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The concepts of regular n-cocycles, obstruction and the regularization procedure are developed as the category 
t]~eory analogy of the semisupermanifolds with noninvertible transition functions. It is shown that the regular- 
i~ ~tion of a category with nonivertible morphisms and obstruction form a 2-category. The generalization of some 
r~dated structures to the regular case is considered. 

In the category theory we study the obstructed 
cocycle conditions introduced earlier for nonin- 
vertible generalization of supermanifolds [1-3]. 
The concept of category regularization is consid- 
ered. It is shown that  the regularization of a cat- 
egory with noninvertible morphisms and obstruc- 
tion forms a 2-category. Generalization of certain 
related structures as tensor operation, braidings, 
algebras and coalgebras etc.., to our regular case 
i~; also given. 

The standard patch definition of a supermani- 
fold ff)Io [4] is well-known [5]. Let U (Us, ~a} is 

S 

an atlas of a supermanffold ~0~o [4], then tran- 
s:tion functions satisfy the cocycle conditions 
¢I,~ = ~ o n  Us n U~ and 

~s~ o ~ 7  o ~Ts = l s s  (1) 

d e f  
on triple overlaps Us n U~ n UT, where l~s 
id (Us). 

D e f i n i t i o n  1. A semisupermanifold is a nonin- 
vertibly generalized superspace 9Yt represented as 
a semi-atlas ~ = U  {Us, ~ }  with invertible and 

S 

noninvertible maps ~s  : Us --4 V~ C IR 'qm [3]. 

The semi-transition functions ~s~ of a semisu- 
permanifold satisfy the following relations 

(2) 
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on U~ n U2 overlaps and 

O s Z ° O Z - y ° O - ~ ° O s ~  = Os~, (3) 

~ .~  o O~s o ~ o ~I'z.y = ~-~, (4) 

~ o ¢'s~'  o ¢'~-1 o ~.y,~ = ,I,.r~ , (5) 

on triple overlaps Ua n UZ n U 7. 
The relations (2)-(5) (we call them tower re/a- 

tions) satisfy identically in the standard invertible 
case [4]. The semisupermanifold defined above 
belongs to a class of so called obstructed semisu- 
permanifolds [1,3] in the following sense. Let us 
rewrite relations (1) as the infinite series 

n = l :  e i , ~ = l ~ s ,  (6) 

n : 2 :  ~ o ~ s : l ~ s ,  (7) 

n = 3 :  ~ o ~ I , ~ o ~ . ~ s = l s ~ ,  (8) 

n = 4 :  O s ~ o ~ o O T ~ o C I ' a s = l s s  (9) 

A semisupermanifold is called obstructed, if 
some of the cocycle conditions (6)-(9) are broken. 
It can happen that  starting from some n = n m  
all higher cocycle conditions hold valid. 

D e f i n i t i o n  2. Obstructedness degree of a 
semisupermanifold is a maximal nm for which the 
cocycle conditions (6)-(9) are broken. If all of 

them hold valid, then nm ~ f  0. 

Ordinary manifolds [5] (with invertible tran- 
sition functions) have vanishing obstructedness, 
and the obstructedness degree for them is equal to 
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zero, i.e. nm = 0. Therefore, using the obstruct- 
edness degree nm, we have possibility to classify 
semisupermanifolds properly. 

The above constructions have the general im- 
portance for any set of noninvertible mappings 
[6]. Therefore, by analogy with (2)-(5) it is nat- 
ural to formulate the general 

D e f i n i t i o n  3. An noninvertible mapping 
¢ ~  is n-regular, if it satisfies on overlaps 

n 
A 

~]~ N U~ M.. .  M Up to the following conditions 

n + l  

o o o o + p rm. ( 1 0 )  

The formula (2) describes 3-regular mappings, 
the relations (3)-(5) correspond to 4-regular ones. 
Obviously that  3-regularity coincides with the or- 
dinary regularity. The higher regularity condi- 
tions change dramatically the general diagram 
technique of morphisms, when we turn to non- 
invertible ones. Indeed, the commutativity of in- 
vertible morphism diagrams is based on the rela- 
tions (6)-(9), i.e. on the fact that  the tower iden- 
tities are ordinary identities. When morphisms 
are noninvertible (a semisupermanifold has a non- 
vanishing obstructedness), we cannot "return to 

the same point", because in general e(~ ~) ~ 1 ~ ,  
and we have to consider "nonclosed" diagrams 
due to the fact that  the relation e(~ n) o ¢~B = ¢~Z 
is noncancellative now. 

If we write higher n-regularity semicommuta- 
tive diagrams, they can be considered in frame- 
work of generalized categories [7]. A category 
C contains a collection Co of objects and a col- 
lection horn (C) of arrows (morphisms) (see e.g. 
[8]). The collection horn (C) is the union of mutu- 

ally disjoint sets homc(X,Y)  of arrows X f> 
Y from X to Y defined for every pair of ob- 
jects X, Y E C. It may happen that  for a pair 
X , Y  E C the set homc(X,Y) is empty. The 
associative composition of morphisms is also de- 
fined. By an equivalence in C we mean a class 
of morphisms hom'(C) = Ux,ve(co) hom~ (X, Y) 
where hom~(X,Y) is a subset of homc(X,Y). 
Two objects X, Y of the category C is equivalent 
if and only if there is an morphism X ~ Y 

i n  t homc(X,Y ) such that  s -1 o s = idx and 
sos - t  = idy. Our category can contains a class of 
noninvertible morphisms. A (strict) 2-category C 
consists of a collection Co of objects as 0-cells and 
two collections of morphisms: C1 and C2 called 
1-cells and 2-cells, respectively [9]. For every pair 
of objects X, Y E Co there is a category C(X, Y) 
whose objects are 1-cell f : X --~ Y in C1 and 
whose morphisms are 2-cells. For a pair of 1-cells 
f , g  E C1 there is a 2-cell s : f -+ g in C2. For 
every three objects X, Y, Z E Co there is a bifunc- 
tor c := {C(X, Y) x C(Y, Z) ~ C(X, Z)} which 
is called a composition of 1-cells. There is an 
identity 1-cell idx E C(X, X) which acts trivially 
on C(X, Y) or C(Y, X). There is also 2-cell ididx 
which acts trivially on 2-cells. 

Let C be a category with an equivalence. Then 
we can construct a 2-category C(C) whose 0-cells 
are equivalence classes of objects of C, 1-cells are 
suitable classes of morphisms of C, 2-cells are 
maps between these classes such that  C(C) be- 
comes a 2-category. Observe that  1-cells of C(C) 
can be represented by morphisms of the under- 
lying category C, but such representation is not 
unique. One can use 2-morphisms in order to 
change the representative morphism. 

If the category C is equipped with certain addi- 
tional structures, then they can be transforming 
into C(C). If for instance C is monoidal category 
with product ® : C × C ~ C, then C(C) becomes 
the so-called semistrict monoidai 2-category. This 
means that  the product  @ (under some natural 
conditions) is defined for all cells of the 2-category 
C(C). In the case of braided categories one can 
obtain the semistrict braided monoidal category 
[9]. Algebras, coalgebras, modules and comod- 
ules can be also included in this procedure. We 
apply such method to regularize categories with 
noninvertible morphisms and obstruction [6]. 

Let C be a category with invertible and non- 
invertible morphisms [6] and equivalence. The 
equivalence in C is here defined as the class of 
invertible morphisms in the category C. 

D e f i n i t i o n  4. A sequence of morphisms 

x1 sl~ X2 s~ .. .  sn-~ xn  _L% x1 (11) 

such that  there is an (endo-)morphism e (3) X1 : 
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X1 ---+ Xx defined uniquely by the following 
equation 

e~2 := fn o . . .  o f2 o f l  (12) 

and subjects to the following relation 

f l  ° f n  ° " " ° f2  ° f l  = f l  

is said to be a regular n-cocycle on C and it is 
denoted by f = ( f l , . . .  fn). 

The  (endo-)morphisms e(~ ) : Xi  ~ Xi  corre- 
sponding for i = 2 , . . . ,  n are defined by a suitable 
cyclic permuta t ion  of above sequence. 

D e f i n i t i o n  5. The morphism e(x n) is said to be an 
Obstruction of X.  The mapping  e (n) : X E Co --~ 

ei!~ ) E hom(X,  X)  is called a regular n-cocycle 
Obstruction structure on C. 

If X1 g'> X2 - ~ -  9.-~ , ' " Xn g"> X1 is an 

another  n-tuple of morphisms such tha t  e(x~ ) := 
g:,~ o . .  • o g2 o gl, then we assume tha t  X~ is equiv- 
alent to Xi,  for i - 2 , . . . , n .  

D e f i n i t i o n  6. A map s : f ~ g which sends 
the object Xi into equivalent object  X~ and mor- 
phism fi into gi is said to be obstruction n-cocycle 
equivalence. 

We have the diagram 

X 2  f2) . . .  f . - ~  Xn 

fl f .  

X l  9 8 X 1 
91 gn 

X~ % g"-~ ' • • • X T ~  

(13) 

L e m m a  7. There is a one to one correspondence 
between equivalence classes of regular n-cocycles 
and regular n-cocycle obstruction structures. 

If  f = ( f l , - . - f n )  is a class of regular n- 
o)cycles, then there is the corresponding regu- 
lar n-cocycle obstruction structure e (n) : X 6 
CI~ --+ e ~  ) E horn(X, X)  such tha t  the relation 
(12) holds true. 

Let e (n) : X 6 Co -+ e (n) 6 h o m ( X , X )  be a 
regular n-cocycle obstruction in C. 

D e f i n i t i o n  8. A morphism a : X ) Y of the 
category C such tha t  

a o e ~  ) =e (y  n) ooL (14) 

is said to be a regular n-cocycle obstruction mor- 
phism from X to Y. 

D e f i n i t i o n  9. A collection of all equivalence 
classes of objects Co with obstruction structures 

e (n) : X 6 Co -+ e (n) E h o m ( X , X )  is denoted 
by ~egn(C) and called an obstruction n-cocycle 
regularization of C. The class of all regular n- 
cocycle morphisms from X to Y is denote by 
~egn(C)(X, Y) .  

C o r o l l a r y  10. It  follows from the Lemma 7 
that  the map s : a > /3 which sends 
an arbi t rary  regular n-cocycle morphisms a E 
~egn(C)(X ,X ' )  into a regular n-cocycle mor- 
phisms/3 E ~egn(C)(X, X I) is a regular obstruc- 
tion n-cocycle equivalence. 

One can define 2-morphisms and an asso- 
ciative composition of 2-morphisms such tha t  
~egn(C)(X, Y)  becomes a category for every two 
o b j e c t s X ,  Y E C o .  I f a : X  ~ Y a n d / 3 : Y  > 
Z are two n-cocycle morphisms, then the compo- 
sition $ o a  : X -+ Z is also a n-cocycle morphism. 
In this way we obtain the composition as bifunc- 
tors 

c ~eg" : = { ~ e 9 , ( C ) ( X , Y )  × ~egn(C)(Y,Z) 

) ~e9,~(C)(X, Z)} (15) 

We summarize our considerations in the following 
lemma: 

L e m m a  11. The class ~egn(C) forms a (strict) 
2-category whose O-cells are equivalence classes 
of objects of C with obstructions, whose 1-cells 
are regular n-cocycle obstruction morphisms, and 
whose 2-cells are regular obstruction n-cocycle 2- 
morphisms. 

Let C = C(I, ®) be a monoidal category, where 
I is the unit object and @ : C x C ~ C is the 
monoidal product  [10]. If  the following relation 

e~)  ® e (-) A-) (16) = ¢:X®Y" 

holds true, then we have 
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P r o p o s i t i o n  12. The monoidal product of two 
regular n-cocycles X t  , . . . , Xn and Yx , . . . , Yn with 
obstruction e(n ), and e (n), respectively, is the reg- 
ular n-cocycle X1 ® ]I1, ® " "  ® Xn ® Yn with the 
obstruction fin) ~'X®Y" 

One can see that  in this case Regn(C) is the 
so-called semistrict monoidal category [9]. 

Let C and 7) be two monoidal categories and 
let ~egn(C),~egn(D) be their regularization 2- 
categories. We can introduce the notion of reg- 
ular 2-functors, pseudonatural transformations 
and modifications. All definitions do not changed, 
but  the preservation of the identity can be re- 
placed by the requirement of preservation of ob- 
struction morphisms e (n) and the invertibility is 
replaced by regularity. If, for instance, there is a 
regular 2-functor ~" : ~egn(C) > ~egn(7)), then 
in addition to the standard definition [8] we have 
the following relation 

:7:(e (n)) = e ~ x ) .  (17) 

In the same manner we can "regularize" 
pseudo-natural transformations and modifica- 
tions. Let ~egn(C) be a semistrict monoidal 2- 
category. A pseudo-natural transformations B = 
{Bx , x ,  : X ® X '  --+ X '  ® X }  and two regular 
modifications Bx®y,z ,  Bx , y®z  such that  

and 

Bx®y,z  
X ® Y ® Z  > Y ® Z ® X  

Bx,y ® e(; ) ® Bx,  

and 

Y ® X ® Z  
(18) 

X ® Y ® Z  
Bx , y®z  

X ® Z ® Y  

Z ® X ® Y  

/a B x , z  ® e (") 

(19) 

=(n) = e(~)®x o B x , x , ,  (20)  B X , X '  o ~ x @ x '  

are said to be a regular n-cocycle braiding. Ob- 
viously, these operations must satisfying all con- 
ditions of [9] with two indicated above changes. 

Then the 2-category Negn(C) is called a semistrict 
regular n-cocycle braided monoidal category. 

We obtain here the following regular n-cocycle 
Yang-Baxter  equation [6] 

B(n)L , ( n )  R (n,)~, 
Y,Z,X o .uV, X, Z o B z 

= B(~,)xRy o B(X~,)L,y o B(X~,)y,Rz, (21) 

la(n) i 
where the notations ~ x , y , z  = B x , y  ® 

a T  ) R ( n ) R  _ e(x n) , ~ X , Y , Z  -- ® B y ,  z have been used and 

the obstructors e(x '0 are exploited instead of the 
identity idx .  Solutions of the regular n-cocycle 
Yang-Baxter  equation (21) can be found by ap- 
plication of the semigroup methods used in [11]. 

Let C be a monoidal category and ~eg~(C) be 
its regularization . It is known [8] that  an asso- 
ciative algebra in the category C is an object A 
of this category such that  there is an associative 
multiplication m : A ® .4 --+ .4 which is also a 
morphism of this category. If the multiplication 
is in addition a regular n-cocycle morphism, then 
the algebra A is said to be a regular n-cocycle 
algebra. This means that  we have the relation 

m o (e(A '0 ®e(An))=e(A ~) om.  (22) 

Obviously such multiplication not need to be 
unique. Denote by Negn(C)(A ® A , A )  a class of 
all such multiplications. We can see that  a regular 
n-cocycle 2-morphisms s : m =~ m' which send 
the multiplication m into a new one m' should 
be an algebra homomorphism. One can define 
regular n-cycle coalgebra or bialgebra in a similar 
way. A comultiplication/k : .4 > ,4 ® A can be 
regularized according to the relation 

A o e  (=) = ( e  (~) ® e(A=)) o A. (23) 

In this case we obtain a class Neg,(C)(A, A®A)  
of comultiplications. 

Let ,4 be a regular n-cocycle algebra. If ,4 
is also regular coalgebra such that  A (ab) = 
A (a )A (b), then it is said to be a regular n- 
cocycle almost bialgebra. If ,4 is a regular n- 
cocycle algebra, then we denote by homm(,4, A) 
the set of morphisms s E homc(,4, ,4) satisfying 
the condition 

s o m = m o (s  @ s) .  (24)  
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Let ,4 be a regular n-cocycle almost bialgebra. 
We define the convolution product 

s * t  := m o (s ®t) o A,  (25) 

where s, t  E homm('4,'4). If .4 is a regu- 
lar n-cocycle almost bialgebra, then the convo- 
lution product is regular. A regular n-cocycle 
almost bialgebra 74 equipped with an element 
S E homm(74,74) such that 
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R E F E R E N C E S  

S * idTt * S = S, id~ * S * id~ = idn. (26) 

ix said to be a regular n-cocycle almost Hopf al- 
gebra 74. This is a regular analogy of week Hopf 
algebras considered in [12] (see also [11]). 

Let AC be a category of all left .4 -modules, 
where .4 is a bialgebra. For the regularization 
~egn(AC) of the ,4-module action PM : .4 ® 
M > M we use the following formula 

pM o ") (27) 

where PM : .4 ® M ~ M is the left module 
action of "4 on M. The class of all such module 
actions is denoted by Negn (AC) (.4 ® 2~I, J~4). The 
ntonoidal operation in this category is given as the 
following tensor product of ,4-modules 

PM®N : : (idM ® 7 ® idN) o (PM ® PN) 

o(/k ® idM®N), (28) 

where T : .4 ® M -+ M ®.4 is the twist, i. e. 
7 ( a ® m ) : = m ® a f o r e v e r y a E ' 4 ,  m E M .  

L e m m a  13. For the tensor product of module 
actions we have the following formula 

PM®N o (e A ® eM®g) ~- eM®N o PMeN.  (29) 

Let C A be a category of right ,4-comodules, 
where ,4 is an algebra. The corresponding reg- 
ularization can be given by the formulae 

PM®N -~ ( i d i  ® mA) o (idM ® T ® idN) (30) 
°(PM ® PN), 

whereT : M ® N - +  N ® M  is the twist, m~ : 
A ® .4 -~ "4 is the multiplication in `4. 

1. S. Duplij, Semisupermanifolds and semi- 
groups, Krok, Kharkov, 2000. 

2. S. Duplij, Semigroup methods in supersym- 
metric theories of elementary particles, Ha- 
bilitation Thesis, Kharkov State University, 
math-ph/9910045, Kharkov, 1999. 

3. S. Duplij, On semi-supermanifolds, Pure 
Math. Appl. 9 (1998), 283. 

4. B.S.  De Witt, Supermanifolds, 2nd edition, 
Cambridge Univ. Press, Cambridge, 1992. 

5. S. Lang, Differential and Riemannian Mani- 
folds, Springer-Verlag, Berlin, 1995. 

6. S. Duplij and W. Marcinek, On higher reg- 
ularity and monoidal categories, Kharkov 
State University Journal (Vestnik KSU), ser. 
Nuclei, Particles and Fields 481 (2000) 27. 

7. L. Breen, Braided n-categories and 
-structures, Univ. Paris preprint, 

math.CT/9810045, Paris, 1998. 
8. S. MacLane, Categories for the Working 

Mathematician, Springer-Verlag, Berlin, 
1971. 

9. J.C. Baez and M. Neuchl, Higher-dimensional 
algebra I: Braided monoidal 2-categories, 
Univ. California preprint, q-alg/9511013, 
Riverside, 1995. 

10. D. N. Yetter, Quantum groups and represen- 
tations of monoidal categories, Math. Proc. 
Camb. Phil. Soc. 108 (1990) 261. 

11. F. Li, Weak Hop/algebras and new solutions 
of Yang-Baxter equation, J. Algebra 208 
(1998) 72. 

12. F. Nill, Axioms for weak bialgebras, Inst. 
Theor. Phys. FU preprint, math. Qh/9805104, 
Berlin, 1998. 


