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Abstract

One-parameter semigroups of antitriangle idempotent supermatrices and corresponding
superoperator semigroups are introduced and investigated. It is shown that t-linear idempotent
superoperators and exponential superoperators are mutually dual in some sense, the first giving
rise to additional non-exponential solutions to the initial Cauchy problem. The corresponding
functional equation and analog of resolvent are found. Differential and functional equations
for idempotent (super)operators are derived for their general t power-type dependence.
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1. Introduction

The operator semigroups [1] play an important role in mathematical physics [2–4]
providing a theoretical framework for evolving systems [5–7]. Although develop-
ments in this area have encompassed many new fields [8–11], until recently there
have been no attempts to apply operator semigroups to the important topic of su-
persymmetry [12–14]. The main new feature in the mathematics of supersymmetry
[15–17] is the existence of noninvertible objects, zero-divisors and nilpotents, as
elements of matrices. Taking into account that such objects form a semigroup, we
call our study that of the semigroup×semigroup method.
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Here we investigate continuous supermatrix representations of idempotent oper-
ator semigroups firstly introduced for bands in [18,19] and then studied in [20,21].
Usually matrix semigroups are defined over a field K [22] (on some nonsupersym-
metric generalizations of K-representations see [23,24]). But after discovery of su-
persymmetry [25,26] the realistic unified particle theories began to be considered in
superspace [27,28]. So all variables and functions were defined not over a field K, but
over Grassmann-Banach superalgebras over K [29–31] become in general noninvert-
ible. Therefore they should be considered by semigroup theory, which was claimed in
[32,33], some supersymmetric semigroups having nontrivial abstract properties were
found in [34], noninvertible extensions of supermanifolds—semisupermanifolds—
were introduced in [35–37]. Also, it was shown that supermatrices of the special
(antitriangle) shape can form various strange and sandwich semigroups not known
before [18,20]. Here we consider one-parametric semigroups (for general theory see
[2,5,38]) of antitriangle supermatrices and corresponding superoperator semigroups.
The first ones continuously represent idempotent semigroups and second ones lead
to new superoperator semigroups with nontrivial properties [21].

2. Preliminaries

Let � be a commutative Banach Z2-graded superalgebra [15,39] over a field K

(where K = R,C or Qp) with a decomposition into the direct sum: � = �0 ⊕ �1.
The elements a from �0 and �1 are homogeneous with respect to the parity defined

by p (a)
def= {

i ∈ {0, 1
} = Z2| a ∈ �i

}
. A supercommutator is defined by [a, b] =

ab − (−1)p(a)p(b) ba. In the simplest case, if we have the Grassmann algebra �(n)
with generators ξi, . . . , ξn satisfying ξiξj + ξj ξi = 0, 1 � i, j � n, in particular
ξ2
i = 0 (n can be infinite), then any even x and odd κ elements 1 have the expansions

x = xnumb + xnil = x0 + x12ξ1ξ2 + x13ξ1ξ3 + · · ·
= xnumb +

∑
1�r�n

∑
1<i1<···<i2r�n

xi1···i2r ξi1 · · · ξi2r , (1)

κ = κnil = x1ξ1 + x2ξ2 + · · · + x123ξ1ξ2ξ3 + · · ·
=

∑
1�r�n

∑
1<i1<···<i2r−1�n

xi1···i2r−1ξi1 · · · ξi2r−1 , (2)

where xi1···in ∈ K. The structure of superalgebra on � (n) is defined by putting
p (ξi) = 1 [16]. The map ε dropping all odd generators is called a number map
(canonical projection [17], body map [40]) which acts on the even and objects (1)–(2)
as ε (x) = x|ξi=0 = xnumb, ε (κ) = κ|ξi=0 = 0.

1 Here and in what follows we will use Latin letter for even objects and Greek letters for odd ones.
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From (1)–(2) it follows that e.g., the equations x2 = 0, κx = 0, and κκ
′ = 0 can

have nonzero nontrivial solutions, i.e., zero-divisors and even nilpotents can appear
on a par with invertible solutions of various equations. For instance, in �(4) even
nonvanishing nilpotents x2 = 0 satisfy x0 = 0, x12x34 − x13x24 + x14x23 = 0 and
for the components of nonvanishing zero-divisors κx = 0 we obtain the relations
x0 = 0,

x1x23 − x2x13 + x3x12 = 0, x1x24 − x2x14 + x4x12 = 0,

x1x34 − x3x14 + x4x13 = 0, x2x34 − x3x24 + x4x23 = 0.

From κκ
′ = 0 we get the conditions xix′

j − xjx
′
i = 0, i, j = 1, 2, 3, 4, which obvi-

ously shows that odd objects (2) are nilpotents of second degree 2
κ

2 = 0.

Claim 1. If zero divisors and nilpotents will be included in the following analysis
as elements of matrices, then one can find new and unusual properties of corre-
sponding semigroups.

So we consider general properties of supermatrices [15,16] and then introduce
their additional nontrivial reductions [18,21].

Let us consider (p | q)-dimensional linear model superspace �p|q over � as the
even sector of the direct product �p|q = �p

0
× �q

1
[30,31,40]. The even morphisms

Hom0(�
p | q,�m|n) between superlinear spaces �p|q → �m|n are described by means

of (m+ n)× (p + q)-supermatrices [15,16] (for some nontrivial properties see [42,
43]. In what follows we will treat noninvertible morphisms [44,45] on a par with
invertible ones [18,21], i.e. we will consider also noninvertible supermatrices which
form a general linear semigroup Mat�(p | q)[15].

We remind here some necessary facts from supermatrix theory [15–17]. The
standard square supermatrix structure M ∈ Mat�(p | q) can be written in the block
shape 3

M =
(
Ap×p �p×q
�q×p Bq×q

)
, (3)

where ordinary matrices A,B and �,� (we will drop dimension indices) consist of
even (odd) and odd (even) elements for even p(M) = 0 (odd p(M) = 1) supermatrix
M respectively [16]. For sets (of matrices and other objects below) we use corre-

sponding bold symbols, and the set product is standard M · N def= {⋃
MN |M,N ∈

Mat�(p | q)}. The set of invertible supermatrices Minv from Mat�(p | q) form the
general linear group GMat�(p | q) and for them ε(A) /= 0, ε(B) /= 0 [15]. The ideal
structure of supermatrices can be described as follows [21]. We introduce the sets

2 In [41] an invertible odd object θ0 was introduced to investigate to study supersymmetric pseudodif-
ferential operators.

3 For nonstandard diagonal formats of supermatrices see [46].
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M′ = {M ∈ Mat� (p|q) | ε (A) /= 0} , (4)

M′′ = {M ∈ Mat� (p|q) | ε (B) /= 0} , (5)

J′ = {M ∈ Mat� (p|q) | ε (A) = 0} , (6)

J′′ = {M ∈ Mat� (p|q) | ε (B) = 0} . (7)

Then M = M′ ∪ J′ = M′′ ∪ J′′ and M′ ∩ J′ = ∅, M′′ ∩ I′′ = ∅, therefore Minv =
M′ ∩ M′′. The set J = J′ ∩ J′′ is an ideal of the semigroup M = {M; ·} = Mat� (p|q).
Moreover:

(1) Sets J, J′ and J′′ are isolated ideals of Mat� (p|q).
(2) Sets Minv, M

′
and M′′ are filters of Mat� (p|q).

(3) Sets M′ and M′′ (that correspond to G′Mat� (p|q) and G′′Mat (p, q|�) in the
Berezin’s notation [15]) are subsemigroups 4 of Mat� (p|q), and M′ = Minv∪J′
and M′′ = Minv∪J′′, where corresponding isolated ideals are K′ = M′ \ Minv =
M′ ∩ J′′ and K′′ = M′′ \ Minv = M′′ ∩ J′.

(4) The ideal J of Mat� (p|q) is J = J′ ∪ K′ = J′′ ∪ K′′(for details see [20,21]).

The superanalog of trace is defined by [15,16]

str M= tr A− tr B, p (M) = 0, (8)

str M = tr A+ tr B, p (M) = 1 (9)

and has the properties str (MN)=(−1)p(M)p(N) str (NM) and str
(
UMU−1

) = strM ,
where U ∈ Minv and the inverse supermatrix U−1 is the solution of the equation
UU−1 = I . The superanalog of determinant—Berezinian [15]—is well defined for
invertible supermatrices from Minv and is determined through ordinary determinants
and Shur complements as follows [48–50]

BerM = det
(
A− �B−1�

)
detB

, (10)

1

BerM
= det

(
B − �A−1�

)
detA

. (11)

Berezinian is multiplicative BerMN = BerMBerN [15,51] and connected with su-
pertrace by the standard formula BerM = exp str lnM [49]. From (4)–(5) and (10)–
(11) it follows that BerM can be extended to the semigroup M′′, while (BerM)−1

holds valid for the semigroup M′, and their multiplicativity preserves respectively
[15] (see the Footnote 4). The analog of Berezinian for the whole semigroup M

was constructed in [52] for some special cases using theory of generalized inverses

4 Unfortunately, after translation of the fundamental Berezin’s book on supermathematics the russian
word “polugruppa/semigroup” denoting G′Mat� (p|q), G′′Mat (p, q|�) (see the original edition [47, s.
89,97]) appeared as “subgroup” (see the translation [15, pp. 95,103]), which perhaps became an obstacle
in the way of supermatrix semigroups investigation.
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(for ordinary matrices see [53–55]). For instance, if the block B in (3) has a general-
ized inverse B+ satisfying BB+B = B, B+BB+ = B+ (see [44,56]), then

sdet(+)M = det
(
A− �B+�

)
detB+ (12)

can be treated as an analog of superdeterminant for noninvertible supermatrices of
this special kind which reproduces the standard formula (10) in the invertible case
B+ = B−1 [52].

3. Triangle–antitriangle/even–odd classification of supermatrices

Let us consider (1 + 1)× (1 + 1)-supermatrices describing the elements from
Hom0(�1|1,�1|1) in the standard �1|1 basis [15]

M ≡
(
a α

β b

)
∈ Mat� (1|1) (13)

where a, b ∈ �0, α, β ∈ �1, α
2 = β2 = 0 (in the following we use Latin letters for

elements from �0 and Greek letters for ones from �1, and odd elements are nilpotent
of index 2). The supertrace and Berezinian are defined by [15] (ε(b) /= 0, which
corresponds to M′′ (5))

strM = a − b, (14)

BerM = a
b

+ βα

b2 . (15)

First term of (15) is related to triangle supermatrices, second term – to antitriangle
ones. So we obviously have different two dual types of supermatrices [18].

Definition 1. Even-reduced supermatrices are elements from Mat�(1|1) of the form

Meven ≡
(
a α

0 b

)
∈ RMateven

� (1|1) ⊂ Mat� (1|1) . (16)

Odd-reduced supermatrices are elements from Mat�(1|1) of the form

Modd ≡
(

0 α

β b

)
∈ RMatodd

� (1|1) ⊂ Mat� (1|1) . (17)

The odd-reduced supermatrices have a nilpotent (but nonzero) Berezinian

BerModd = βα

b2
/= 0, (18)

(BerModd)
2 = 0. (19)

Remark 1. Indeed property (19) prevented in the past the use of this type (odd-
reduced) of supermatrices in physics. All previous applications (excluding [18,19,57])
were connected with triangle (even-reduced, similar to Borel) ones and first term in
Berezinian BerM = a/b (15).
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Remark 2. Odd-reduced supermatrices belong to the semigroup GMat′′ (1, 1|�)
in Berezin’s notations and to M′′ (5) (2–2 block is invertible), and for them “super-
determinant preserves multiplicativity” [15].

The odd-reduced supermatrices satisfy

Mn
odd = bn−2

(
αβ αb

βb b2 − (n− 1) αβ

)
, (20)

which gives BerMn
odd = 0 and strMn

odd = bn−2
(
nαβ − b2

)
.

The even- and odd-reduced supermatrices are mutually dual in the sense of the
Berezinian addition formula [18]

BerM = BerMeven + BerModd. (21)

The matrices from Mat (1|1) form a linear semigroup M of (1 + 1)× (1 + 1)-

supermatrices under the standard supermatrix multiplication M (1|1) def= {M| ·} [15].
Obviously, the even-reduced matrices Meven form a semigroup Meven (1|1) which
is a subsemigroup of M (1|1), because of Meven · Meven ⊆ Meven and the unity is
in Meven (1|1). This trivial observation leads to general structure (Borel) theory for
matrices: triangle matrices form corresponding substructures (subgroups and sub-
semigroups). It was believed before that in case of supermatrices the situation does
not changed, because supermatrix multiplication is the same [15]. But they did not
take into account zero divisors and nilpotents appearing naturally and inevitably
in supercase.

Claim 2. Standard (lower/upper) triangle supermatrices are not the only substruc-
tures due to unusual properties of zero divisors and nilpotents appearing among
elements (see (1)–(2) and following examples).

It means that in such consideration we have additional (to the triangle) class of
subsemigroups. Then we can formulate the following general

Problem 1. For a given n,m, p, q to describe and classify all possible substructures
(subgroups and subsemigroups) of (m+ n)× (p + q)-supermatrices.

First example of such new substructures are �-matrices considered below.

Claim 3. These new substructures lead to new corresponding superoperators which
are represented by one-parameter substructures of supermatrices.

Therefore we first consider possible (not triangle) subsemigroups of supermatri-
ces.
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4. Semigroups of odd-reduced supermatrices

In general, the odd-reduced matrices Modd do not form a semigroup, since their
multiplication is not closed in general Modd · Modd ⊂ M. Nevertheless, some subset
of Modd can form a semigroup [18,21]. That can happen due to the existence of zero
divisors in �, and so we have Modd · Modd ∩ Modd = Msmg

odd /= ∅.
To find the set Msmg

odd we consider a (1 + 1)× (1 + 1) example. Let α, β ∈ �,

where � ⊂ �1. We denote Annα
def= {γ ∈ �1 | γ · α = 0} and Ann � = ⋂

α∈�Annα
(here the intersection is crucial). Then we define sets of left and right �-matrices

M�
odd(L)

def=
(

0 �
Ann � bL

)
, (22)

M�
odd(R)

def=
(

0 Ann �
� bR

)
, (23)

where bL, bR ∈ �0.

Proposition 1. The left and right �-matrices M�
odd(L,R) ⊂ Modd form two differ-

ent subsemigroups M�
odd(L) (1|1) and M�

odd(R) (1|1) of M (1|1) under the standard
supermatrix multiplication, iff bL� ⊆ � and bRAnn � ⊆ Ann �, respectively.

Proof. It follows from the equality(
0 γ1
γ ′

1 b1

)(
0 γ2
γ ′

2 b2

)
=
(

0 γ1b2
b1γ

′
2 b1b2

)
and from definition of Ann � and �Ann � = 0, and in general � /= Ann �. �

Corollary 1. The introduced antitriangle �-matrices are additional to triangle su-
permatrices substructures which form subsemigroups of the general linear semi-
group of all supermatrices M.

Let us consider general square antitriangle (p + q)× (p + q)-supermatrices (hav-
ing even parity in notations of [15] ) of the form

M
p|q
odd

def=
(

0p×p �p×q
�q×p Bq×q

)
, (24)

where ordinary matrix Bq×q consists of even elements and matrices �p×q and �q×p
consist of odd elements [15,16] (we drop their indices below). The Berezinian of
M
p|q
odd can be obtained from the general formula (10) by reduction and in case of

invertible B (which is implied here) is (cf. (18))

Ber Mp|q
odd = −det

(
�B−1�

)
detB

. (25)

The Berezinian BerMp|q
odd is multiplicative (see Remark 2).
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Assertion 1. A set of supermatrices Mp|q
odd form a semigroup M�

odd (p|q) of
�p|q -matrices, if �� = 0, i.e. antidiagonal matrices are orthogonal, and �B ⊂ �,
B� ⊂ �.

Proof. Consider the product

M
p|q
odd1

M
p|q
odd2

=
(

�1�2 �1B2
B1�2 B1B2 + �1�2

)
(26)

and observe the condition of vanishing even-even block, which gives �1�2 = 0, and
other conditions follows obviously. �

From (26) it follows

Corollary 2. Two �p|q -matrices satisfy the band relation M1M2 = M1, if �1B2 =
�1, B1�2 = �2, B1B2 + �1�2 = B1.

Definition 2. We call a set of �p|q -matrices satisfying additional condition �� = 0,
a set of strong �p|q -matrices.

Strong �p|q -matrices have some extra nice features and all supermatrices consid-
ered below are of this class.

Corollary 3. Idempotent strong �p|q -matrices are defined by relations �B = �,
B� = �, B2 = B.

The product of n strong �p|q -matrices Mi has the following form

M1M2 · · ·Mn =
(

0 �1An−1Bn
B1An−1�n B1An−1Bn

)
, (27)

where An−1 = B2B3 · · ·Bn−1, and its Berezinian is

Ber (M1M2 · · ·Mn) = −det (�1An−1�n)

det (B1An−1Bn)
. (28)

5. Idempotent semigroups of one-even-parameter supermatrices

Here we investigate one-even-parameter subsemigroups of �-semigroups and as a
particular example for clearness of statements consider Modd (1|1), where all charac-
teristic features taking place in general (p + q)× (p + q) as well can be seen. These
formulas will be applied for establishing corresponding superoperator semigroup
properties.

A simplest semigroup can be constructed from antidiagonal nilpotent supermatri-
ces of the shape
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Yα (t)
def=
(

0 αt

α 0

)
. (29)

where t ∈ �1|0 is an even parameter of the Grassmann algebra � which continuously
parametrizes elements Yα (t) and α ∈ �0|1 is a fixed nilpotent odd element of �
(α2 = 0) which labels the sets Yα = ⋃

t Yα (t).

Definition 3. The supermatrices Yα (t) together with a null supermatrix

Z
def=
(

0 0
0 0

)
form a continuous null semigroup Zα (1|1) = {Yα ∪ Z; ·} having the null multipli-
cation

Yα (t) Yα (u) = Z. (30)

Assertion 2. For any fixed t ∈ �1|0 the set {Yα (t) , Z} is a 0-minimal ideal in
Zα (1|1).

Remark 3. If we consider, for instance, a one-even-parameter odd-reduced super-
matrix

Rα (t) =
(

0 α

α t

)
,

then multiplication of Rα (t) is not closed since

Rα (t) Rα (u) =
(

0 αu

αt tu

)
/∈ Rα =

⋃
t

Rα (t) .

Any other possibility except ones considered below also do not give closure of mul-
tiplication.

Thus the only nontrivial closed systems of one-even-parameter odd-reduced (antitri-
angle) (1 + 1)× (1 + 1) supermatrices are Pα = ⋃

tPα(t), where

Pα(t)
def=
(

0 αt

α 1

)
(31)

and Qα = ⋃
tQα (u) where

Qα (u)
def=
(

0 α

αu 1

)
. (32)

First, we establish multiplication properties of supermatrices Pα(t) and Qα(u).
Obviously, that they are idempotent.

Assertion 3. Sets of idempotent supermatrices Pα and Qα form left zero and right
zero semigroups respectively with multiplication
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Pα (t) Pα (u) = Pα (t) , (33)

Qα (t)Qα (u) = Qα (u) . (34)

Proof. It simply follows from supermatrix multiplication law and nilpotence
of α. �

Corollary 4. The sets Pα and Qα are rectangular bands since

Pα (t) Pα (u) Pα (t) = Pα (t) , (35)

Pα (u) Pα (t) Pα (u) = Pα (u) (36)

and

Qα (u)Qα (t)Qα (u)= Qα (u) , (37)

Qα (t)Qα (u)Qα (t) = Qα (t) (38)

with components t = t0 + Annα and u = u0 + Annα correspondingly.

They are orthogonal in sense of

Qα(t)Pα(u) = Eα, (39)

where

Eα
def=
(

0 α

α 1

)
(40)

is a right “unity” and left “zero in semigroup Pα, because

Pα (t) Eα = Pα (t) , EαPα (t) = Eα (41)

and a left “unity” and right “zero” in semigroup Qα , because

Qα (t) Eα = Eα, EαQα (t) = Qα (t) . (42)

It is important to note that

Pα (t = 1) = Qα (t = 1) = Eα, (43)

and so Pα ∩ Qα = Eα . Therefore, almost all properties of Pα and Qα are similar, and
we will consider only one of them in what follows. For generalized Green’s relations
and more detail properties of odd-reduced supermatrices see [19,20].

6. Odd-reduced supermatrix operator semigroups

Let us consider a semigroup P of superoperators P (t) (see for general theory
[2,3,5,58]) represented by the one-even-parameter semigroup Pα of odd-reduced
supermatrices Pα (t) (31) which act on (1|1)-dimensional superspace R1|1 as follows
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Pα(t)X, where X = (
x
κ

) ∈ R1|1, where x is an even coordinate, κ is an odd coordinate(
κ

2 = 0
)

having expansions (1) and (2). We have a representation ρ : P → Pα with
correspondence P (t) → Pα (t), but (as is usually made, e.g., [5]) we identify space
of superoperators with the space of corresponding matrices (nevertheless, we use
here operator notations for convenience).

Definition 4. An odd-reduced “dynamical” system on R1|1 is defined by an odd-
reduced supermatrix-valued function P (·) : R+ → Modd (1|1) and “time evolution”
of the state X (0) ∈ R1|1 given by the function X (t) : R+ → R1|1, where

X (t) = P (t) X (0) (44)

and can be called as orbit of X (0) under P (·).

Remark 4. In general the definition, the continuity, the functional equation and
most of conclusions below hold valid also for t ∈ R1|0 (as e.g. in [5, p. 9]) including
“nilpotent time” directions (see expansions (1) and (2)).

From (33) it follows that

P (t)P (s) = P (t) , (45)

and so superoperators P (t) are idempotent. Also they form a rectangular band,
because of

P(t)P(s)P(t)= P(t), (46)

P(s)P(t)P(s)= P(s). (47)

We observe that

P (0) =
(

0 0
α 1

)
/= I =

(
1 0
0 1

)
, (48)

as opposite to the standard case [2]. A “generator” A = P′ (t) is

A =
(

0 α

0 0

)
, (49)

and so the standard definition of generator [2]

A = lim
t→0

P (t)− P (0)

t
. (50)

holds and for difference we have the standard relation

P (t)− P (s) = A · (t − s) . (51)

The following properties of the generator A take place

P (t)A= Z, (52)

AP (t)= A, (53)
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where “zero operator” Z is represented by the null supermatrix, A2 = Z, and there-
fore generator A is a nilpotent of second degree.

From (50) it follows that

P (t) = P (0)+ A · t. (54)

Definition 5. We call operators which can be presented as a linear supermatrix func-
tion of t a t-linear superoperators.

From (54) it follows that P (t) is a t-linear superoperator.

Proposition 2. Superoperators P (t) cannot be presented as an exponent (as for the
standard superoperator semigroups T (t) = eA·t [2]).

Proof. In our case

T (t) = eA·t = I + A · t =
(

1 αt

0 1

)
/∈ Pα. � (55)

Remark 5. Exponential superoperator T (t) = eA·t is represented by even-reduced
supermatrices T (·) : R+ → Meven (1|1) [5], but idempotent superoperator P (t)
is represented by odd-reduced supermatrices P (·) : R+ → Modd (1|1) (see Defini-
tion 1).

Nevertheless, the superoperator P (t) satisfies the same linear differential equation

P′ (t) = A · P (t) (56)

as the standard exponential superoperator T (t) (the initial value problem [5])

T′ (t) = A · T (t) . (57)

That leads to the following:

Corollary 5. In case initial state does not equal unity P (0) /= I, there exists an ad-
ditional class of solutions of the initial value problem (56)–(57) among odd-reduced
(antidiagonal) idempotent t-linear (nonexponential) superoperators.

Let us compare behavior of superoperators P (t) and T (t). First of all, their gen-
erators coincide

P′(0) = T′(0) = A. (58)

But powers of P(t) and T(t) are different Pn(t) = P(t) and Tn(t) = T(nt). In their
common actions the superoperator which is from the left transfers its properties to
the right hand side as follows

Tn(t)P(t)= P((n+ 1)t), (59)

Pn(t)T(t)= P(t). (60)
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Their commutator is nonvanishing[
T (t)P (s)

] = P′ (0) t = T′ (0) t = At, (61)

which can be compared with the pure exponential commutator (for our case)[
T (t)T (u)

] = 0 and idempotent commutator[
P (t)P (s)

] = P′ (0) (t − s) = A (t − s) . (62)

Assertion 4. All superoperators P (t) and T (t) commute in case of “nilpotent time”
and

t ∈ Annα. (63)

Remark 6. The uniqueness theorem [5, p. 3] holds only for T (t), because the non-
vanishing commutator

[
A,P (t)

] = A /= 0.

Corollary 6. The superoperator T (t) is an inner inverse for P (t), because of

P (t)T (t)P (t) = P (t) , (64)

but it is not an outer inverse, because

T (t)P (t)T (t) = P (2t). (65)

Let us try to find a (possibly noninvertible) operator U which connects exponential
and idempotent superoperators P (t) and T (t).

Assertion 5. The “semi-similarity” relation

T (t)U = UP (t) (66)

holds if

U =
(
σα σ

0 ρα

)
(67)

which is noninvertible triangle and depends from two odd constants, and the “ad-
joint” relation

U∗T (t) = P (t)U∗ (68)

holds if

U∗ =
(

0 αvt

αu v

)
(69)

which is also noninvertible antitriangle and depends from two even constants and
“time”.

Note that U is nilpotent of third degree, since U2 = σρA, but the “adjoint” super-
operator is not nilpotent at all if v is not nilpotent.



72 S. Duplij / Linear Algebra and its Applications 360 (2003) 59–81

Both A and Z behave as zeroes, but Y (t) (see (29)) is a two-sided zero for T (t)
only, since

T (t)Y (t) = Y (t)T (t) = Y (t) , (70)

but

P (t)Y (t)= Y (0) , (71)

Y (t)P (t) = At. (72)

If we add A and Z to superoperators P (t), then we obtain an extended odd-re-
duced noncommutative superoperator semigroup Podd = ⋃

P (t)
⋃

A
⋃

Z with the
following Cayley table (for convenience we add Y (t) and T (t) as well)

1 \ 2 P (t) P (s) A Z Y (t) T (t) T (s)

P (t) P (t) P (t) Z Z P (t) P (t) P (t)
P (s) P (s) P (s) Z Z P (s) P (s) P (s)

A A A Z Z Z A A
Z Z Z Z Z Z Z Z

Y (t) At As Z Z Z Y (t) Y (t)
T (t) P (2t) P (t + s) A Z Y (t) T (2t) T (t + s)

T (s) P (t + s) P (2s) A Z Y (t) T (t + s) T (2s)

(73)

It is easily seen that associativity in the left upper square holds, and so the table
(73) is actually represents a semigroup of superoperators Podd (under supermatrix
multiplication).

The analogs of the “smoothing operator” V (t) [5] are

VP (t) =
∫ t

0
P (s) ds = t

2
(P (t)+ P (0)) =

(
0 α t

2

2
αt t

)
, (74)

VT (t) =
∫ t

0
T (s) ds = t

2
(T (t)+ T (0)) =

(
t α t

2

2
0 t

)
. (75)

Let us consider the differential sequence of sets of superoperators P (t)

Sn
�→Sn−1

�→ · · ·S1
�→S0

�→A
�→Z, (76)

where � = d/dt and

Sn =
⋃
t

tn

n (n− 1) · · · 1
P

(
t

n+ 1

)
, (77)

and by definition

S0 =
⋃
t

P (t) , (78)
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S1 =
⋃
t

VP (t) . (79)

Now we construct an analog of the standard operator semigroup functional equation
[2,5]

T (t + s) = T (t)T (s) . (80)

Using the multiplication law (45) and manifest representation (31). for the idempo-
tent superoperators P (t) we can formulate

Definition 6. The odd-reduced idempotent superoperators P (t) satisfy the follow-
ing generalized functional equation

P (t + s) = P (t)P (s)+ N (t, s) , (81)

where

N (t, s) = P′ (t) s.

The presence of second term N (t, s) in the right hand side of the generalized
functional equation (81) can be connected with nonautonomous and deterministic
properties of systems describing by it [5]. Indeed, from (44) it follows that

X (t + s)= P (t + s) X (0) = P (t)P (s) X (0)+ P′ (t) sX (0)
= P (t) X (s)+ P′ (t) sX (0) /= P (t) X (s) (82)

as opposite to the always implied relation for exponential superoperators T (t) (trans-
lational property [2,5])

T (t) X (s) = X (t + s) , (83)

which follows from (80). Instead of (83), using the band property (45) we obtain

P (t) X (s) = X (t) , (84)

which can be called the “moving time” property.

Problem 2. Find a “dynamical system” with time evolution satisfying the “moving
time” property (84) instead of the translational property (83).

Assertion 6. For “nilpotent time” satisfying (63) the generalized functional equa-
tion (81) coincides with the standard functional equation (80), and therefore the
idempotent operators P (t) describe autonomous and deterministic “dynamical” sys-
tem and satisfy the translational property (83).

Proof. Follows from (63) and (82). �

Problem 3. Find all maps P (·) : R+ → M (p|q) satisfying the generalized func-
tional equation (81).
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We turn to this problem later, and now consider some features of the Cauchy
problem for idempotent superoperators.

7. Additional nonexponential solution of the Cauchy problem

Let us consider an action (44) of superoperator P (t) in superspace R1|1 as X (t) =
P (t) X (0), where the initial components are

X (0) =
(
x0
κ0

)
.

From (44) the evolution of the components has the form(
x (t)

κ (t)

)
=
(

ακ0t

αx0 + κ0

)
(85)

which shows that superoperator P (t) does not lead to time dependence of odd com-
ponents. Then from (85) we see that

X′ (t) =
(
ακ0

0

)
= const. (86)

This is in full agreement with an analog of the Cauchy problem for our case

X′ (t) = A · X (t) . (87)

Assertion 7. The solution of the Cauchy problem (87) is given by (44), but the
idempotent superoperator P (t) cannot be presented in exponential form as in the
standard case [2], but only in the t-linear form P (t) = P (0)+ A · t /= eA·t , as we
have already shown in (54).

This allows us to formulate

Theorem 1. In superspace the solution of the Cauchy initial problem with the same
generator A is two-fold and is given by two different type of superoperators:
1. Exponential superoperator T (t) represented by the even-reduced supermatrices;
2. Idempotent t-linear superoperator P (t) represented by the odd-reduced super-

matrices.

For comparison the standard solution of the Cauchy problem (87)

X(t) = T(t)X(0)

in components is(
x (t)

κ (t)

)
=
(
x0 + ακ0t

κ0

)
, (88)
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which shows that the time evolution of even coordinate is also in nilpotent even
direction ακ0 as in (85), but with addition of initial (possibly nonilpotent) x0, while
odd coordinate is (another) constant as well. That leads to

Assertion 8. “Even” and “odd” evolutions coincide if even initial coordinate van-
ishes x0 = 0 or common starting point is pure odd

X (0) =
(

0
κ0

)
.

A very much important formula is the condition of commutativity [2]

[
A,P (t)

]
X (t) = AX (t) =

(
ακ (t)

0

)
= 0, (89)

which satisfies, when α · κ (t)=0, while in the standard case the commutator[
A,T (t)

]
X (t) = 0, i.e. vanishes without any additional conditions [2].

8. Resolvents of exponential and idempotent superoperators

For resolvents RP (z) and RT (z) we use analog the standard formula from [2] in
the form

RP (z) =
∫ ∞

0
e−ztP (t) dt, (90)

RT (z) =
∫ ∞

0
e−ztT (t) dt. (91)

Using the supermatrix representation (31) we obtain

RP (z)=
(

0 α

z2

α
z

1
z

)
, (92)

RT (z) =
(

1
z

α

z2

0 1
z

)
. (93)

We observe, that RT (z) satisfies the standard resolvent relation [5]

RT (z)− RT (w) = (w − z)RT (z)RT (w) , (94)

but its analog for RP (z)

RP (z)− RP (w) = (w − z)RP (z)RP (w)+ w − z

zw2
A (95)

has additional term proportional to the generator A.
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9. Idempotent t-linear operators

Here we consider properties of general t-linear (super)operators of the form

K (t) = K0 + K1t, (96)

where K0 = K (0) and K1 = K′ (0) are constant (super)operators represented by
(n× n) matrices or (p + q)× (p + q) supermatrices with t (“time”) independent
entries. Obviously, that the generator of a general t-linear (super)operator is

AK = K′ (0) = K1. (97)

We will find system of equations for K0 and K1 for some special cases appeared in
above consideration.

Assertion 9. If a t-linear (super)operator K (t) satisfies the band equation (45)

K (t)K (s) = K (t) , (98)

then it is idempotent and the constant component (super)operators K0 and K1 satisfy
the system of equations

K2
0 = K0, (99)

K2
1 = Z, (100)

K1K0 = K1, (101)

K0K1 = Z, (102)

from which it follows, that K0 is idempotent, K1 is nilpotent, and K1 is right divisor
of zero and left zero for K0.

For non-supersymmetric operators we have

Corollary 7. The components of t-linear operator K (t) have the following prop-
erties: idempotent matrix K0 is similar to an upper triangular matrix with 1 on the
main diagonal and nilpotent matrix K1 is similar to an upper triangular matrix with
0 on the main diagonal [22,59].

Comparing with the previous particular super case (54) we have K0 = P (0) and
K1 = A = P′ (0).

Remark 7. In case of (p + q)× (p + q) supermatrices the triangularization prop-
erties of Corollary 7 do not hold valid due to presence divisors of zero and nilpotents
among entries (see expansions (1) and (2)), and so the inner structure of the com-
ponent supermatrices satisfying (99)–(102) can be much different from the standard
non-supersymmetric case [22,59].
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Let us consider the structure of t-linear operator K (t) satisfying the generalized
functional equation (81).

Assertion 10. If a t-linear (super)operator K (t) satisfies the generalized functional
equation

K (t + s) = K (t)K (s)+ K′ (t) s, (103)

then its component (super)operators K0 and K1 satisfy the system of equations

K2
0 = K0, (104)

K2
1 = Z, (105)

K1K0 = K1, (106)

K0K1 = Z. (107)

We observe that the systems (99)–(102) and (104)–(107) are fully identical. It is
important to observe the connection of the above properties with the differential
equation for t-linear (super)operator K (t)

K′ (t) = AK · K (t) . (108)

Using (97) we obtain the equation for components

K2
1 = Z, (109)

K1K0 = K1. (110)

That leads to the following

Theorem 2. For any t-linear (super)operator K (t) = K0 + K1t the next statements
are equivalent:
(1) K (t) is idempotent and satisfies the band equation (98);
(2) K (t) satisfies the generalized functional equation (103);
(3) K (t) satisfies the differential equation (108) and has idempotent time indepen-

dent part K2
0 = K0 which is orthogonal to its generator K0A = Z.

10. General t-power-type idempotent operators

Let us consider idempotent (super)operators which depend from time by power-
type function, and so they have the form

K (t) =
n∑

m=0

Kmt
m, (111)

where Km are t-independent (super)operators represented by (n× n) matrices or
(p + q)×(p + q) supermatrices. This power-type dependence of is very much
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important for super case, when supermatrix elements take value in Grassmann al-
gebra, and therefore can be nilpotent (see (1)–(2)).

We now start from the band property K (t)K (s) = K (t) and then find analogs
of the functional equation and differential equation for them. Expanding the band
property (98) in component we obtain n-dimensional analog of (99)–(102) as

K2
0 =K0, (112)

K2
i =Z, 1 � i � n, (113)

KiK0 =Ki , 1 � i � n, (114)

K0Ki=Z, 1 � i � n, (115)

KiKj =Z, 1 � i, j � n, i /= j. (116)

Proposition 3. The n-generalized functional equation for any t-power-type idem-
potent (super)operators (111) has the form

K (t + s) = K (t)K (s)+ Nn (t, s) , (117)

where

Nn (t, s) =
n∑

m=1

n∑
l=m

Kl
l (l − 1) · · · (l −m+ 1)

m! smt l−m. (118)

Proof. For the difference using the band property (98) we have Nn (t, s) =
K (t + s)− K (t)K (s) = K (t + s)− K (t) . Then we expand in Taylor series around
t and obtain Nn (t, s) = ∑n

m=1 K(m) (t) sm/m!, where K(m) (t) denotes nth deriva-
tive which is a finite series for the power-type K (t) (111). �

The differential equation for idempotent (super)operators coincide with the stan-
dard initial value problem only for t-linear operators. In case of the power-type op-
erators (111) we have

Proposition 4. The n-generalized differential equation for any t-power-type idem-
potent (super)operators (111) has the form

K′ (t) = AK · K (t)+ Un (t) , (119)

where

Un (t) =
{

0 n = 1,∑n
m=2mKmt

m−1 n � 2.
(120)

Proof. To find the difference Un (t) we use the expansion (111) and the band con-
ditions for components (112)–(116). �
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11. Conclusion

In general one-parametric semigroups and corresponding superoperator semi-
groups represented by antitriangle idempotent supermatrices and their generalization
for any dimensions p, q,m, n have many unusual and nontrivial properties [18–21].
Here we considered only some of them related to their connection with functional
and differential equations. It would be interesting to generalize the above construc-
tions to higher dimensions and to study continuity properties of the introduced idem-
potent superoperators. These questions will be investigated elsewhere.
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