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Abstract. We take a general approach to nonlinear electrodynamics that includes non-Lagrangian
as well as Lagrangian theories. We introduce the constitutive tensors which, together with Maxwell’s
equations, describe nonlinear electrodynamics in an extremely general way. We show how this ap-
proach specializes to particular cases that were previously considered, and indicate how it general-
izes to supersymmetric electrodynamics.
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Motivated by the desire to explore the existence of a c → ∞ limit of Maxwell’s
equations in nonlinear electrodynamics, two of us earlier considered a formulation based
on generalized constitutive equations consistent with the Lorentz symmetry [1, 2]. We
wrote the condition that characterizes the subclass of theories in which the equations
of motion derive from a Lagrangian, and considered some interesting variations on
Born-Infeld and nonabelian Born-Infeld Lagrangians that actually have Galilean limits.
Subsequently, Goldin, Mavromatos and Szabo proposed an application to the tensionless
limit of relativistic strings [3], reinforcing the importance of generalizing the approach
to encompass supersymmetric electrodynamics.

Here we propose a much more general form for the constitutive equations, describing
Lagrangian and non-Lagrangian theories of nonlinear electrodynamics that include (for
example) electromagnetic fields in anisotropic media, and piroelectric or ferromagnetic
materials. We also indicate how to incorporate supersymmetric electrodynamics [4].

Following Refs. [1] and [2], we write Maxwell’s equations for classical electromag-
netic fields [5] so as to preserve their explicit dependence on the velocity of light c and
allow a nontrivial Galilean-covariant limit as c→∞. We work in Minkowski space-time,
with the flat metric tensor ηµν = diag(1,−1,−1,−1), xµ =

(
ct,xi), µ,ν , · · ·= 0,1,2,3,

i, j, · · ·= 1,2,3, with ∂µ = ∂�∂xµ =
[
c−1∂�∂ t,∇

]
, and the antisymmetric Levi-Civita

tensor εµν ρσ , ε0123 = 1. The antisymmetric field strength tensors Fµν and Gµν are
constructed as usual from the fields E, B, D, H: F0i = c−1Ei, Fi j = εi jkBk, G0i = cDi,
Gi j = εi jkHk, where εi jk denotes the 3-dimensional antisymmetric tensor with ε123 = 1.
Sometimes the forms corresponding to Fµν and Gµν are called the Faraday 2-form and
Ampère 2-form respectively [6]. In these units, Maxwell’s equations in 3+1 dimensions
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contain no c:

curl E =−∂B�∂ t, divB = 0, curl H = ∂D�∂ t + j, divD = ρ. (1)

The covariant version is
∂µ F̃µν = 0, ∂µGµν = jν , (2)

where F̃µν = (1/2)εµν ρσ Fρσ is the Hodge dual field strength, and j µ = (cρ, j) is the
4-current. A solution to the first equation in (2) may be written Fµν = ∂µAν − ∂νAµ ,
where Aµ is the Abelian gauge field, while for Gµν such a presentation is not in general
possible. Note that our strategy is to keep Fµν and Gµν distinct as long as possible.

But the system (1) is underdetermined, and one now needs constitutive equations to
relate the four fields E, B, D, H. In the simplest (vacuum) case, these are D = ε0E,
B = µ0H, where ε0 and µ0 are the permittivity and permeability respectively. Nonlinear
Lorentz-covariant constitutive equations, considered generally in [7], take the form

D = MB+ c−2NE, H = NB−ME, (3)

or equivalently [2]
Gµν = NFµν + cMF̃µν , (4)

where M and N are scalar functions of the two Lorentz invariants X and Y ,

X =
1
4

FµνFµν =
1
2

(
B2− c−2E2) , Y =

1
4

Fµν F̃µν =−c−1B ·E. (5)

In the classical vacuum case, we have M = 0 and N = µ
−1
0 , with ε0µ0 = c−2. In one

version of Born-Infeld electrodynamics (see e.g. [8]), M = −Y�
√

1+2X−Y 2 and
N = 1�

√
1+2X−Y 2.

It is well known [9] that a static gravitational field acts as a gyrotropic medium,
with some permeability εgrav and permittivity µgrav. Here we shall consider only the
flat space-time situation.

Although the relations (3) and (4) are fairly general, they do not take into account a
number of physically important situations; for example, anisotropic media [10], chiral
materials where derivatives are important [11], and other possibilities. Therefore we
propose to generalize (3)–(4) by introducing three (or more) constitutive tensors Sµν ,
Rρσ

µν , Qρσλ

µν as follows:

Gµν = Sµν +Rρσ

µν Fρσ +Qρσλ

µν

∂Fρσ

∂xλ
. (6)

The formula (6), together with Maxwell’s equations (2), is intended to describe gen-
eral, classical electrodynamics in possibly nonhomogeneous and/or nonisotropic me-
dia, as well as possibly nonhomogeneous and/or nonisotropic spacetime, while incor-
porating earlier examples. In general, Sµν = Sµν(x), Rρσ

µν = Rρσ

µν (x,F), and Qρσλ

µν =

Qρσλ

µν (x,F,∂F). Additional, higher constitutive tensors following this pattern may be
included to incorporate higher-derivative terms of finite order.
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In the case of Lorentz-invariant constitutive equations, the constitutive tensors will
depend on F only through the invariants X and Y , so that Sµν is constant, while Rρσ

µν =
Rρσ

µν (X ,Y ). Evidently Sµν is antisymmetric, Rρσ

µν is antisymmetric in its upper and

lower indices separately, and Qρσλ

µν is antisymmetric in its lower and first two upper
indices. Various further symmetries and properties of the constitutive tensors provide
the possibility of studying these theories in unifying way.

Let us consider some examples. In the vacuum case Sµν = 0, Rρσ

µν = µ
−1
0 δ

ρ

[µδ σ

ν ],

and Qρσλ

µν = 0, where by square brackets we denote antisymmetrization with a fac-
tor of 1/2; i.e., x[µν ] ≡

(
xµν − xνµ

)
/2. Then the only nonvanishing constitutive ten-

sor Rρσ

µν is ‘diagonal’. For the Born-Infeld theory mentioned above, we have Rρσ

µν =(
δ

ρ

[µδ σ

ν ] − cY ε[µν ]λδ η λρη δσ

)
�
√

1+2X−Y 2, while Sµν = 0 and Qρσλ

µν = 0.
The case Sµν 6= 0 corresponds to piroelectric and ferromagnetic materials.
In an anisotropic medium with tensorial permeability εi j and permittivity µi j, the

constitutive equations relating D to E and H to B become Di = εi jE j and Bi = µi jH j.
This situation is not described by (3) or (4), but the more general constitutive tensor R ρσ

µν

is easily calculated.
Next consider a Lagrangian L(X ,Y ) (a scalar function of invariants) describing a

nonlinear theory. From the usual definitions, we have

Gµν =
∂L
∂X

Fµν +
∂L
∂Y

F̃µν . (7)

Comparing (6) and (7) gives us the constitutive tensors for a general covariant La-
grangian theory,

Rρσ

µν =
∂L
∂X

δ
ρ

[µδ
σ

ν ] +
∂L
∂Y

ε[µν ]λδ η
λρ

η
δσ , Sµν = 0, Qρσ

µνλi
= 0. (8)

Here N = ∂L/∂X and M = c−1∂L/∂Y , so that consistent with Ref. [2], the compatibility
condition for M and N to describe a Lagrangian theory is ∂N/∂Y = c∂M/∂X .

Finally, consider the duality transformations [12]

δFµν = G̃µν , δGµν = F̃µν , (9)

where G̃µν = (1/2)εµν ρσ Gρσ is the Hodge dual of Gµν . Then the natural (anti-)self-
duality condition is Fµν = εG̃µν , with ε = ±1, and X = εY . Using (6), we then write
the (anti-)self-duality condition for the constitutive tensor Rρσ

µν as

Rρσ

µν ερσλδ η
λ [µ

η
δν ] = 2ε . (10)

We remark that the equations of motion can be obtained directly by applying the method
of [12], Section 3.1.

More detailed consideration of various properties of the constitutive tensors Sµν , Rρσ

µν ,

and Qρσλ

µν , with application to concrete systems, will appear elsewhere.
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We conclude this report by indicating briefly how our general formulation of the con-
stitutive equations (6) extends to superfields in N = 1 four-dimensional “supermedia”,
(where N is the number of supersymmetries). Our goal is to to write a plausible “super”
analogue of the constitutive equations, without any commitment to a Lagrangian.

With standard notations (following mostly [13]), the supermanifold is described by
coordinates xµ , θ α , and θ̄ α̇ , where θ α and θ̄ α̇ (with α, α̇ = 1,2) are Grassmann vari-
ables (2-component, complex Majorana spinors). The Abelian gauge field Aµ(x) is a
component of the gauge superfield (vector multiplet) V(x,θ , θ̄) = V+(x,θ , θ̄), where
+ denotes super-Hermitian conjugation). In the Wess-Zumino gauge, half of the com-
ponent fields are gauged away with supergauge transformations, and V takes the form

VWZ
(
x,θ , θ̄

)
=−θ

α
σ

µ

αα̇
θ̄

α̇Aµ (x)− iθ̄α̇ θ̄
α̇

θ
α

ψα (x)+ iθ α
θα θ̄α̇ ψ̄

α̇ (x) (11)

+
1
2

θ
α

θα θ̄α̇ θ̄
α̇D(x) ,

where the σ µ are Pauli spin matrices, ψα (x) is a Majorana fermionic field, and D(x) is
an auxiliary (nonphysical) field needed for supersymmetry invariance.

The actual super analogues of the field strength Fµν are mixed spin-vector (odd val-
ued) superfields Fαµ and F̄α̇µ in superspace, which may be expressed directly in terms

of a prepotential V: Fαµ = −(1/2)DαDβ σ
ββ̇

µ D̄
β̇
V, where Dα , D̄

β̇
denote supercovari-

ant derivatives. Alternatively, Fαµ and F̄α̇µ can be expressed in terms of chiral spinor
superfields W and W̄ depending on only one spinorial coordinate:

Fαµ

(
x, θ̄

)
=−iεαβ σ

ββ̇

µ W̄
β̇

(
x, θ̄

)
, F̄α̇µ (x,θ) =−iε

α̇β̇
σ̄

β̇β

µ Wβ (x,θ) , (12)

where the antisymmetric tensor ε has components ε12 = −ε12 = ε1̇2̇ = −ε 1̇2̇ = 1; and
where Wβ (x,θ) = (1/2)D̄α̇D̄β̇ Dβ V(x,θ , θ̄) and W̄

β̇
(x, θ̄) = (1/2)DαDβ D̄

β̇
V(x,θ , θ̄),

with D̄α̇Wβ (x,θ) = 0 and DαW̄
β̇

(
x, θ̄

)
= 0. The chiral superfields satisfy the addi-

tional constraints DαWα (x,θ) = D̄α̇W̄α̇
(
x, θ̄

)
. In the Wess-Zumino gauge (11),

Wα (x,θ) = −iψα (x) +
(

εαγD(x)− i
2

σ
µ

αα̇
ε

α̇β̇
σ̄

ν

β̇ γ
Fµν (x)

)
θ

γ (13)

−θ
β

θβ σ
µ

αα̇
∂µ ψ̄

α̇ (x) .

The role of the gauge invariants X and Y in (5) will be played by superinvariants X
and Y, expressed using (12) by

X(x,θ) =
1
4

F̄α̇µ (x,θ) F̄α̇µ (x,θ) = Wα (x,θ)Wα (x,θ) ,

Y
(
x, θ̄

)
=

1
4

Fαµ
(
x, θ̄

)
Fαµ

(
x, θ̄

)
= W̄α̇

(
x, θ̄

)
W̄α̇

(
x, θ̄

)
. (14)

Now, by analogy with what we have written for F and F̄, we introduce Gαµ(x, θ̄) and
Ḡα̇µ(x,θ) without expressing these through any prepotential analogue of V. Instead, we
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propose that they have a representation analogous to (12); i.e.,

Gαµ

(
x, θ̄

)
=−iεαβ σ

ββ̇

µ W̄G
β̇

(
x, θ̄

)
, Ḡα̇µ (x,θ) =−iε

α̇β̇
σ̄

β̇β

µ WG
β

(x,θ) , (15)

where the chiral superfields in media, WG
β

(x,θ) and W̄G
β̇

(
x, θ̄

)
, are likewise not ex-

pressed through a prepotential. Rather WG
β

(x,θ) is taken to have a component expan-
sion analogous to (13), but with the field strength tensor Fµν(x) in (13) replaced by the
tensor Gµν(x) satisfying (2).

Finally, we formulate the generalized superconstitutive equations analogous to (6), in
terms of chiral superfields:

WG
α (x,θ) = Sα + R

β

α Wβ + . . . ,

W̄G
α̇ (x, θ̄) = S̄α̇ + R̄

β̇

α̇
W̄

β̇
+ . . . , (16)

where “ . . .” represents the possibility of additional terms with superderivative contribu-

tions. Then R
β

α can depend on (x,θ) through the gauge superinvariant X(x,θ), and R̄
β̇

α̇

can depend on (x, θ̄) through Y(x, θ̄), with X and Y defined as in (14).
The expansion (13) and its analogue for WG

β
(x,θ) lets us rewrite the superfield

constitutive equations (16) in components.
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