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Weak Hopf algebras as generalizations of Hopf algebras [1] were introduced in [2], where its 

characterizations and applications were also studied. A k -bialgebra ( , , , , )H H μ η ε= Δ  with multiplication 
μ , unity η , counity ε , comultiplicationΔ , is called a weak Hopf algebra if there exists Hom ( , )kT H H∈  
such that 

* *id T id id= , * *T id T T=  
where T  is called a weak antipode of H  . One of its aims is to construct some singular solutions of the 
quantum Yang-Baxter equation (QYBE) [2].  

We study here generalization of Hopf algebra ( )2qsl  by weakening the invertibility of the generator 

K  , i.e. exchanging its invertibility 1 1KK − =  to the regularity K KK K= .Here we investigate a weak 
Hopf algebra ( )2qwsl  and a J -weak Hopf algebra ( )2qvsl  as generalizations of ( )2qsl  and non-trivial 

examples of weak Hopf algebras [2]. A quasi-braided weak Hopf algebra 
w
qU  from ( )2qwsl  is constructed 

whose quasi- R -matrix is regular [3]. 
Let q C∈  and 1q ≠ ±  , 0  . The quantum enveloping algebra ( )(2)q q qU U sl=  (see [6]) is 

generated by four variables(Chevalley generators) E  , F  , K  , 1K −  with the relations  
1 1 1K K KK− −= =  , 

1 2KEK q E− =  , 1 2KFK q F− −=  , 
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Now we try to weaken the invertibility of K  to regularity, as usually in semigroup theory [4] (see 
also [5] for higher regularity). It can be done in two different ways. 

Define (2)w
q qU wsl=  , which is called a weak quantum algebra, as the algebra generated by the 

four variables wE  , wF  , wK  , wK  with the relations:  
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Define (2)v
q qU vsl=  , which is called a J -weak quantum algebra, as the algebra generated by the 

four variables vE  , wF  , vK  , vK  with the relations ( vv vJ K K= ):  
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Let ww wJ K K=  . List some useful properties of wJ  which will be needed below. Firstly, 2
w wJ J=  , 

which means that wJ  is a projector. For any variable X  , define “ J -conjugation” as 
wJ w wX J XJ=  , and 



the corresponding mapping will be written as ( ) :
ww JX X X→e  . Note that the mapping we  is 

idempotent. 
Proposition (i) (2) /( 1) (2)q w qwsl J sl− ≅  ; (2) /( 1) (2)q v qvsl J sl− ≅  ; (ii) Quantum algebras 

(2)qwsl  and (2)qvsl  possess zero divisors, one of which is ( ), 1w vJ −  which annihilates all generators. 

Lemma (i) The idempotent wJ  is in the center of (2)qwsl  ; (ii) There are unique algebra 

automorphism wω  and vω  (called the weak Cartan automorphisms) of w
qU  and v

qU  respectively such that 

,, ,( ) w vw v w vK Kω =  , ,, ,( )w vw v w vK Kω =  , , , ,( )w v w v w vE Fω =  , , , ,( )w v w v w vF Eω =  . 

Let R  be an algebra over k  and [ ]tR  be the free left R -module consisting of all polynomials of the 
form 0

in
i iP a t== ∑  with coefficients in R  . If 0na ≠  , define deg( )P n=  ; say deg(0) = −∞  . Let α  be an 

algebra morphism of R  . An α -derivation of R  is a k -linear endomorphism δ  of R  such that 
( ) ( ) ( ) ( )ab a b a bδ α δ δ= +  for all ,a b∈R  . It follows that (1) 0δ =  . 

Theorem (i) Assume that [ ]tR  has an algebra structure such that the natural inclusion of R  into 
[ ]tR  is a morphism of algebras and deg( ) deg( ) deg( )PQ P Q≤ +  for any pair ( , )P Q  of elements of [ ]tR  

. Then there exists a unique injective algebra endomorphism α  of R  and a unique α -derivation δ  of R  
such that ( ) ( )ta a t aα δ= +  for all a∈R  . 

(ii) Conversely, given an algebra endomorphism α  of R  and an α -derivation δ  of R  , there 
exists a unique algebra structure on [ ]tR  such that the inclusion of R  into [ ]tR  is an algebra morphism and 

( ) ( )ta a t aα δ= +  for all a∈R  . 
It is recognized as a generalization of Theorem I.7.1 in [6]. We call the algebra constructed from α  

and δ  a weak Ore extension of R  , denoted as [ , , ]w t α δR  . Let R  be an algebra, α  be an algebra 
automorphism and δ  be an α -derivation of R  . If R  is a left (resp. right) Noetherian, then so is the weak 
Ore extension [ , , ]w t α δR  . 

 Theorem The algebra (2)qwsl  is Noetherian with the basis  

{ , , }
mi j l i j i j
ww w w w w w w w wE F K E F K E F J=P  

 where , ,i j l  are any non-negative integers, m  is any positive integer. 
The similar theorem can be obtained for (2)qvsl  as well. Define w

qU ′  as the algebra generated by the 

five variables wE  , wF  , wK  , wK  , vL  with the relations:  
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Then w
qU  is isomorphic to the algebra w

qU ′  with wϕ  satisfying ( )w w wE Eϕ =  , ( )w w wF Fϕ =  , 

( )w w wK Kϕ =  , ( )w ww K Kϕ =  . And, the relationship between w
qU ′  and ( (2))U sl  is that for 1q =  , (i) the 

algebra isomorphism 1( (2)) /( 1)w
wU sl U K′≅ −  holds; (ii) there exists an injective algebra morphism π  

from 1
wU  to 3( (2))[ ] /( )w w wU sl K K K−  satisfying ( )w wE XKπ =  , ( )wF Yπ =  , ( )w wK Kπ =  , 

( ) wL HKπ =  . 
For (2)qwsl  , define the maps : (2) (2) (2)w q q qwsl wsl wslΔ → ⊗  , : (2)w qwsl kε →  and 

: (2) (2)w q qT wsl wsl→  satisfying respectively  



( ) 1 , ( ) 1 ,

( ) , ( ) ,
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( ) , ( ) ,
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 . 

 Proposition The relations above endow (2)qwsl  with a bialgebra structure possessing a weak 

antipode wT  . 

 Proposition 2
wT  is an inner endomorphism of the algebra (2)qwsl  satisfying ( )2

ww wT X K X K=  

for any (2)qX wsl∈  . 

It can be shown that about the operations above, it is not possible (2)qwsl  would possess an 

antipode S  so as to become a Hopf algebra. Hence, (2)qwsl  is an example for a non-commutative and non-

cocommutative weak Hopf algebra which is not a Hopf algebra. For J -weak quantum algebra (2)qvsl  , a 
thorough analysis gives the following nontrivial definitions  
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These relations endow (2)qvsl  with a bialgebra structure with a J -weak antipode vT  , i.e. satisfying 
the regularity conditions  

( )( * * )( ) , ( * * )( ) ( )v v v v v v v v v v v vT X X T T X T X= =e e e e , 

for any X  in (2)qvsl  . From the difference between id  and ve  , (2)qvsl  is not a weak Hopf algebra in the 

definition of [2]. So we will call it J -weak Hopf algebra and vT  a J -weak antipode. Remark the variable 

ve  can be treated as 2n =  example of the ``tower identity'' ( )neαβ  introduced for semisupermanifolds or the 

``obstructor'' ( )n
Xe  for general mappings, categories and Yang-Baxter equation in [5]. 

Now, we discuss the set ( (2))qG wsl  of all group-like elements of (2)qwsl  . The concept of inverse 
monoid can be found in [4]. 

 Proposition The set of all group-like elements ( )( (2)) { : ,
jij i
wq wG wsl J K K i j= =  run over all 

non-negative integers }  , which forms a regular monoid under the multiplication of (2)qwsl  . 

For (2)qvsl  we can get a similar statement. 

 Theorem (2)qwsl  possesses an ideal W  and a sub-algebra Y  satisfying (2)qwsl Y W= ⊕  and 

(2)qW sl≅  as Hopf algebras. 
Let us assume here that q  is a root of unity of order d  in the field k  where d  is an odd integer and 

1d >  . Set ( , , )d d d
w w w wI E F K J= −  the two-sided ideal of w

qU  and the algebra /
w w
q qU U I=  . I  is also a 

coideal of qU  and ( )wT I I⊆  . Then I  is a weak Hopf ideal and 
w
qU  has a unique weak Hopf algebra 

structure with the same operations of w
qU  . 



We have / / / /( , )
w w d d
q qq w wU U I Y I W I Y E F U= = ⊕ ≅ ⊕  where (2) /( , , 1)d d d

q q w wU sl E F K= −  is 

a finite dimensional Hopf algebra. The sub-algebra 
)

qB  of qU  generated by { : 0 , 1}m n
w wE K m n d≤ ≤ −  is a 

finite dimensional Hopf sub-algebra and qU  is a braided Hopf algebra as a quotient of the quantum double 

of 
)

qB  [6]. The R -matrix of qU  is  
) 1( ) ( 1) / 2 2 ( ) 21

0 , , 1 [ ]! .
kq q k k k i j ij k i k j

i j k d w w w wd kR q E K F K
−− − + − −

≤ ≤ −= ⊗∑  

Since (2)qsl W
ρ

≅  and ( , , 1)d d dE F K I
ρ

− ≅  , we get /qU W I≅  under the induced morphism of ρ  . Then 
/W I  possesses also a R -matrix  

1( ) ( 1) / 2 2 ( ) 21
0 1;1 , [ ]!

kq qw k k k i j ij k i k j
k d i j d w w w wd kR q E K F K

−− − + − −
≤ ≤ − ≤ ≤= ⊗∑  . 

So, we get 
 Theorem qU  is a quasi-braided weak Hopf algebra with  

1
( 1) / 2 2 ( ) 2

0 1;1 ,

1 ( )
[ ]!

k
w k k k i j ij k i k j

w w w w
k d i j d

q qR q E K F K
d k

−
− + − −

≤ ≤ − ≤ ≤

−
= ⊗∑  

 as its quasi- R -matrix, which is von Neumann's regular. 
Because the identity of /W I  is wJ  , there exists the inverse €wR  of wR  such that 

€ €w w w w
wR R R R J= =  (the identity). Then we have 

€ ,
€ € € ,

w w w w

w w w w

R R R R

R R R R

=

=
 

which shows that this R -matrix is regular in qU  . It obeys the following relations 
( ) ( )op w w

w wx R R xΔ = Δ  
for any /x W I∈  and 

13 23

13 12

( id)( )

(id )( )

w w w
w

w w w
w

R R R

R R R

Δ ⊗ =

⊗Δ =
 

which are also satisfied in qU  . Therefore wR  is a von Neumann's regular quasi- R -matrix of qU .  
A further interesting work is to study our weak Hopf algebras through the similar objects and methods for 
the non-unital weak Hopf algebras [7] (their class and the class of weak Hopf algebras [2,3] are not included 
each other) and to find applications in the theory of quantum chain models and other relative areas. 
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