REGULAR R-MATRIX AND WEAK HOPF ALGEBRAS

Duplij S.A.

Kharkov National University, Kharkov 61077, Ukraine

Li Fang

Department of Mathematics, Zhejiang University (Xixi Campus), Hangzhou, Zhejiang 310028, China

Weak Hopf algebras as generalizations of Hopf algebras [1] were introduced in [2], where its characterizations and applications were also studied. A k -bialgebra $H = (H, \mu, \eta, \Delta, \varepsilon)$ with multiplication μ , unity η , counity ε , comultiplication Δ , is called a *weak Hopf algebra* if there exists $T \in \text{Hom}_k(H, H)$ such that

id * T * id = id, T * id * T = T

where T is called a *weak antipode* of H. One of its aims is to construct some singular solutions of the quantum Yang-Baxter equation (QYBE) [2].

We study here generalization of Hopf algebra $sl_a(2)$ by weakening the invertibility of the generator

K, i.e. exchanging its invertibility $KK^{-1} = 1$ to the regularity $K\overline{K}K = K$. Here we investigate a weak Hopf algebra $wsl_q(2)$ and a J-weak Hopf algebra $vsl_q(2)$ as generalizations of $sl_q(2)$ and non-trivial

examples of weak Hopf algebras [2]. A quasi-braided weak Hopf algebra \overline{U}_q^w from $wsl_q(2)$ is constructed whose quasi- *R*-matrix is regular [3].

Let $q \in C$ and $q \neq \pm 1$, 0. The quantum enveloping algebra $U_q = U_q(sl_q(2))$ (see [6]) is

generated by four variables (Chevalley generators) E, F, K, K^{-1} with the relations $K^{-1}K - KK^{-1} - 1$

$$K K = KK = 1$$
,
 $KEK^{-1} = q^{2}E$, $KFK^{-1} = q^{-2}F$,
 $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

Now we try to weaken the invertibility of K to regularity, as usually in semigroup theory [4] (see also [5] for higher regularity). It can be done in two different ways.

Define $U_q^w = wsl_q(2)$, which is called a *weak quantum algebra*, as the algebra generated by the four variables E_w , F_w , K_w , \overline{K}_w with the relations:

$$\begin{split} K_{w}\overline{K}_{w} &= \overline{K}_{w}K_{w}, \quad K_{w}\overline{K}_{w}K_{w} = K_{w}, \quad \overline{K}_{w}K_{w}\overline{K}_{w} = \overline{K}_{w} \\ K_{w}E_{w} &= q^{2}E_{w}K_{w}, \quad \overline{K}_{w}E_{w} = q^{-2}E_{w}\overline{K}_{w}, \\ K_{w}F_{w} &= q^{-2}F_{w}K_{w}, \quad \overline{K}_{w}F_{w} = q^{2}F_{w}\overline{K}_{w}, \\ E_{w}F_{w} - F_{w}E_{w} &= \frac{K_{w} - \overline{K}_{w}}{q - q^{-1}}. \end{split}$$

Define $U_q^v = vsl_q(2)$, which is called a *J*-weak quantum algebra, as the algebra generated by the four variables E_v , F_w , K_v , $\overline{K_v}$ with the relations $(J_v = K_v \overline{K_v})$:

$$\begin{split} K_{\nu}K_{\nu} &= K_{\nu}K_{\nu}, \quad K_{\nu}K_{\nu}K_{\nu} = K_{\nu}, \quad K_{\nu}K_{\nu}K_{\nu} = K_{\nu}, \\ K_{\nu}E_{\nu}\overline{K}_{\nu} &= q^{2}E_{\nu}, \quad K_{\nu}F_{\nu}\overline{K}_{\nu} = q^{-2}F_{\nu}, \quad E_{\nu}J_{\nu}F_{\nu} - F_{\nu}J_{\nu}E_{\nu} = \frac{K_{\nu}-\overline{K}_{\nu}}{q-q^{-1}} \end{split}$$

Let $J_w = K_w \overline{K}_w$. List some useful properties of J_w which will be needed below. Firstly, $J_w^2 = J_w$, which means that J_w is a projector. For any variable X, define "J-conjugation" as $X_{J_w} = J_w X J_w$, and

the corresponding mapping will be written as $\mathbf{e}_{w}(X) : X \to X_{J_{w}}$. Note that the mapping \mathbf{e}_{w} is idempotent.

Proposition (i) $wsl_q(2)/(J_w - 1) \cong sl_q(2)$; $vsl_q(2)/(J_v - 1) \cong sl_q(2)$; (ii) Quantum algebras $wsl_q(2)$ and $vsl_q(2)$ possess zero divisors, one of which is $(J_{w,v} - 1)$ which annihilates all generators.

Lemma (i) The idempotent J_w is in the center of $wsl_q(2)$; (ii) There are unique algebra automorphism ω_w and ω_v (called the weak Cartan automorphisms) of U_q^w and U_q^v respectively such that $\omega_{w,v}(K_{w,v}) = \overline{K}_{w,v}$, $\omega_{w,v}(\overline{K}_{w,v}) = K_{w,v}$, $\omega_{w,v}(E_{w,v}) = F_{w,v}$, $\omega_{w,v}(F_{w,v}) = E_{w,v}$.

Let R be an algebra over k and R[t] be the free left R -module consisting of all polynomials of the form $P = \sum_{i=0}^{n} a_i t^i$ with coefficients in R. If $a_n \neq 0$, define deg(P) = n; say deg $(0) = -\infty$. Let α be an algebra morphism of R. An α -derivation of R is a k-linear endomorphism δ of R such that $\delta(ab) = \alpha(a)\delta(b) + \delta(a)b$ for all $a, b \in \mathbb{R}$. It follows that $\delta(1) = 0$.

Theorem (i) Assume that $\mathbb{R}[t]$ has an algebra structure such that the natural inclusion of \mathbb{R} into $\mathbb{R}[t]$ is a morphism of algebras and $\deg(PQ) \leq \deg(P) + \deg(Q)$ for any pair (P,Q) of elements of $\mathbb{R}[t]$. Then there exists a unique injective algebra endomorphism α of \mathbb{R} and a unique α -derivation δ of \mathbb{R} such that $ta = \alpha(a)t + \delta(a)$ for all $a \in \mathbb{R}$.

(ii) Conversely, given an algebra endomorphism α of \mathbb{R} and an α -derivation δ of \mathbb{R} , there exists a unique algebra structure on $\mathbb{R}[t]$ such that the inclusion of \mathbb{R} into $\mathbb{R}[t]$ is an algebra morphism and $ta = \alpha(a)t + \delta(a)$ for all $a \in \mathbb{R}$.

It is recognized as a generalization of Theorem I.7.1 in [6]. We call the algebra constructed from α and δ a *weak Ore extension* of R, denoted as $\mathbb{R}_w[t,\alpha,\delta]$. Let R be an algebra, α be an algebra automorphism and δ be an α -derivation of R. If R is a left (resp. right) Noetherian, then so is the weak Ore extension $\mathbb{R}_w[t,\alpha,\delta]$.

Theorem The algebra $wsl_a(2)$ is Noetherian with the basis

$$\mathbb{P}_{w} = \{ E_{w}^{i} F_{w}^{j} K_{w}^{l}, E_{w}^{i} F_{w}^{j} \overline{K}_{w}^{m}, E_{w}^{i} F_{w}^{j} J_{w} \}$$

where i, j, l are any non-negative integers, m is any positive integer.

The similar theorem can be obtained for $vsl_q(2)$ as well. Define $U_q^{w'}$ as the algebra generated by the five variables E_w , F_w , K_w , \overline{K}_w , L_v with the relations:

$$\begin{split} K_{w}\overline{K}_{w} &= \overline{K}_{w}K_{w}, \quad K_{w}\overline{K}_{w}K_{w} = K_{w}, \quad \overline{K}_{w}K_{w}\overline{K}_{w} = \overline{K}_{w}, \\ K_{w}E_{w} &= q^{2}E_{w}K_{w}, \quad \overline{K}_{w}E_{w} = q^{-2}E_{w}\overline{K}_{w}, \\ K_{w}F_{w} &= q^{-2}F_{w}K_{w}, \quad \overline{K}_{w}F_{w} = q^{2}F_{w}\overline{K}_{w}, \\ [L_{w}, E_{w}] &= q(E_{w}K_{w} + \overline{K}_{w}E_{w}), \quad [L_{w}, F_{w}] = -q^{-1}(F_{w}K_{w} + \overline{K}_{w}F_{w}), \\ E_{w}F_{w} - F_{w}E_{w} = L_{w}, \quad (q - q^{-1})L_{w} = (K_{w} - \overline{K}_{w}), \end{split}$$

Then U_q^w is isomorphic to the algebra $U_q^{w'}$ with φ_w satisfying $\varphi_w(E_w) = E_w$, $\varphi_w(F_w) = F_w$, $\varphi_w(K_w) = K_w$, $\varphi_w(\overline{K}_w) = \overline{K}_w$. And, the relationship between $U_q^{w'}$ and U(sl(2)) is that for q = 1, (i) the algebra isomorphism $U(sl(2)) \cong U_1^{w'}/(K_w - 1)$ holds; (ii) there exists an injective algebra morphism π from U_1^w to $U(sl(2))[K_w]/(K_w^3 - K_w)$ satisfying $\pi(E_w) = XK_w$, $\pi(F_w) = Y$, $\pi(K_w) = K_w$, $\pi(L) = HK_w$.

For $wsl_q(2)$, define the maps $\Delta_w : wsl_q(2) \rightarrow wsl_q(2) \otimes wsl_q(2)$, $\varepsilon_w : wsl_q(2) \rightarrow k$ and $T_w : wsl_q(2) \rightarrow wsl_q(2)$ satisfying respectively

$$\begin{split} &\Delta_w(E_w) = 1 \otimes E_w + E_w \otimes K_w, \ \Delta(F_w) = F_w \otimes 1 + \overline{K}_w \otimes F_w, \\ &\Delta_w(K_w) = K_w \otimes K_w, \ \Delta_w(\overline{K}_w) = \overline{K}_w \otimes \overline{K}_w, \\ &\varepsilon_w(E_w) = \varepsilon_w(F_w) = 0, \ \varepsilon_w(K_w) = \varepsilon_w(\overline{K}_w) = 1, \\ &T_w(E_w) = -E_w\overline{K}_w, \ T_w(F_w) = -K_wF_w, \\ &T(K_w) = \overline{K}_w, \ T_w(\overline{K}_w) = K_w \end{split}$$

Proposition The relations above endow $wsl_q(2)$ with a bialgebra structure possessing a weak antipode T_w .

Proposition T_w^2 is an inner endomorphism of the algebra $wsl_q(2)$ satisfying $T_w^2(X) = K_w X \overline{K}_w$ for any $X \in wsl_q(2)$.

It can be shown that about the operations above, it is not possible $wsl_q(2)$ would possess an antipode S so as to become a Hopf algebra. Hence, $wsl_q(2)$ is an example for a non-commutative and non-cocommutative weak Hopf algebra which is *not a Hopf algebra*. For J -weak quantum algebra $vsl_q(2)$, a thorough analysis gives the following nontrivial definitions

$$\begin{split} \Delta_{\nu}(E_{\nu}) &= J_{\nu} \otimes J_{\nu}E_{\nu}J_{\nu} + J_{\nu}E_{\nu}J_{\nu} \otimes K_{\nu}, \\ \Delta_{\nu}(F_{\nu}) &= J_{\nu}F_{\nu}J_{\nu} \otimes J_{\nu} + \overline{K}_{\nu} \otimes J_{\nu}F_{\nu}J_{\nu}, \\ \Delta_{\nu}(K_{\nu}) &= K_{\nu} \otimes K_{\nu}, \quad \Delta_{\nu}(\overline{K}_{\nu}) = \overline{K}_{\nu} \otimes \overline{K}_{\nu}, \\ \varepsilon_{\nu}(E_{\nu}) &= \varepsilon_{\nu}(F_{\nu}) = 0, \quad \varepsilon_{\nu}(K_{\nu}) = \varepsilon_{\nu}(\overline{K}_{\nu}) = 1, \\ T_{\nu}(E_{\nu}) &= -J_{\nu}E_{\nu}\overline{K}_{\nu}, \quad T_{\nu}(F_{\nu}) = -K_{\nu}F_{\nu}J_{\nu}, \\ T_{\nu}(K_{\nu}) &= \overline{K}_{\nu}, \quad T_{\nu}(\overline{K}_{\nu}) = K_{\nu} \end{split}$$

These relations endow $vsl_q(2)$ with a bialgebra structure with a J-weak antipode T_v , i.e. satisfying the regularity conditions

$$(\mathbf{e}_{v} *_{v} T_{v} *_{v} \mathbf{e}_{v})(X) = \mathbf{e}_{v}(X), \quad (T_{v} *_{v} \mathbf{e}_{v} *_{v} T_{v})(X) = T_{v}(X),$$

for any X in $vsl_q(2)$. From the difference between id and \mathbf{e}_v , $vsl_q(2)$ is not a weak Hopf algebra in the definition of [2]. So we will call it J-weak Hopf algebra and T_v a J-weak antipode. Remark the variable \mathbf{e}_v can be treated as n = 2 example of the ``tower identity'' $e_{\alpha\beta}^{(n)}$ introduced for semisupermanifolds or the ``obstructor'' $\mathbf{e}_X^{(n)}$ for general mappings, categories and Yang-Baxter equation in [5].

Now, we discuss the set $G(wsl_q(2))$ of all group-like elements of $wsl_q(2)$. The concept of *inverse* monoid can be found in [4].

Proposition The set of all group-like elements $G(wsl_q(2)) = \{J^{(ij)} = K_w^i \overline{K}_w^j : i, j \text{ run over all non-negative integers }\}$, which forms a regular monoid under the multiplication of $wsl_q(2)$.

For $vsl_a(2)$ we can get a similar statement.

Theorem $wsl_q(2)$ possesses an ideal W and a sub-algebra Y satisfying $wsl_q(2) = Y \oplus W$ and $W \cong sl_q(2)$ as Hopf algebras.

Let us assume here that q is a root of unity of order d in the field k where d is an odd integer and d > 1. Set $I = (E_w^d, F_w^d, K_w^d - J_w)$ the two-sided ideal of U_q^w and the algebra $\overline{U}_q^w = U_q^w/I$. I is also a coideal of U_q and $T_w(I) \subseteq I$. Then I is a weak Hopf ideal and \overline{U}_q^w has a unique weak Hopf algebra structure with the same operations of U_q^w .

We have $\overline{U}_q^w = U_q^w / I = Y / I \oplus W / I \cong Y / (E_w^d, F_w^d) \oplus \overline{U}_q$ where $\overline{U}_q = sl_q(2) / (E_w^d, F_w^d, K^d - 1)$ is a finite dimensional Hopf algebra. The sub-algebra \widehat{B}_q of \overline{U}_q generated by $\{E_w^m K_w^n : 0 \le m, n \le d - 1\}$ is a finite dimensional Hopf sub-algebra and \overline{U}_q is a braided Hopf algebra as a quotient of the quantum double of \widehat{B}_q [6]. The *R*-matrix of \overline{U}_q is

$$\widehat{R} = \frac{1}{d} \sum_{0 \le i, j, k \le d-1} \frac{(q-q^{-1})^k}{[k]!} q^{k(k-1)/2 + 2k(i-j) - 2ij} E_w^k K_w^i \otimes F_w^k K_w^j.$$

Since $sl_q(2) \stackrel{\rho}{\cong} W$ and $(E^d, F^d, K^d - 1) \stackrel{\rho}{\cong} I$, we get $U_q \cong W/I$ under the induced morphism of ρ . Then W/I possesses also a R-matrix

$$R^{w} = \frac{1}{d} \sum_{0 \le k \le d-1; 1 \le i, j \le d} \frac{(q-q^{-1})^{k}}{[k]!} q^{k(k-1)/2 + 2k(i-j) - 2ij} E_{w}^{k} K_{w}^{i} \otimes F_{w}^{k} K_{w}^{j} .$$

So, we get

Theorem \overline{U}_q is a quasi-braided weak Hopf algebra with

$$R^{w} = \frac{1}{d} \sum_{0 \le k \le d-1; 1 \le i, j \le d} \frac{(q-q^{-1})^{k}}{[k]!} q^{k(k-1)/2 + 2k(i-j)-2ij} E_{w}^{k} K_{w}^{i} \otimes F_{w}^{k} K_{w}^{j}$$

as its quasi- R-matrix, which is von Neumann's regular.

Because the identity of W/I is J_w , there exists the inverse R^w of R^w such that

 $R^{\oplus}R^{w} = R^{w}R^{\oplus} = J_{w}$ (the identity). Then we have

$$R^{w}R^{ev}R^{w} = R^{w},$$
$$R^{ev}R^{w}R^{ev} = R^{ev},$$

which shows that this R -matrix is regular in \overline{U}_q . It obeys the following relations

$$\Delta_w^{op}(x)R^w = R^w \Delta_w(x)$$

for any $x \in W / I$ and

$$(\Delta_{w} \otimes \mathrm{id})(R^{w}) = R_{13}^{w} R_{23}^{w}$$
$$(\mathrm{id} \otimes \Delta_{w})(R^{w}) = R_{13}^{w} R_{12}^{w}$$

which are also satisfied in \overline{U}_q . Therefore R^w is a von Neumann's regular quasi- R -matrix of \overline{U}_q . A further interesting work is to study our weak Hopf algebras through the similar objects and methods for the non-unital weak Hopf algebras [7] (their class and the class of weak Hopf algebras [2,3] are not included each other) and to find applications in the theory of quantum chain models and other relative areas.

[1] Abe E.: Hopf Algebras. Cambridge Univ. Press: Cambridge, 1980; Sweedler M.~E.: Hopf Algebras. Benjamin: New York, 1969.

[2] Li F.: Weak Hopf algebras and some new solutions of Yang-Baxter equation. J. Algebra **208**, 72--100 (1998); Li F.: Weak Hopf algebras and regular monoids. J. Math. Research and Exposition **19**, 325--331 (1999); Li F.: Solutions of Yang-Baxter equation in endomorphism semigroup and quasi-(co)braided almost bialgebras. Comm. Algebra **28**, 2253--2270 (2000).

[3] Li F., Duplij S.: Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation. Commun. Math. Phys.-- **225**.- P. 191-217 (2002); Duplij S., Li F.: Regular solutions of quantum Yang-Baxter equation from weak Hopf algebras. Czech. J. Phys. **51** P. 1306-1311 (2001).

[4] Lawson M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Sci.: Singapore, 1998
[5] Duplij S. and Marcinek W.: Noninvertibility, semisupermanifolds and categories regularization. in Noncommutative Structures in Mathematics and Physics, (Duplij S. and Wess J., eds.) Kluwer: Dordrecht, 2001, pp. 125—140; Duplij S.: On semi-supermanifolds. Pure Math. Appl. 9, 283--310 (1998); Duplij S.: Semisupermanifolds and semigroups. Krok: Kharkov, 2000.

[6] Kassel C.: Quantum Groups. Springer-Verlag: New York, 1995.

[7] Bohm G., Nill F., and Szlachanyi K.: Weak Hopf algebras I. Integral theory and C^{*}-structure. J. Algebra 221, 385--438 (1999).