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Various aspects of noncommutative geometry which became recently an important tool of building theoretical models of elementary
particle physics on noncommutative space-time are studied. The way of consistent construction of codifferential calculi, a dual analog
of differential calculi, which is the ground of any particle model, is shown. The dual analog of derivation, a coderivation, and covariant
maps are introduced and corresponding consistency equations are presented for coalgebras and comoduli. Concrete examples for some
finite groups, which are important for particle physics models on discrete space-time, are developed manifestly. Codifferential calculi on
finite groups are constructed, where covariant conditions lead to some special system of functional equations which are solved in various
cases. It is outlined that further investigation can be connected with properly dualizing of corresponding complexes and bicomplexes.
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Recently field theories on noncommutative spaces gained a lot of interest because of the appearance of such theories
as certain limits of string, D-brane and M-theory (see [1, 2] and the refs therein). In view of application of noncommutative
geometry [3, 4, 5, 6, 7] and quantum groups [8, 9, 10] in modern theoretical models of particle physics [11, 12, 13, 14, 15]
the extension of the notion of derivation is very important and promising. In the noncommutative geometry one replaces the
algebra of smooth functions on a manifold by some associative and noncommutative algebraA, and in search of analogs
of vector fields one defines them as derivations ofA. Such a point of view has been pioneered by Robert Hermann [16]. In
order to be able to formulate dynamics and field theories on or with such ‘generalized spaces’, a convenient tool appears
to be a ‘differential calculus’ [17, 18, 19, 20] on it which is an algebraic analogue of the calculus of differential forms on
a manifold (see also [21, 22]). From another side discrete spaces play a fundamental role in the building of elementary
particle models in the framework of noncommutative geometry [23, 24, 25, 26]. However the algebra of functions on a
finite set do not admit any derivation besides the trivial one which maps everything to zero. In some special cases there is
a distinguished set of maps which satisfy a modified derivation rules, but a suitable general concept is missing.

In this paper we consider another approach which starts from observation [27] that a derivation of an algebra induces
a coderivation on a subspace of its dual [28, 29]. We study generalization of coderivation to comodules of coalgebras,
coderivations between bicomodules, and then generalized bicovariant maps from which coderivations emerge as special
cases. Then we apply these results to maps between spaces associated with differential calculi over finite groups and prove
some useful statements.

COALGEBRAS AND HOPF ALGEBRAS

Here we review some properties of coalgebras and Hopf algebras [30, 31] starting with definitions to make the paper
self-contained. An (associative)algebrais a triple(A,m, η) (usually denoted byA), whereA is a linear space over a field
K together with the tensor product⊗K and two mapsm : A⊗KA → A andη : K → A such that 1)m andη are linear;
2) m(m⊗K1) = m(1⊗Km) (associativity); 3)m(1⊗Kη) = m(η⊗K1) = id (unit). The productsa⊗Kb andm(a⊗Kb) are usually
denoted bya⊗b anda · b (or ab for obvious cases), and so the associativity isa (bc) = (ab) c, a,b, c ∈ A. Property 3) is an
unusual way of saying thatA has a unit element, for letα⊗aεA⊗K ' A, thenm(η⊗1)(α⊗a) = η(α)a which by property
3) is equal toαa. This means thatη(α) = α · 1 where 1 is the unit element ofA. Let (A,mA, ηA) and(B,mB, ηB) be
two algebras, then the tensor product spaceA⊗B is naturally endowed with the structure of an algebra. The multiplication
mA⊗B onA⊗B is defined bymA⊗B = (mA⊗mB)(1⊗τ⊗1) whereτ is the so called flip mapτ(a⊗b) = b⊗a, or more explicitly
multiplication onA⊗B reads(a1⊗b1) · (a2⊗b2) = (a1 ·a2)⊗(b1 ·b2). It follows that the set of algebras is closed under taking
tensor products. The algebra is calledcommutative, if m = m◦ τ (or ab = ba).

Despite these abstract algebras are of considerable importance themselves, in physics one is primarily interested in
their representations, the homomorphisms from the algebra to an algebra of linear operators on some vector space. Let
(A,m, η) be an algebra,V a linear space andρ a map fromA to the space of linear operators inV, then(V, ρ) is called
a representationof A if 1) ρ is linear; 2)ρ(xy) = ρ(x)ρ(y). In physics it often happens that one has to compose two
representations (for example when adding angular momenta). This happens when two physical systems each within a
certain representation interact (for example two spin1/2 particles). Mathematically this means that one must consider
tensor product representations of the underlying abstract algebra. Suppose(ψ1,V1) and(ψ2,V2) are two representations of
an algebraA. How do we define an action ofA anV1⊗V2 usingψ1 andψ2 ? There are only two reasonable possibilities:



1) the action ofa ∈ A on v1⊗v2 ∈ V1⊗V2 is: a · (v1⊗v2) = (ψ1(a)v1)⊗(ψ2(a)v2); 2) the action ofa on v1⊗v2 is a ·
(v1⊗v2) = ψ1(a)v1⊗v2 + v1⊗ψ2(a)v2. Definition 1) certainly does not satisfy the required properties since such a tensor
product representation would not be linear. Definition 2) has the problem that the homomorphism property does not hold
unless the multiplication onA is antisymmetric (as is the case in for example a Lie algebra). There seems no way out, we
have to endow the algebra with someextra structure, that is comultiplication∆ which makes it possible to define tensor
product representations. Consider a map∆ : A → A⊗A and define the tensor product representation byΨ = (ψ1⊗ψ2)∆,
whereΨ is linear, satisfy the homomorphism property and the representations(V1⊗V2)⊗V3 andV1⊗(V2⊗V3) are equal,
therefore the set of representations becomes a ring. These requirements lead to the following conditions on∆: 1) ∆ is linear;
2) ∆(ab) = ∆(a)∆(b) (algebra homomorphism); 3)(∆⊗id )∆ = (id⊗∆)∆ (coassociativity). A map∆ : A → A⊗A with
these properties is called acomultiplication(or coproduct). Associated with the multiplication onA there is a mapηwhose
properties signaled the existence of a unit inA. Analogously, acounitis a mapε : A → K such that(1⊗ε)∆ = (ε⊗1)∆ = id .
The set(A,∆, ε) is called acoalgebra, and the set(A,m,∆, η, ε) is called abialgebra, if all the above properties are satisfied.
A coalgebra iscocommutativeif ∆ = τ◦∆. In the Heyneman-Sweedler notation [31]∆ (c) =

∑
c(1) ⊗c(2) (usually dropping

summation symbol). If∆ (c) = c ⊗ c andε (c) = 1, then the elementc ∈ A is calledgrouplike. Let (A,mA, ηA) and
(B,mB, ηB) be algebras, than the linear mapf : A → B is analgebra map, if f ◦mA = mB◦ f (or f (a · b) = f (a)· f (b)) and
f ◦ ηA = ηB (or f (1A) = 1B), a ∈ A, b ∈ B. Let (C,∆C, εC) and(D,∆D, εD) be coalgebras, than the linear mapf : C → D
is acoalgebra map, if ∆D ( f (c)) = f

(
c(1)

) ⊗ f
(
c(2)

)
andεD ( f (c)) = εC (c), c ∈ C. A coalgebra map is isomorphism, if it

is one-one and onto. AlsoC ⊗ D is a coalgebra with∆ (c⊗ d) =
(
c(1) ⊗ d(1)

) ⊗ (
c(2) ⊗ d(2)

)
andε (c⊗ d) = εC (c) εD (d). A

star multiplication? is defined by( f ? g) (c) = f
(
c(1)

)
g
(
c(2)

)
= m( f ⊗ g) ∆.

Let C∗ be the space of linear mapsC → K and〈 , 〉 denotes the pairing. If we define a linear mapm∗ : C∗ ⊗ C∗ → K
by m∗ (a∗ ⊗ b∗) = a∗b∗, where〈a∗b∗, c〉 = 〈a∗ ⊗ b∗,∆ (c)〉 =

〈
a∗, c(1)

〉 〈
b∗, c(2)

〉
, a∗,b∗ ∈ C, η∗ (1) = ε and∆ (c) = c(1) ⊗ c(2),

then the triple(C∗,m∗, η∗) is the dual algebra of the coalgebra(C,∆, ε).
An analog of inverse for groups, a mapI from the group to itself such thatI (g)g = gI(g) = e, wheree is the unit

element of the group, there is an extra structure called an antipode or coinverse. AHopf algebrais a bialgebra(A,m, η,∆, ε)
together with a mapS : A → A called anantipode, with the propertym(S⊗id )∆ = m(id⊗S)∆ = η ◦ εS. As an example
one can considerG as a compact topological group with the space of continuous functions onG denoted byC(G), which is
a Hopf algebra together with the maps( f .h)(g) = f (g)h(g), ∆( f )(g1⊗g2) = f (g1g2), η(x) = x1 where1(g) = 1 for all gεG,
ε( f ) = f (e), wheree is the unit element ofG, S( f )(g) = f (g−1), whereg1,g2,g ∈ G, x ∈ C and f ,h ∈ C(G).

Suppose that(H ,m,∆, η, ε,S) is a Hopf algebra and thatH∗ is its dual space, then using the structure maps ofH one
defines the structure maps(m∗,∆∗, η∗, ε∗S∗) onH∗ as follows:〈m∗(a∗⊗b∗),a〉 = 〈a∗⊗b∗,∆(a)〉, 〈∆∗(a∗),a⊗b〉 = 〈a∗,ab〉,
〈η∗(α),a〉 = α.ε(a), ε∗(a∗) = 〈a∗,1〉, 〈S∗(a∗),a〉 = 〈a∗,S(a)〉, wherea∗,b∗ ∈ H∗ anda,b ∈ H . The dual contraction
betweenH∗ andH satisfies〈a∗⊗b∗,a⊗b〉 = 〈a∗,a〉〈b∗,b〉. It is easy, using the fact thatH is a Hopf algebra, to verify that
H∗ is also a Hopf algebra. Note that ifH is commutative thenH∗ is cocommutative, and ifH is cocommutative thenH∗
is commutative. This is so because the multiplication onH induces the comultiplication onH∗, and the comultiplication
onH induces the multiplication onH∗.

CODERIVATIONS AND COALGEBRAS

A linear endomorphismδ : A → A of an algebra(A,m, η) is aderivationofA, if δ (a · b) = a · δ (b) + δ (a) · b or

δ ◦m = m◦ (id ⊗ δ) + m◦ (δ ⊗ id ) . (1)

Dualizing this definition we obtain the notion of coderivation. A linear endomorphismδ∆ : C → C of a coalgebra
(C,∆, ε) is acoderivationof C, if

∆ ◦ δ∆ = (id ⊗ δ∆) ◦ ∆ + (δ∆ ⊗ id ) ◦ ∆, (2)

which can be called aco-Leibniz rule. The dualδ∗
∆

: C∗ → C∗ of δ∆ is determined by the pairing〈
δ∗∆c∗, c

〉
= 〈c∗, δ∆c〉 . (3)

If δ∗
∆

is a derivation ofC∗, thenδ∆ is a coderivation ofC, which is seen from the following identities〈
δ∗∆ (a∗ · b∗) , c

〉
= 〈a∗ · b∗, δ∆c〉 =

〈
a∗, (δ∆c)(1)

〉 〈
b∗, (δ∆c)(2)

〉
= 〈a∗ ⊗ b∗,∆ (δ∆c)〉 (4)

and

〈a∗ ⊗ b∗, (id ⊗ δ∆) ◦ ∆ (c) + (δ∆ ⊗ id ) ◦ ∆ (c)〉 =
〈
a∗, c(1)

〉 〈
b∗, (δ∆c)(2)

〉
+

〈
a∗, (δ∆c)(1)

〉 〈
b∗, c(2)

〉
=〈

a∗, c(1)
〉 〈
δ∗∆b∗, c(2)

〉
+

〈
δ∗∆a∗, c(1)

〉 〈
b∗, c(2)

〉
=

〈(
δ∗∆a∗

)
· b∗ + a∗

(
δ∗∆b∗

)
, c

〉
, (5)



wherea∗,b∗ ∈ C∗, c ∈ C. Thusδ∆ 7−→ δ∗
∆

presents a one-one correspondence between the coalgebra derivation ofC and
thecontinuousderivations ofC∗. From coassociativity(∆⊗id )∆ = (id⊗∆)∆ and the identity

〈(a∗ · b∗) · c∗, c〉 = 〈(a∗ · b∗) ⊗ c∗,∆c〉 = 〈(a∗ ⊗ b∗) ⊗ c∗, (∆⊗id ) ◦ ∆c〉 =

〈a∗ (⊗b∗ ⊗ c∗) , (id⊗∆) ◦ ∆c〉 = 〈a∗ ⊗ (b∗ · c∗) , id⊗c〉 = 〈a∗ · (b∗ · c∗) , c〉
it follows the associativity of the product inC∗, and conversely, associativity of the dual algebra(C∗,m∗, η∗) implies the
coassociativity of the coalgebra(C,∆, ε).

A natural generalization of the derivation (1) isρσ-derivation[28] defined byδρσ (a · b) = ρ (a) · δ (b) + δ (a) ·σ (b) or

δρσ ◦m = m◦ (ρ ⊗ δρσ) + m◦ (δρσ ⊗ σ) , (6)

whereρ, σ are algebra homomorphismsA → K. By analogy dualizing (6) we define aµν-coderivationas a linear
endomorphismδµν

∆
: C → C of the coalgebra(C,∆, ε) by

∆ ◦ δµν
∆

=
(
µ ⊗ δµν

∆

)
◦ ∆ +

(
δ
µν
∆
⊗ ν

)
◦ ∆, (7)

whereµ, ν are coalgebra homomorphismsC → K. Similarly (4)–(5) we deriveρ = µ∗ andη = ν∗.
If (C,∆C, εC) and(D,∆D, εD) are two coalgebras, then we define a covariant mapδCD

∆
: C → D by

∆D ◦ δCD∆
=

(
id ⊗ δCD

∆

)
◦ ∆C +

(
δCD

∆
⊗ id

)
◦ ∆C, (8)

which can be used to study various properties of coalgebras. Note that the structure of the right-hand side of (8) requires
∆D : D → (C ⊗D) ⊕ (D⊗ C) ⊂ (D⊗D).

CODERIVATIONS AND COMODULES

Let (C,∆, ε) be a coalgebra over a fieldK of characteristic zero. AleftC-comodule(ML,∆L) is a linear space overK
with a linear map∆L :ML → C ⊗ML such that

(id ⊗ ∆L) ◦ ∆L = (∆ ⊗ id ) ◦ ∆L. (9)

A right C-comodule(MR,∆R) is a linear space overK with a linear map∆R :MR→MR ⊗ C such that

(∆R ⊗ id ) ◦ ∆R = (id ⊗ ∆) ◦ ∆R. (10)

A C-bicomodule(M,∆L,∆R) is a left and rightC-comodule. Notice thatC itself is a leftC-comodule with∆L = ∆

and a rightC-comodule with∆R = ∆, or aC-bicomodule with∆L = ∆, ∆R = ∆.
Let us consider covariant maps between comodules. In case(ML,∆L) and

(
M′L,∆′L

)
are two leftC-comodules, a

comodule mapδL
∆

:ML →M′L is calledleft-covariant, if

∆′L ◦ δL
∆ =

(
id ⊗ δL

∆

)
◦ ∆L. (11)

For (MR,∆R) and
(
M′R,∆′R

)
are two rightC-comodules, a comodule mapδR

∆
:MR→M′R is calledright-covariant, if

∆′R ◦ δR
∆ =

(
δR

∆ ⊗ id
)
◦ ∆R. (12)

In case(M,∆L,∆R) and
(
M′,∆′L,∆′R

)
are twoC-bicomodules, a mapδLR

∆
:M→M′ is calledbicovariant, if(

∆′L + ∆′R
) ◦ δLR

∆ =
(
id ⊗ δLR

∆

)
◦ ∆L +

(
δLR

∆ ⊗ id
)
◦ ∆R. (13)

Some generalization of (13) can be made if consider a map to the coalgebra, indeed, if(C′,∆′, ε′) is a coalgebra, a
linear mapδbicov

∆
:M→ C′ is calledbicovariant, if

∆′ ◦ δbicov
∆ =

(
id ⊗ δbicov

∆

)
◦ ∆L +

(
δbicov

∆ ⊗ id
)
◦ ∆R. (14)

Setting∆′ = ∆′L + ∆′R the conditions of left- (11) and right-covariance (12) forδbicov
∆

implies (14). Additionally, the
coassociativity of∆′ leads to thecompatibility conditionof ∆L and∆R

(id ⊗ ∆R) ◦ ∆L = (∆L ⊗ id ) ◦ ∆R. (15)



If (M,∆L,∆R) is aC-bicomodule with the compatibility condition, a linear mapδbicovder
∆

: M → C satisfying (14)
with ∆′ = ∆

∆ ◦ δbicovder
∆ =

(
id ⊗ δbicovder

∆

)
◦ ∆L +

(
δbicovder

∆ ⊗ id
)
◦ ∆R. (16)

is called abicomodule coderivation. Thus, afirst order codifferential calculuson a coalgebraC consists of aC-bicomodule
(M,∆L,∆R) and a bicomodule coderivationδbicovder

∆
satisfying (16). Note that covariant maps subject to one of the above

conditions form a linear space overK.
In a coordinate language [32, 33] a left comodule with a basis{ek} is defined by

4L(ek) = Li
k ⊗ ei , (17)

whereC-valued matrix elementsLi
k have to satisfy the following relations (see e.g. [30])

4(Li
k) = Lm

k ⊗ Li
m, ε(Li

k) = δi
k.

A right comodule structure4R can be encoded by

4R(ek) = ei ⊗ Ri
k, (18)

with
4(Ri

k) = Ri
m ⊗ Rm

k , ε(Ri
k) = δi

k.

The compatibility condition (15) reads as

Li
k ⊗ Rm

i = Lm
j ⊗ Rj

k. (19)

Writing a bicomodule coderivation asδbicovder
∆

= ek ⊗ δk, the relation (16) becomes a restriction on the coefficientsδk

as
4(δk) = Li

k ⊗ δi + δi ⊗ Ri
k. (20)

In analogy with the algebra case, the elements of the bicomodule can be called1-form cofieldsand the (left) dual can
be called (left)vector cofields[32]. With any vector cofieldX � Xi ⊗ ei one can associate an endomorphismXδ ∈ EndC

Xδ = δ ◦ X = Xi ⊗ δi . (21)

which is the dual counterpart of the Cartan formula (see e.g.[34]).
A given a groupG with product∗ determines a coproduct∆ : A 7→ A⊗A on the algebraA of functions on the group

∆( f )(g,g′) = f (g ∗ g′), (22)

where f ∈ A, g,g′ ∈ G which is an algebra homomorphism. This coproduct encodes all the information about the
underlying group structure on the level of the algebraA. Moreover, this ‘reformulation’ of the group product allows
deformations which, in particular, is the origin of ‘quantum symmetries’.

Let (C,∆L) be a leftA-comodule. This means thatC is a leftA-module and∆L : C → A⊗C is a linear map such that

∆L( f · α) = ∆( f ) ◦ ∆L(α)

or all f ∈ A andα ∈ C. Let (C,∆R) be a rightA-comodule. This means thatC is a rightA-module and∆R : C → C⊗A is
a linear map such that

∆R(α · f ) = ∆R(α) ◦ ∆( f )

for all f ∈ A andα ∈ C. Let (C,∆L,∆R) be anA-bicomodule. This is a left and rightA-comodule such that

∆L( f · α · f ′) = ∆( f ) ◦ ∆L(α) ◦ ∆( f ′)
∆R( f · α · f ′) = ∆( f ) ◦ ∆R(α) ◦ ∆( f ′)

for all f , f ′ ∈ A andα ∈ C. Special examples of (bi)comodules are determined by first order bicovariant differential calculi
on Hopf algebras [20] and in particular on finite groups [35]. Indeed, the derivationd : Ωr → Ωr+1 of a left- (or right-)
covariant differential calculus is a left- (right-) covariant map [20]. For a bicovariant differential calculus,d then satisfies
(11) and (12), which imply (14) with∆′ = ∆L + ∆R on the spaceΩ1 of 1-forms (see also [36]). In the following we explore
the meaning of other covariant maps associated with spaces determined by differential calculi on Hopf algebras and in
particular on finite groups [35].



COMODULES AND COVARIANT MAPS ASSOCIATED WITH FINITE GROUPS

LetA be the set ofC-valued functions on a finite groupG. With each elementg ∈ G we associate a functioneg ∈ A
via eg(g′) = δ

g
g′ . Then

eg eg′ = δg,g′ eg ,
∑
g∈G

eg = 1

where1 is the unit inA. Every functionf onG can be written as

f =
∑
g∈G

fg eg

with fg ∈ C. The group structure onG induces a coproduct∆ : A → A⊗A via (22). In particular, we obtain

∆(eg) =
∑
h∈G

eh ⊗ eh−1g .

Let us consider a self-mapδ∆ : A → A with the action on functionseg determined by

δ∆(eg) =
∑
h∈G

Fg
h eh. (23)

This map is covariant in the sense of (16). Inserting (23) gives

Fg
hh′ = Fh−1g

h′ + Fgh′−1

h , ∀h,h′ ∈ G . (24)

The general solution has the form
Fg

h = Φ(h−1g) − Φ(gh−1) (25)

with an arbitrary functionΦ : G→ C. Moreover, ifG is a finite group (that is our case), then every solution of (24) has the
form (25). To prove this fact we change variables and rewrite (24) in the form

Fg
h = Fg

hh′ − Fh−1gh′
h′ .

Notice that left-hand side does not depend fromh′ and then take finite sum over allh′ ∈ G, which gives

Fg
h =

∣∣∣G−1
∣∣∣ ∑

h′∈G

(
Fg

hh′ − Fh−1gh′
h′

)
.

After summing the right-hand side and introducing a new function of one variable

Φ(g) = − |G|−1
∑
h∈G

Fgh
h

we obtain (25). So that the solution for the coderivation mapδ∆ is

δ∆(eg) =
∑
h∈G

[Φ(h−1g) − Φ(gh−1)] eh . (26)

Since∆(1) = 1⊗ 1, we have in particular

∆ ◦ δ∆(1) = 1⊗ δ∆(1) + δ∆(1) ⊗ 1

and
δ∆(1) = δ∆(

∑
g∈G

eg) =
∑
g∈G

δ∆(eg) .

Using (26), we obtain
δ∆(1) = 0.

Moreover, directly from (26) it follows that for commutative finite groups, whereΦ(h−1g) = Φ(gh−1), the only solution of
(24) is trivial oneFg

h = 0 andδ∆ = 0. Thus, the mapδ∆ “measure” noncommutativity of a finite groupG.



DIFFERENTIAL CALCULI ON FINITE GROUPS

A differential calculusonA is an extension ofA to a differential algebra(Ω,d). HereΩ =
⊕∞

r=0 Ωr is a graded
associative algebra whereΩ0 = A. Ωr+1 is generated as anA-bimodule via the action of a linear operatord : Ωr → Ωr+1

satisfyingd2 = 0, d1 = 0, and the graded Leibniz ruled(ϕϕ′) = (dϕ)ϕ′ + (−1)rϕdϕ′ whereϕ ∈ Ωr . We introduce the
special 1-forms (see e.g. [35])

eg,g′ = eg deg′ , (g , g′) , eg,g = 0 (27)

and the(r − 1)-formseg1,...,gr = eg1,g2 ⊗A eg2,g3 ⊗A · · · ⊗A egr−1,gr . They satisfyeg1,...,gr ⊗A eh1,...,hs = δgr ,h1 eg1,...,gr ,h2,...,hs. The
differential operatord acts on them as follows,

deg1,...,gr =
∑
h∈G

[eh,g1,...,gr − eg1,h,g2,...,gr + eg1,g2,h,g3,...,gr − . . . + (−1)r eg1,...,gr ,h]. (28)

If no further relations are imposed, one is dealing with the ‘universal differential calculus’(Ω̃, d̃). Theeg1,...,gr with
gi , gi+1 (i = 1, . . . , r −1) then constitute a basis overC of Ω̃r−1 for r > 1. Every other differential calculus onG is obtained
from Ω̃ as the quotient with respect to some two-sided differential ideal. Up to first order, i.e., the level of 1-forms, every
differential calculus onG is obtained by setting some of theeg,g′ to zero, which induces relations for forms of higher grade.
In addition, or alternatively, one may also factor out ideals generated by forms of higher grade. Every first order differential
calculus onG can be described by a (di)graph the vertices of which are the elements ofG and there is an arrow pointing
from a vertexg to a vertexg′ iff eg,g′ , 0.

A differential calculus onG (or, more generally, any Hopf algebraA) is calledleft-covariant[20] if there is a linear
map∆L : Ω1→ A⊗ Ω1 such that

∆L( f ϕ f ′) = ∆( f ) ∆L(ϕ) ∆( f ′) ∀ f , f ′ ∈ A, ϕ ∈ Ω1

and
∆L ◦ d = (id ⊗ d) ◦ ∆ .

As a consequence of (27) and (28), we obtain

∆L(eg,g′ ) =
∑
h∈G

eh−1 ⊗ ehg,hg′ . (29)

Hence, in order to find the left-covariant differential calculi onG, we have to determine the orbits of all elements of
(G ×G)′ where the prime indicates omission of the diagonal (i.e.,(G ×G)′ = (G ×G) \ {(g,g) | g ∈ G}) with respect to
the left action(g,g′) 7→ (hg,hg′). In the graph picture, left-covariant first order differential calculi are obtained from the
universal one (which is left-covariant) by deleting corresponding orbits of arrows.

A differential calculus onG is calledright-covariant[20] if there is a linear map∆R : Ω1→ Ω1 ⊗A such that

∆R( f ϕ f ′) = ∆( f ) ∆R(ϕ) ∆( f ′) , ∆R ◦ d = (d⊗ id) ◦ ∆ .

This implies
∆R(eg,g′) =

∑
h∈G

egh,g′h ⊗ eh−1
. (30)

A differential calculus is calledbicovariantif it is left- and right-covariant.

CODIFFERENTIAL CALCULI ON FINITE GROUPS

A first order codifferential calculuson a finite groupG consists of a space of various forms having structure of
bicomodule and a bicomodule coderivationδ∆ satisfying

∆ ◦ δ∆ = (id ⊗ δ∆) ◦ ∆L + (δ∆ ⊗ id ) ◦ ∆R. (31)

Let us consider concrete finite group examples of solution of (31).
Bicovariant maps Ω1 → A. In order to determine the corresponding bicovariant mapsδ1|0

∆
: Ω1 → A, we have to

evaluate
∆ ◦ δ1|0

∆
(eg,g′ ) = (id ⊗ δ1|0

∆
) ◦ ∆L(eg,g′ ) + (δ1|0

∆
⊗ id) ◦ ∆R(eg,g′ ). (32)

Writing
δ1|0

∆
(eg,g′ ) =

∑
h∈G

Fg,g′
h eh



with Fg,g′
h ∈ C, the bicovariance condition results in the linear system

Fg,g′
hh′ = Fh−1g,h−1g′

h′ + Fgh′−1,g′h′−1

h ∀h,h′ ∈ G

whereg , g′ for the universal differential calculus. The pairs(g,g′) have to be further restricted in case of smaller
bicovariant differential calculi. Using the ansatz (26), we obtain the general solution of the above system as

Fg,g′
h = Φ(h−1g,h−1g′) − Φ(gh−1,g′h−1) (33)

with an arbitrary functionΦ : G×G→ C.
Bicovariant maps Ω1 ⊗A · · · ⊗A Ω1︸               ︷︷               ︸

r

→ A. Here we consider bicovariant mapsδr |0
∆

: Ω1 ⊗A · · · ⊗A Ω1︸               ︷︷               ︸
r

→ A where

Ω1 is the space of 1-forms of a bicovariant differential calculus on a finite group. First we need the left and right coactions
on ther-fold tensor productΩ1 ⊗A · · · ⊗A Ω1︸               ︷︷               ︸

r

. These can be obtained from the coactions onΩ1 according to formulas (3.3)

and (3.4) in [20]

∆L(eg1,...,gr ) =
∑
h∈G

eh−1 ⊗ ehg1,...,hgr (34)

∆R(eg1,...,gr ) =
∑
h∈G

eg1h,...,gr h ⊗ eh−1
. (35)

Let us expand
δr |0

∆
(eg1,...,gr ) =

∑
h∈G

Fg1,...,gr

h eh

with coefficientsFg1,...,gr

h ∈ C. Evaluation of the bicovariance condition (31) then yields

Fg1,...,gr

hh′ = Fh−1g1,...,h−1gr

h′ + Fg1h′−1,...,gr h′−1

h , ∀h,h′ ∈ G.

By full analogy with (26) and (33) we find the general solution

Fg1,...,gr

h = Φ(h−1g1, . . . , h
−1gr ) − Φ(g1h−1, . . . , grh

−1)

with an arbitrary functionΦ : G× · · · ×G︸        ︷︷        ︸
r

→ C. Again for commutative and finiteG we have the only solutionFg1,...,gr

h = 0

and soδr |0
∆

= 0.
Covariant maps between tensor products of 1-forms. LetΩ1 be the space of 1-forms, and we consider a linear map

δr |s
∆

: Ω1 ⊗A · · · ⊗A Ω1︸               ︷︷               ︸
r times

→ Ω1 ⊗A · · · ⊗A Ω1︸               ︷︷               ︸
s times

.

We expand
δr |s

∆
(eg1,...,gr ) =

∑
h1,...,hs∈G

Fg1,...,gr

h1,...,hs
eh1,...,hs .

First we explore the bicovariance condition (14) with∆′ = ∆L + ∆R where the left and right coactions are given by
(34)–(35). The calculation shows that in this case the bicovariance condition splits into the separate conditions of left and
right covariance, i.e. (11) and (12) with∆′L = ∆L and∆′R = ∆R. The left and right covariance condition take the form

ag1,...,gr

h1,...,hs
= ahg1,...,hgr

hh1,...,hhs
, ag1,...,gr

h1,...,hs
= ag1h,...,gr h

h1h,...,hsh
, ∀h ∈ G,

respectively. This means that the coefficientsag1,...,gr

h1,...,hs
are constant on left and right orbits.

Another possibility is the covariance condition (8) with∆D = ∆C = ∆ = ∆L + ∆R.
Covariant mapsA → Ω1 ⊗A · · · ⊗A Ω1. Let us consider a linear map

δ0|s
∆

: A → Ω1 ⊗A · · · ⊗A Ω1︸               ︷︷               ︸
s

.

with expansion
δ0|s

∆
(eg) =

∑
h1,...,hs∈G

Fg
h1,...,hs

eh1,...,hs .



Now we explore the covariance condition (14) with∆′ = ∆L + ∆R where the left and right coactions are given by (11) and
(12). The calculation shows that in this case the bicovariance condition splits into the separate conditions of left and right
covariance. The left covariance condition takes the form

Fg
h1,...,hs

= Fhg
hh1,...,hhs

, ∀h ∈ G,

whereas the right covariance condition reads

Fg
h1,...,hs

= Fgh
h1h,...,hsh

∀h ∈ G .

This means that the coefficientsFg
h1,...,hs

are constant on left and right orbits.
Bicovariant maps of the space of 2-forms. There is a bimodule isomorphismσ : Ω1 ⊗A Ω1→ Ω1 ⊗A Ω1 given by

σ(eg1,g2 ⊗A eg2,g3) = eg1,g3g−1
2 g1 ⊗A eg3g−1

2 g1,g3

(see [20]). Ifδ2|0
∆

is a bicovariant mapΩ1 ⊗A Ω1→ A, then alsoδ′
∆

= δ2|0
∆
◦ σ. Indeed, from [20] we have

∆L ◦ σ = (id ⊗ σ) ◦ ∆L, ∆R ◦ σ = (σ ⊗ id) ◦ ∆R .

If δ2|0
∆

is bicovariant and satisfies (14), we can directly find

∆ ◦ δ2|0
∆
◦ σ = (id ⊗ δ2|0

∆
◦ σ) ◦ ∆L + (δ ◦ σ2|0

∆
⊗ id) ◦ ∆R

so thatδ′
∆

= δ2|0
∆
◦σ is also bicovariant. In particular, ifδ2|0

∆
is a bicovariant map, then alsoδ′′

∆
= δ2|0

∆
◦ (id−σ). This induces

a bicovariant map on the spaceΩ2
Wor of the Woronowicz 2-forms [20].

Bicomplexes. If δ2
∆

= 0, then(A,∆,C,∆L,∆R, δ∆) is acomplex. We should check that the last condition is compatible
with (14). Indeed, we have0 = ∆ ◦ δ2

∆
= (id ⊗ δ + δ ⊗ id) ◦ ∆ ◦ δ∆ and the last expression indeed vanishes using (14) and

δ2
∆

= 0. The set(C,∆, δ∆,d) is abicomplex[37] if (C,∆, δ∆) and(C,∆,d) are both complexes andδ∆d = −dδ∆. The latter
condition is indeed compatible with (14) since also the right side of∆ ◦ (dδ∆ + δ∆d) = (∆ ◦ d) ◦ δ∆ + (∆ ◦ δ∆) ◦ d vanishes
as a consequence of these conditions. A bicomplex generalizes the concept of a bicovariant differential calculus.

CONCLUSIONS

Thus, we have studied bicovariant differential and codifferential calculi in general using the language of Hopf algebras
and in application to finite groups, which provides a bridge between noncommutative geometry and various treatments of
field theories on discrete spaces (like lattice gauge theory). In discrete (field) theories, discrete groups may appear as gauge
groups, as isometry groups, and as structures underlying discrete space-time models. One may view a field theory on a
discrete set as an approximation of a continuum theory, e.g., for the purpose of numerical simulations, and in this context
the idea that a discrete space-time could actually be more fundamental than the continuum.
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19. Brzezínski T., Majid S. //A class of bicovariant differential calculi on Hopf algebras. Lett. Math. Phys. - 1992. - V.26. - P. 67–78.

20. Woronowicz S. L. //Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. - 1989. - V.122.
- P. 125–170.

21. Schirmacher A., Wess J., Zumino B. //The two parameter deformation ofGL(2) its differential calculus, and Lie algebra. Z. Phys.
- 1991. - V.49. - P. 317–321.

22. Акулов В. П., Дуплий С. А., Читов В. В. // Дифференциальное исчисление для q-деформированных твисторов. Теор. мат.физ. - 1998. - T.115. - № 2. - С. 177–184.

23. Connes A., Lott J. //Particle models and noncommutative geometry. Nucl. Phys. B (Proc. Suppl.). - 1990. - V.18. - P. 29–37.

24. Dimakis A., Müller-Hoissen F. //A noncommutative differential calculus and its relation to gauge theory and gravitation. Int. J.
Mod. Phys. A (Proc. Suppl.). - 1993. - V.3A. - P. 474–489.

25. Müller-Hoissen F. //Physical aspects of differential calculi on commutative algebras. Quantum Groups. - Warsaw.Polish Science,
1994. - P. 267–286.

26. Ambjorn J. //Strings, quantum gravity and non-commutative geometry on the lattice. Nucl. Phys. Proc. Suppl. - 2002. - V.106. -
P. 62–70.

27. Quillen D. //Algebra cochain and cyclic cohomology. Publ. Math. IHES. - 1989. - V.68. - P. 139–174.

28. Lambe L. A., Radford D. E.Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach. -
Dordrecht:Kluwer, 1997. - 292 p.

29. Khalkhali M. //An approach to operations on cyclic homology. J. Pure Appl. Algebra. - 1996. - V.107. - P. 47–59.

30. Abe E.Hopf Algebras. - Cambridge:Cambridge Univ. Press, 1980. - 221 p.

31. Sweedler M. E.Hopf Algebras. - New York:Benjamin, 1969. - 336 p.

32. Borowiec A., V́azquez Coutino G. A. //Some topics in coalgebra calculus. Czech. J. Phys. - 2000. - V.50. - № 1. - P. 23–28.

33. Borowiec A., V́azquez Coutino G. A. //Hopf modules and their duals. Int. J. Theor. Phys. - 2000. - V.40. - № 1. - P. 67–80.

34. Borowiec A. //Cartan pairs. Czech. J. Phys. - 1996. - V.46. - P. 1197–1202.

35. Bresser K., Dimakis A., M̈uller-Hoissen F., Sitarz A. //Noncommutative geometry of finite groups. J. Phys. - 1996. - V.A29. -
P. 2705–2736.

36. Brzezínski T. //Remarks on bicovariant differential calculi and exterior Hopf algebras. Lett. Math. Phys. - 1993. - V.27. - P. 287–
300.

37. Dimakis A., Müller-Hoissen F. //Bicomplexes, integrable models, and noncommutative geometry. - Göttingen, 2000. - 6 p. (Preprint
/ Inst. Str̈omungforschung, hep-th/0006005 ).

КОПРОИЗВОДНЫЕ И КОДИФФЕРЕНЦИАЛЬНЫЕ ИСЧИСЛЕНИЯ НА КОНЕЧНЫХ ГРУППАХС.А. ДуплийФизико-технический факультет, Харьковский национальный университет им. В. Н. Каразинапл. Свободы, 4, г. Харьков, 61077,Украина
Рассмотрены различные аспекты некоммутативной геометрии, являющейся в последнее время важным инструментом для по-строения теоретических моделей физики элементарных частиц в некоммутативном пространстве-времени. Указан путь после-довательного построения кодифференциального исчисления, дуального аналога дифференциального исчисления, представля-ющего собой основу любой модели частиц. Введены в рассмотрение дуальный аналог производной, копроизводная, и ковари-антные отображения, представлены соответствующие уравнения согласованности для коалгебр и комодулей. Явно исследованконкретный пример для конечных групп, который важен для моделей частиц в дискретном пространстве-времени. Построенокодифференциальное исчисление, при этом условия ковариантности отображений приводят к специальной системе функци-ональных уравнений, которые решаются в различных конкретных случаях. Отмечается, что дальнейшие исследования могутбыть связаны с построением соответствующих комплексов и бикомплексов.КЛЮЧЕВЫЕ СЛОВА: некоммутативная геометрия, кодифференциальное исчисление, конечная группа, комплекс, биком-плекс, коалгебра, комодуль


