’g € C, the bicovariance condition results in the linear system
g,g/ _ h—lg,h—lg; gwflyg/h/fl ,
Foy = Fy +F vYh,h" e G

whereg # g for the universal differential calculus. The paiig g') have to be further restricted in case of smaller
bicovariant differential calculi. Using the ansatz (26), we obtain the general solution of the above system as

FI9 = o(h~ig,h™ig) — o(gh™, g'h™) (33)

with an arbitrary functiord : Gx G — C.
Bicovariant maps Q' ® - -- ®4 Q' — A. Here we consider bicovariant mald : Q' @4 -+ ®x Q' — A where
N—— ——— N— ————

r r
Q! is the space of 1-forms of a bicovariant differential calculus on a finite group. First we need the left and right coactions

on ther-fold tensor produc®! ® 4 - - - ®4 Q. These can be obtained from the coaction§$mccording to formulas (3.3)
SN—— —

and (3.4) in [20]

AL(eg1 ..... gr) — Zeh—1®ehg1 ,,,,, hg (34)
heG

AR(E9) = ) ehshge (35)
heG

Let us expand

;
and so]° = 0.
Covariant maps between tensor products of 1-formsLet Q! be the space of 1-forms, and we consider a linear map

5rA|S:Ql®y("'®y(Ql—)Ql®_7("'®g(Ql .

r times stimes

We expand

First we explore the bicovariance condition (14) with= A, + Ar Where the left and right coactions are given by
(34)—(35). The calculation shows that in this case the bicovariance condition splits into the separate conditions of left and
right covariance, i.e. (11) and (12) wittj = A_ andAf, = Ar. The left and right covariance condition take the form

G0 _ SN NG Ot,s0r _ 0100
&b = @nn e &= A VheG,

.....

respectively. This means that the coeffici s, are constant on left and right orbits.

,,,,,

Another possibility is the covariance condition (B)withy = Ac = A = AL + Ag.
Covariant maps A — Q' ®4 - -- ®4 QL. Let us consider a linear map

WA O aa QL
D
S

with expansion

.....



Now we explore the covariance condition (14) with= A_ + Ar Where the left and right coactions are given by (11) and
(12). The calculation shows that in this case the bicovariance condition splits into the separate conditions of left and right
covariance. The left covariance condition takes the form

g _ gha
Fru.he = Fhu. i YheG,
whereas the right covariance condition reads
g _ goh
Frohe = Frnonn  YheG

,,,,,

Bicovariant maps of the space of 2-formsThere is a bimodule |somorphism: Ql ey Q! - Ql g4 Q! given by
(€% @q 2% = 919001 . 9309195
(see [20)). Iféi'o is a bicovariant ma@! ® 4 Q! — A, then also, = 52'0 o ¢. Indeed, from [20] we have
Aloco=(d®o)oAL, Aroo = (o®id)oAg.
If 63° is bicovariant and satisfies (14), we can directly find

AO(SiOOO'I(id®5ioOO')OA|_+(5OO'§O®id)OAR

206 (id — o). This induces

so thaty, = 62‘0 oo is also bicovariant. In particular, &2'0 is a bicovariant map, then als§§ = o
a b|covar|ant map on the spa@vor of the Woronowmz 2-forms [20].

Bicomplexes If 62 0, then(A, A,C, AL, Ar, 64) is acomplex We should check that the last condition is compatible
with (14). Indeed, we hav@ =Ao 6§ =(d®d+6®id) o A o 5, and the last expression indeed vanishes using (14) and
6i = 0. The sef(C, A, 54, d) is abicompleXq37] if (C, A,8,) and(C, A, d) are both complexes arld = —ds,. The latter
condition is indeed compatible with (14) since also the right side ©{dds + dod) = (A o d) o 55 + (A o §4) o d vanishes
as a consequence of these conditions. A bicomplex generalizes the concept of a bicovariant differential calculus.

CONCLUSIONS
Thus, we have studied bicovariant differential and codifferential calculi in general using the language of Hopf algebras
and in application to finite groups, which provides a bridge between noncommutative geometry and various treatments of
field theories on discrete spaces (like lattice gauge theory). In discrete (field) theories, discrete groups may appear as gauge
groups, as isometry groups, and as structures underlying discrete space-time models. One may view a field theory on a
discrete set as an approximation of a continuum theory, e.qg., for the purpose of numerical simulations, and in this context
the idea that a discrete space-time could actually be more fundamental than the continuum.
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KOIMPOU3BOJHBIE U KOOAUPPEPEHIIUAJIBHBIE UCUUCJIEHUS HA KOHEYHBIX I'PYIIITAX
C.A. dynaumit
Qu3zuxo-mexnuueckuil gaxyromen, Xapbrosckuil HayuoHatoHwii yuusepcumem um. B. H. Kapasuna
ni. Ce0600uvt, 4, 2. Xapvkos, 61077 ,YVkpauna

PaccmoTpeHs! pa3niyHbIe aCTIEKTH HEKOMMYTAaTUBHON T€OMETPHH, SIBIIAIOIIEHCS B MOCIETHEE BPEMS] BaXKHBIM HHCTPYMEHTOM [ 110-
CTPOCHUSI TEOPETHYECKUX MOZENIEHl (PM3HUKHU HIEMEHTAPHBIX YaCTUIl B HEKOMMYTAaTHBHOM IIPOCTPAHCTBE-BpEeMEHHU. YKa3aH IMyTh I0Cie-
JIOBATEIHHOTO MOCTPOSHUS Koan((epeHIINaTbHOTO HCIHNCICHNS, TyalbHOTO aHaora Iu(pGepeHnHaIbHOTO HCIHCIICHUS, IPeICTaBIIs-
IOIIEr0 co00l OCHOBY JIF000H MOJENH YacTHII. BBeIeHbI B pacCMOTpPEHNE TyalbHBIH aHAIOT POU3BOAHOM, KONPOU3BOJHAS, U KOBapH-
AHTHBIC OTOOPAXKEHUS, IPECTABICHBI COOTBETCTBYIOIINE YPABHCHUS COINIACOBAHHOCTH I KoareOp 1 KoMoaylel. SIBHO uccienoBan
KOHKPETHBIH MpUMep T KOHEUHBIX TPYIII, KOTOPBIH BaKeH ISl MOZIeNIed YacTHIl B TUCKPETHOM IIPOCTpaHCTBe-BpeMeHH. [locTpoeHo
ko depeHImanbHOe NCUUCIEHNE, TIPH 3TOM YCIOBHUS KOBAPHAHTHOCTH OTOOpPayKeHHH NMPUBOIAT K CIHEIHANbHON cucteMe (QyHKIN-
OHAJILHBIX YPaBHEHHUH, KOTOPBIE PELIAIOTCS B PA3IMUHBIX KOHKPETHBIX ciaydasx. OTMeuaercs, 4To JalbHEHIIHe NCCIIeOBaHUs MOTYT
OBITH CBSI3aHBI C IIOCTPOEHHEM COOTBETCTBYIOIIHX KOMIUICKCOB H OMKOMIIIIEKCOB.

KJIFOYEBBIE CJIOBA: HekomMMmyTaTHBHAsI TeoMeTpust, koquddepeHnnaisHoe UCYNCICHNE, KOHeUHas TPyIna, KOMIUIEKC, OHKOM-
IUIEKC, Koasreopa, KOMOIYIb



