
Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 439–448

Ternary Hopf Algebras

Steven DUPLIJ

Kharkov National University, Kharkov 61001, Ukraine
E-mail: Steven.A.Duplij@univer.kharkov.ua
http://www-home.univer.kharkov.ua/duplij

Properties of ternary semigroups, groups and algebras are briefly reviewed. It is shown
that there exist three types of ternary units. A ternary analog of deformation is shortly
discussed. Ternary coalgebras are defined in the most general manner, their classification
with respect to the property “to be derived” is made. Three types of coassociativity and
three kinds of counits are given. Ternary Hopf algebras with skew and strong antipods are
defined. Concrete examples of ternary Hopf algebras, including the Sweedler example (which
has two ternary generalizations), are presented. A ternary analog of quasitriangular Hopf
algebras is constructed, and ternary abstract quantum Yang–Baxter equation (together with
its classical counterpart) is obtained. A ternary “pairing” of three Hopf algebras is built.

I would like to report about the work done in part together with Andrzej Borowiec and
Wieslaw Dudek, and I am grateful to them for fruitful collaboration.

Firstly ternary algebraic operations were introduced already in the XIX-th century by A. Cay-
ley. As the development of Cayley’s ideas it were considered n-ary generalization of matrices
and their determinants [1] and general theory of n-ary algebras [2, 3] and ternary rings [4] (for
physical applications in Nambu mechanics, supersymmetry, Yang–Baxter equation, etc. see [5]
as surveys). The notion of an n-ary group was introduced in 1928 by W. Dörnte [6]. From
another side, Hopf algebras [7] and their generalizations [8, 9, 10, 11] play a basic role in the
quantum group theory (also see e.g. [12, 13]). We note that the derived ternary Hopf algebras
are used as an intermediate tool in obtaining the Drinfeld’s quantum double [14].

Here we first present necessary material on ternary semigroups, groups and algebras [15] in the
abstract arrow language. Then using systematic reversing order of arrows [7], we define ternary
bialgebras and Hopf algebras, investigate their properties and give some examples1. Most of the
constructions introduced below are valid for n-ary case as well after obvious changes.

A non-empty set G with one ternary operation [ ] : G × G × G → G is called a ternary
groupoid and is denoted by (G, [ ]) or

(
G, m(3)

)
. If on G there exists a binary operation � (or

m(2)) such that [xyz] = (x � y) � z or

m(3) = m
(3)
der = m(2) ◦

(
m(2) × id

)
(1)

for all x, y, z ∈ G, then we say that [ ] or m
(3)
der is derived from � or m(2) and denote this fact by

(G, [ ]) = der(G,�). If [xyz] = ((x�y)�z)�b holds for all x, y, z ∈ G and some fixed b ∈ G, then
a groupoid (G, [ ] is b-derived from (G,�). In this case we write (G, [ ]) = derb(G,�) [16, 17].
A ternary isotopy is a set of functions f, g, h, w : G → G such that f ([xyz]) = [g (x) , h (y) , w (z)]
for all x, y, z ∈ G. If g = h = w = f , then f is ternary isomorphism.

A ternary semigroup is (G, [ ]) (or
(
G, m(3)

)
) where the operation [ ] (m(3)) is associative

[[xyz] uv] = [x [yzu] v] = [xy [zuv]] (for all x, y, z, u, v ∈ G) or

m(3) ◦
(
m(3) × id× id

)
= m(3) ◦

(
id×m(3) × id

)
= m(3) ◦

(
id× id×m(3)

)
(2)

1Due to the lack of place in the Proceedings we present only important results and constructions omitting
most proofs and detailed derivations which will appear elsewhere.
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A ternary operation m
(3)
der derived from a binary associative operation m(2) is also associative,

but a ternary groupoid (G, [ ]) b-derived (b is a cancellative element) from a semigroup (G,�)
is a ternary semigroup if and only if b lies in the center of (G,�). Fixing in a ternary operation
m(3) one element a we obtain a binary operation m

(2)
a . A binary groupoid (G,�) or

(
G, m

(2)
a

)
,

where x � y = [xay] or m
(2)
a = m(3) ◦ (id×a × id) for some fixed a ∈ G is called a retract of

(G, [ ]) and is denoted by reta(G, [ ]) [16, 17]. It can be shown that if there exists an element
e such that for all y ∈ G we have [eye] = y, then this semigroup is derived from the binary
semigroup

(
G, m

(2)
e

)
, where m

(2)
e = m(3) ◦ (id×e × id).

An element em ∈ G is called a middle identity of (G, [ ]) if for all x ∈ G we have [emxem] =
x or m(3) ◦ (em × id×em) = id. An element el ∈ G satisfying the identity [elelx] = x or
m(3) ◦ (el × el × id) = id is called a left identity. By analogy we define a right identity, satisfying
[xerer] = x or m(3) ◦ (id×er × er) = id for all x ∈ G. An element which is a left, middle and
right identity e = em = el = er is called a ternary identity (briefly: identity), an element which
is only left and right identity is a semi-identity esemi = em = el. There are ternary semigroups
without left (middle, right) neutral elements, but there are also ternary semigroups in which all
elements are identities [15, 18]. More general, a 2-sequence of elements α2 = e1e2 is neutral, if
[e1e2x] = [xe1e2] = x for all x ∈ G and by analogy for n-sequence. Two sequences α and β are
equivalent, if there are exist another two sequences γ and δ such that [γαδ] = [γβδ].

Lemma 1. For any ternary semigroup (G, [ ]) with a left (right) identity there exists a binary
semigroup (G,�) and its endomorphism µ such that [xyz] = x � µ(y) � z for all x, y, z ∈ G.

Proof. Let el be a left identity of (G, [ ]). Then the operation x � y = [xely] is associa-
tive. Moreover, for µ(x) = [elxel], we have µ(x) � µ(y) = [[elxel]el[elyel]] = [[elxel][elely]el] =
[el[xely]el] = µ(x � y) and [xyz] = [x[elely][elelz]] = [[xel[elyel]]elz] = x � µ(y) � z. In the case
of right identity the proof is analogous. �

A ternary groupoid (G, [ ]) is a left cancellative if [abx] = [aby] =⇒ x = y, a middle can-
cellative if [axb] = [ayb] =⇒ x = y, a right cancellative if [xab] = [yab] =⇒ x = y hold for all
a, b ∈ G. A ternary groupoid which is left, middle and right cancellative is called cancellative.

Definition 1. A ternary groupoid (G, [ ]) is semicommutative if [xyz] = [zyx] for all x, y, z ∈ G.
If the value of [xyz] is independent on the permutation of elements x, y, z, viz.

[x1x2x3] =
[
xσ(1)xσ(2)xσ(3)

]
(3)

or m(3) = m(3) ◦ σ, then (G, [ ]) is a commutative ternary groupoid. If σ is fixed, then a ternary
groupoid satisfying (3) is called σ-commutative.

The group S3 is generated by two transpositions; (12) and (23). This means that (G, [ ]) is
commutative if and only if [xyz] = [yxz] = [xzy] holds for all x, y, z ∈ G. Further if in a ternary
semigroup (G, [ ]) satisfying the identity [xyz] = [yxz] there are a, b such that [axb] = x for all
x ∈ G, then (G, [ ]) is commutative.

Mediality in the binary case (x � y) � (z � u) = (x � z) � (y � u) for groups coincides with
commutativity. In the ternary case they do not coincide. A ternary groupoid (G, [ ]) is medial
if it satisfies the identity

[[x11x12x13][x21x22x23][x31x32x33]] = [[x11x21x31][x12x22x32][x13x23x33]]

or

m(3) ◦
(
m(3) × m(3) × m(3)

)
= m(3) ◦

(
m(3) × m(3) × m(3)

)
◦ σmedial, (4)

where σmedial =
(
123456789
147258369

) ∈ S9.
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It is not difficult to see that a semicommutative ternary semigroup is medial. An element x
such that [xxx] = x is called an idempotent. A groupoid in which all elements are idempotents is
called an idempotent groupoid. A left (right, middle) identity is an idempotent, also any neutral
sequence e1e2 is an idempotent.

Definition 2. A ternary semigroup (G, [ ]) is a ternary group if for all a, b, c ∈ G there are
x, y, z ∈ G such that [xab] = [ayb] = [abz] = c.

In a ternary group the equation [xxz] = x has a unique solution which is denoted by z = x
and called skew element [6], or equivalently

m(3) ◦ (id× id×·) ◦ D(3) = id,

where D(3) (x) = (x, x, x) is a ternary diagonal map.

Theorem 1. In any ternary group (G, [ ]) for all x, y, z ∈ G the following relations take place
[xxx] = [xxx] = [xxx] = x, [yx x] = [y x x] = [xx y] = [x xy] = y, [xyz] = [ z y x], x = x.

Since in an idempotent ternary group x = x for all x, an idempotent ternary group is
semicommutative. From [19, 20] it follows

Theorem 2. A ternary semigroup (G, [ ]) with a unary operation − : x → x is a ternary group
if and only if it satisfies identities [yx x ] = [xx y] = y, or

m(3) ◦ (id×· × id) ◦
(
D(2) × id

)
= Pr2,

m(3) ◦ (id× id×·) ◦
(
id×D(2)

)
= Pr1,

where D(2) (x) = (x, x) and Pr1 (x, y) = x, Pr2 (x, y) = y.

A ternary semigroup (G, [ ]) is an idempotent ternary group if and only if it satisfies identities
[yxx] = [xxy] = y. Moreover, a ternary group with an identity is derived from a binary group.

Theorem 3 (Gluskin–Hosszú). For a ternary group (G, [ ]) there exists a binary group (G, �),
its automorphism ϕ and fixed element b ∈ G such that [xyz] = x � ϕ (y) � ϕ2 (z) � b.

Proof. Let a ∈ G be fixed. The binary operation x � y = [xay] (a ∈ G fixed) is associative,
because (x � y) � z = [[xay]az] = [xa[yaz]] = x � (y � z) with identity a and ϕ(x) = [axa],
b = [a a a ] (see [21]). �

Theorem 4 (Post). For any ternary group (G, [ ]) there exists a binary group (G∗, �) and
H � G∗, such that G∗�H � Z2 and [xyz] = x � y � z for all x, y, z ∈ G.

Proof. Let c be a fixed element in G and let G∗ = G × Z2. In G∗ we define binary operation
� putting (x, 0) � (y, 0) = ([xyc], 1), (x, 0) � (y, 1) = ([xyc], 0), (x, 1) � (y, 0) = ([xcy], 0),
(x, 1) � (y, 1) = ([xcy], 1). This operation is associative and (c, 1) is its neutral element. The
inverse element (in G∗) has the form (x, 0)−1 = (x, 0), (x, 1)−1 = ([c x c], 1). Thus G∗ is a group
such that H = {(x, 1) : x ∈ G} � G∗. Obviously the set G can be identified with G × {0} and
[xyz] = ((x, 0) � (y, 0)) � (z, 0) = ([xyc], 1) � (z, 0) = ([[xyc]cz], 0) = ([xy[ccz]], 0) = ([xyz], 0),
which completes the proof. �

Let us consider ternary algebras. One can introduce autodistributivity property [[xyz] ab] =
[[xab] [yab] [zab]] (see [22]). If we take 2 ternary operations { , , } and [ , , ], then distributivity
is {[xyz] ab} = [{xab} {yab} {zab}]. If (+) is a binary operation (addition), then left linearity
is [(x + z) , a, b] = [xab] + [zab]. By analogy one can define central (middle) and right linearity.
Linearity is defined, when left, middle and right linearity hold valid simultaneously.
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Definition 3. Ternary algebra is a triple
(
A, m(3), η(3)

)
, where A is a linear space over a field K,

m(3) is a linear map m(3) : A⊗A⊗A → A called ternary multiplication m(3) (a ⊗ b ⊗ c) = [abc]
which is ternary associative [[abc] de] = [a [bcd] e] = [ab [cde]] or

m(3) ◦
(
m(3) ⊗ id⊗ id

)
= m(3) ◦

(
id⊗m(3) ⊗ id

)
= m(3) ◦

(
id⊗ id⊗m(3)

)
. (5)

There are 3 types of ternary unit maps η(3) : K → A: 1) One strong unit map m(3) ◦(
η(3) ⊗ η(3) ⊗ id

)
= m(3) ◦ (

η(3) ⊗ id⊗η(3)
)

= m(3) ◦ (
id⊗η(3) ⊗ η(3)

)
= id; 2) two sequen-

tial units η
(3)
1 and η

(3)
2 satisfying m(3) ◦

(
η

(3)
1 ⊗ η

(3)
2 ⊗ id

)
= m(3) ◦

(
η

(3)
1 ⊗ id⊗η

(3)
2

)
= m(3) ◦(

id⊗η
(3)
1 ⊗ η

(3)
2

)
= id; 3) Four long (left) ternary units

m(3) ◦
(
id⊗η

(3)
1 ⊗ η

(3)
2

)
◦

(
m(3) ◦

(
id⊗η

(3)
3 ⊗ η

(3)
4

))
= id

which corresponds to
[[

aη
(3)
1 η

(3)
2

]
, η

(3)
3 , η

(3)
4

]
= a ∈ A (right and middle units are defined simi-

larly). In first case the ternary analog of the binary relation η(2) (x) = x1, where x ∈ K, 1 ∈ A,
is η(3) (x) = [x, x, 1] = [x, 1, x] = [1, x, x].

Let (A, mA, ηA), (B, mB, ηB) and (C, mC , ηC) be ternary algebras, then the ternary tensor
product space A⊗B⊗C is naturally endowed with the structure of an algebra. The multiplication
mA⊗B⊗C on A⊗B⊗C reads [(a1⊗b1⊗c1)(a2⊗b2⊗c2)(a3⊗b3⊗c3)] = [a1a2a3]⊗ [b1b2b3]⊗ [c1c2c3],
and so the set of ternary algebras is closed under taking ternary tensor products. A ternary
algebra map (homomorphism) is a linear map between ternary algebras f : A → B which
respects the ternary algebra structure f ([xyz]) = [f (x) , f (y) , f (z)] and f (1A) = 1B.

A ternary (and n-ary) commutator can be obtained in different ways [23]. We will consider
a simplest version called a Nambu bracket (see e.g. [24]). Let us introduce two maps ω

(3)
± :

A ⊗ A ⊗ A → A ⊗ A ⊗ A by

ω
(3)
+ (a⊗b⊗c) = a ⊗ b ⊗ c + b ⊗ c ⊗ a + c ⊗ a ⊗ b, (6)

ω
(3)
− (a⊗b⊗c) = b ⊗ a ⊗ c + c ⊗ b ⊗ a + a ⊗ c ⊗ b. (7)

Thus obviously m(3) ◦ ω
(3)
± = σ

(3)
± ◦ m(3), where σ

(3)
± ∈ S3 denotes sum of terms having even

and odd permutations respectively. In the binary case ω
(2)
+ = id⊗ id and ω

(2)
− = τ is the twist

operator τ : a⊗b → b⊗a, while m(2) ◦ω
(2)
− is permutation σ

(2)
− (ab) = ba. So the Nambu product

is ω
(3)
N = ω

(3)
+ − ω

(3)
− , and the ternary commutator is [ , , ]N = σ

(3)
N = σ

(3)
+ − σ

(3)
− , or simply

[a, b, c]N = [abc] + [bca] + [cab] − [cba] − [acb] − [bac] (see [24] and refs. therein). An abelian
ternary algebra is defined by vanishing of Nambu bracket [a, b, c]N = 0 or ternary commutation
relation σ

(3)
+ = σ

(3)
− . By analogy with the binary case a deformed ternary algebra can be defined

by

σ
(3)
+ = qσ

(3)
− or [abc] + [bca] + [cab] = q ([cba] + [acb] + [bac]) , (8)

where multiplication by q is treated as an external operation. An opposite and more com-
plicated possibility requires 2 deformation parameters and can be defined as σ

(3)
+ ([a, b, c]) =[

q, p, σ
(3)
− ([a, b, c])

]
, which reminds the binary case ab = qba in the following form m(2) (a, b) =

m(2)
(
q, σ

(2)
− (ab)

)
. Here we will exploit (8).

Let C be a linear space over a field K.

Definition 4. Ternary comultiplication ∆(3) is a linear map over a field K such that

∆(3) : C → C ⊗ C ⊗ C. (9)
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In the standard Sweedler notations [7] ∆(3) (a) =
n∑

i=1
a′i⊗a′′i ⊗a′′′i = a(1)⊗a(2)⊗a(3). Consider

different possible types of ternary coassociativity.
1. Standard ternary coassociativity

(
∆(3) ⊗ id⊗ id

)
◦ ∆(3) =

(
id⊗∆(3) ⊗ id

)
◦ ∆(3) =

(
id⊗ id⊗∆(3)

)
◦ ∆(3). (10)

2. Nonstandard ternary Σ-coassociativity (Gluskin-type — positional operatives)
(
∆(3) ⊗ id⊗ id

)
◦ ∆(3) =

(
id⊗

(
σ ◦ ∆(3)

)
⊗ id

)
◦ ∆(3),

where σ ◦ ∆(3) (a) = ∆(3)
σ (a) = a(σ(1)) ⊗ a(σ(2)) ⊗ a(σ(3)) and σ ∈ Σ ⊂ S3.

3. Permutational ternary coassociativity
(
∆(3) ⊗ id⊗ id

)
◦ ∆(3) = π ◦

(
id⊗∆(3) ⊗ id

)
◦ ∆(3),

where π ∈ Π ⊂ S5.
Ternary comediality is

(
∆(3) ⊗ ∆(3) ⊗ ∆(3)

)
◦ ∆(3) = σmedial ◦

(
∆(3) ⊗ ∆(3) ⊗ ∆(3)

)
◦ ∆(3),

where σmedial is defined in (4). Ternary counit is defined as a map ε(3) : C → K. In general,
ε(3) 	= ε(2) satisfying one of the conditions below. If ∆(3) is derived, then maybe ε(3) = ε(2), but
another counits may exist. There are 3 types of ternary counits:

1. Standard (strong) ternary counit
(
ε(3) ⊗ ε(3) ⊗ id

)
◦ ∆(3) =

(
ε(3) ⊗ id⊗ε(3)

)
◦ ∆(3) =

(
id⊗ε(3) ⊗ ε(3)

)
◦ ∆(3) = id . (11)

2. Two sequential (polyadic) counits ε
(3)
1 and ε

(3)
2

(
ε
(3)
1 ⊗ ε

(3)
2 ⊗ id

)
◦ ∆ =

(
ε
(3)
1 ⊗ id⊗ε

(3)
2

)
◦ ∆ =

(
id⊗ε

(3)
1 ⊗ ε

(3)
2

)
◦ ∆ = id . (12)

3. Four long ternary counits ε
(3)
1 –ε

(3)
4 satisfying

((
id⊗ε

(3)
3 ⊗ ε

(3)
4

)
◦ ∆(3) ◦

((
id⊗ε

(3)
1 ⊗ ε

(3)
2

)
◦ ∆(3)

))
= id . (13)

Below we will consider only the first standard type of associativity (10). By analogy with (3)
σ-cocommutativity is defined as σ ◦ ∆(3) = ∆(3).

Definition 5. Ternary coalgebra is a triple
(
C, ∆(3), ε(3)

)
, where C is a linear space and ∆(3) is

a ternary comultiplication (9) which is coassociative in one of the above senses and ε(3) is one
of the above counits.

Let
(
A, m(3)

)
be a ternary algebra and

(
C, ∆(3)

)
be a ternary coalgebra and f, g, h ∈

HomK (C, A). Ternary convolution product is

[f, g, h]∗ = m(3) ◦ (f ⊗ g ⊗ h) ◦ ∆(3) (14)

or in the Sweedler notation [f, g, h]∗ (a) =
[
f

(
a(1)

)
g

(
a(2)

)
h

(
a(3)

)]
.
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Definition 6. Ternary coalgebra is called derived, if there exists a binary (usual, see e.g. [7])
coalgebra ∆(2) : C → C ⊗ C such that (cf. 1))

∆(3)
der =

(
id⊗∆(2)

)
⊗ ∆(2). (15)

Definition 7. Ternary bialgebra B is
(
B, m(3), η(3), ∆(3), ε(3)

)
for which

(
B, m(3), η(3)

)
is a ter-

nary algebra and
(
B,∆(3), ε(3)

)
is a ternary coalgebra and they are compatible

∆(3) ◦ m(3) = m(3) ◦ ∆(3). (16)

One can distinguish four kinds of ternary bialgebras with respect to a “being derived” pro-
perty:

1. ∆-derived ternary bialgebra

∆(3) = ∆(3)
der =

(
id⊗∆(2)

)
◦ ∆(2). (17)

2. m-derived ternary bialgebra

m
(3)
der = m

(3)
der = m(2) ◦

(
m(2) ⊗ id

)
. (18)

3. Derived ternary bialgebra is simultaneously m-derived and ∆-derived ternary bialgebra.
4. Non-derived ternary bialgebra which does not satisfy (17) and (18).
Let us consider a ternary analog of the Woronowicz example of a bialgebra construction,

which in the binary case has two generators satisfying xy = qyx (or σ
(2)
+ (xy) = qσ

(2)
− (xy)), then

the following coproducts ∆(2) (x) = x ⊗ x, ∆(2) (x) = y ⊗ x + 1 ⊗ y are algebra maps. In the
derived ternary case using (8) we have σ

(3)
+ ([xey]) = qσ

(3)
− ([xey]), where e is the ternary unit

and ternary coproducts are ∆(3) (e) = e⊗e⊗e, ∆(3) (x) = x⊗x⊗x, ∆(3) (x) = y⊗x⊗x+e⊗y⊗
x+e⊗e⊗y, which are ternary algebra maps, i.e. they satisfy σ

(3)
+

([
∆(3) (x) ∆(3) (e) ∆(3) (y)

])
=

qσ
(3)
−

([
∆(3) (x) ∆(3) (e) ∆(3) (y)

])
.

Possible types of ternary antipodes can be defined using analogy with binary coalgebras.

Definition 8. Skew ternary antipod is

m(3) ◦
(
S

(3)
skew ⊗ id⊗ id

)
◦ ∆(3)

= m(3) ◦
(
id⊗S

(3)
skew ⊗ id

)
◦ ∆(3) = m(3) ◦

(
id⊗ id⊗S

(3)
skew

)
◦ ∆(3) = id . (19)

If only one equality from (19) is satisfied, the corresponding skew antipod is called left, middle
or right.

Definition 9. Strong ternary antipod is
(
m(2) ⊗ id

)
◦

(
id⊗S

(3)
strong ⊗ id

)
◦ ∆(3) = 1 ⊗ id,

(
id⊗m(2)

)
◦

(
id⊗ id⊗S

(3)
strong

)
◦ ∆(3) = id⊗1,

where 1 is a unit of algebra.

If in a ternary coalgebra ∆(3) ◦ S = τ13 ◦ (S ⊗ S ⊗ S) ◦ ∆(3), where τ13 =
(
123
321

)
, then it is

called skew-involutive.

Definition 10. Ternary Hopf algebra
(
H, m(3), η(3), ∆(3), ε(3), S(3)

)
is a ternary bialgebra with

a ternary antipod S(3) of the type corresponding to the above.
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There are 8 types of associative ternary Hopf algebras and 4 types of medial Hopf algebras.
Also it can happen that there are several ternary units η

(3)
i and several ternary counits ε

(3)
i (see

(11)–(13)), as well as different skew antipodes (see (19) and below), which makes number of
ternary Hopf algebras enormous.

Let us consider concrete constructions of ternary comultiplications, bialgebras and Hopf
algebras. A ternary group-like element can be defined by ∆(3) (g) = g ⊗ g ⊗ g, and for 3
such elements we have ∆(3) ([g1g2g3]) = ∆(3) (g1) ∆(3) (g2) ∆(3) (g3). But an analog of the
binary primitive element (satisfying ∆(2) (x) = x ⊗ 1 + 1 ⊗ x) cannot be chosen simply as
∆(3) (x) = x⊗ e⊗ e + e⊗ x⊗ e + e⊗ e⊗ x, since the algebra structure is not preserved. Never-
theless, if we introduce two idempotent units e1, e2 satisfying “semiorthogonality” [e1e1e2] = 0,
[e2e2e1] = 0, then

∆(3) (x) = x ⊗ e1 ⊗ e2 + e2 ⊗ x ⊗ e1 + e1 ⊗ e2 ⊗ x (20)

and now ∆(3) ([x1x2x3]) =
[
∆(3) (x1) ∆(3) (x2) ∆(3) (x3)

]
. Using (20) ε (x) = 0, ε (e1,2) = 1, and

S(3) (x) = −x, S(3) (e1,2) = e1,2, one can construct a ternary universal enveloping algebra in full
analogy with the binary case (see e.g. [12]).

One of the most important examples of noncommutative Hopf algebras is the well known
Sweedler Hopf algebra [7] which in the binary case has two generators x and y satisfying (in the
“arrow language”) m(2) (x, x) = 1, m(2) (y, y) = 0, σ

(2)
+ (xy) = −σ

(2)
− (xy). It has the following

comultiplication ∆(2) (x) = x ⊗ x, ∆(2) (y) = y ⊗ x + 1 ⊗ y, unit ε(2) (x) = 1, ε(2) (y) = 0, and
antipod S(2) (x) = x, S(2) (y) = −y, which respect to the algebra structure. In the derived case
a ternary Sweedler algebra is generated also by two generators x and y obeying m(3) (x, e, x) =
m(3) (e, x, x) = m(3) (x, x, e) = e, σ

(3)
+ ([yey]) = 0, σ

(3)
+ ([xey]) = −σ

(3)
− ([xey]). The derived Hopf

algebra structure is given by

∆(3) (x) = x ⊗ x ⊗ x, ∆(3) (y) = y ⊗ x ⊗ x + e ⊗ y ⊗ x + e ⊗ e ⊗ y, (21)

ε(3) (x) = ε(2) (x) = 1, ε(3) (y) = ε(2) (y) = 0, (22)

S(3) (x) = S(2) (x) = x, S(3) (y) = S(2) (y) = −y, (23)

and it can be checked that (21)–(22) are algebra maps, while (23) is antialgebra maps. To obtain
a non-derived ternary Sweedler example we have the possibilities: 1) one “even” generator x,
two “odd” generators y1,2 and one ternary unit e; 2) two “even” generators x1,2, one “odd”
generator y and two ternary units e1,2. In the first case the ternary algebra structure is (no
summation, i = 1, 2)

[xxx] = e, [yiyiyi] = 0, σ
(3)
+ ([yixyi]) = 0, σ

(3)
+ ([xyix]) = 0,

[xeyi] = − [xyie] , [exyi] = − [yixe] , [eyix] = − [yiex] ,

σ
(3)
+ ([y1xy2]) = −σ

(3)
− ([y1xy2]) . (24)

The corresponding ternary Hopf algebra structure is

∆(3) (x) = x ⊗ x ⊗ x, ∆(3) (y1,2) = y1,2 ⊗ x ⊗ x + e1,2 ⊗ y2,1 ⊗ x + e1,2 ⊗ e2,1 ⊗ y2,1,

ε(3) (x) = 1, ε(3) (yi) = 0, S(3) (x) = x, S(3) (yi) = −yi. (25)

In the second case we have for the algebra structure

[xixjxk] = δijδikδjkei, [yyy] = 0, σ
(3)
+ ([yxiy]) = 0, σ

(3)
+ ([xiyxi]) = 0,

σ
(3)
+ ([y1xy2]) = 0, σ

(3)
− ([y1xy2]) = 0, (26)
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and the ternary Hopf algebra structure is

∆(3) (xi) = xi ⊗ xi ⊗ xi, ∆(3) (y) = y ⊗ x1 ⊗ x1 + e1 ⊗ y ⊗ x2 + e1 ⊗ e2 ⊗ y,

ε(3) (xi) = 1, ε(3) (y) = 0, S(3) (xi) = xi, S(3) (y) = −y. (27)

Let us consider the group G = SL (n, K). Then the algebra generated by ai
j ∈ SL (n, K) can

be endowed by the structure of ternary Hopf algebra (see e.g. [25] for binary case) by choosing
the ternary coproduct, counit and antipod as (here summation is implied)

∆(3)
(
ai

j

)
= ai

k ⊗ ak
l ⊗ al

j , ε
(
ai

j

)
= δi

j , S(3)
(
ai

j

)
=

(
a−1

)i

j
. (28)

This antipod is a skew one since from (19) it follows m(3) ◦ (S(3) ⊗ id⊗ id) ◦ ∆(3)
(
ai

j

)
=

S(3)
(
ai

k

)
ak

l a
l
j =

(
a−1

)i

k
ak

l a
l
j = δi

la
l
j = ai

j . This ternary Hopf algebra is derived since for

∆(2) = ai
j⊗aj

k we have ∆(3) =
(
id⊗∆(2)

)⊗∆(2)
(
ai

j

)
=

(
id⊗∆(2)

) (
ai

k ⊗ ak
j

)
= ai

k⊗∆(2)
(
ak

j

)
=

ai
k ⊗ak

l ⊗al
j . In the most important case n = 2 we can obtain the manifest action of the ternary

coproduct ∆(3) on components. Possible non-derived matrix representations of the ternary prod-
uct can be done only by four-rank n×n×n×n twice covariant and twice contravariant tensors{

aij
kl

}
. Among all products the non-derived ones are only the following aoi

jkb
jl
oocko

il and aij
okb

ol
ioc

ko
il

(where o is any index). So using e.g. the first choice we can define the non-derived Hopf algebra
structure by ∆(3)

(
aij

kl

)
= aiµ

vρ ⊗ avσ
kl ⊗ aρj

µσ, ε
(
aij

kl

)
= 1

2

(
δi
kδ

j
l + δi

lδ
j
k

)
, and the skew antipod

sij
kl = S(3)

(
aij

kl

)
which is a solution of the equation siµ

vρavσ
kl = δi

ρδ
µ
k δσ

l .
Next consider ternary dual pair k (G) (push-forward) and F (G) (pull-back) which are related

by k∗ (G) ∼= F (G) (see e.g. [26]). Here k (G) = span (G) is a ternary group algebra (G has a
ternary product [ ]G or m

(3)
G ) over a field k. If u ∈ k (G) (u = uixi, xi ∈ G), then [uvw]k =

uivjwl [xixjxl]G is associative, and so (k (G) , [ ]k) becomes a ternary algebra. Define a ternary
coproduct ∆(3)

k : k (G) → k (G) ⊗ k (G) ⊗ k (G) by ∆(3)
k (u) = uixi ⊗ xi ⊗ xi (derived and

associative), then ∆(3)
k ([uvw]k) =

[
∆(3)

k (u) ∆(3)
k (v) ∆(3)

k (w)
]
k
, and k (G) is a ternary bialgebra.

If we define a ternary antipod by S
(3)
k = uix̄i, where x̄i is a skew element of xi, then k (G) becomes

a ternary Hopf algebra. In the dual case of functions F (G) : {ϕ : G → k} a ternary product [ ]F
or m

(3)
F (derived and associative) acts on ψ (x, y, z) as

(
m

(3)
F ψ

)
(x) = ψ (x, x, x), and so F (G)

is a ternary algebra. Let F (G) ⊗ F (G) ⊗ F (G) ∼= F (G × G × G), then we define a ternary
coproduct ∆(3)

F : F (G) → F (G) ⊗ F (G) ⊗ F (G) as
(
∆(3)

F ϕ
)

(x, y, z) = ϕ ([xyz]F ), which is

derive and associative. Thus we can obtain ∆(3)
F ([ϕ1ϕ2ϕ3]F ) =

[
∆(3)

F (ϕ1) ∆(3)
F (ϕ2) ∆(3)

F (ϕ3)
]
F

,

and therefore F (G) is a ternary bialgebra. If we define a ternary antipod by S
(3)
F (ϕ) = ϕ (x̄),

where x̄ is a skew element of x, then F (G) becomes a ternary Hopf algebra.
Let us introduce a ternary analog of R-matrix. For a ternary Hopf algebra H we consider a

linear map R(3) : H ⊗ H ⊗ H → H ⊗ H ⊗ H.

Definition 11. A ternary Hopf algebra
(
H, m(3), η(3), ∆(3), ε(3), S(3)

)
is called quasifiveangular

(the reason of such notation is clear from (32)) if it satisfies
(
∆(3) ⊗ id⊗ id

)
= R

(3)
145R

(3)
245R

(3)
345, (29)

(
id⊗∆(3) ⊗ id

)
= R

(3)
125R

(3)
145R

(3)
135, (30)

(
id⊗ id⊗∆(3)

)
= R

(3)
125R

(3)
124R

(3)
123, (31)

where as usual index of R denotes action component positions.
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Using the standard procedure (see e.g. [12, 27, 13]), we obtain set of abstract ternary quantum
Yang–Baxter equations, one of which has the form

R
(3)
243R

(3)
342R

(3)
125R

(3)
145R

(3)
135 = R

(3)
123R

(3)
132R

(3)
145R

(3)
245R

(3)
345, (32)

and others can be obtained by corresponding permutations. The classical ternary Yang–Baxter
equations for one parameter family of solutions R (t) can be obtained by the expansion R(3) (t) =
e ⊗ e ⊗ e + rt + O (

t2
)
, where r is a ternary classical R-matrix, then e.g. for (32) we have

r342r125r145r135 + r243r125r145r135 + r243r342r145r135 + r243r342r125r135 + r243r342r125r145

= r132r145r245r345 + r123r145r245r345 + r123r132r245r345

+ r123r132r145r345 + r123r132r145r245.

For three ternary Hopf algebras
(
HA, m

(3)
A , η

(3)
A , ∆(3)

A , ε
(3)
A , S

(3)
A

)
,

(
HB, m

(3)
B , η

(3)
B , ∆(3)

B , ε
(3)
B , S

(3)
B

)
and

(
HC , m

(3)
C , η

(3)
C , ∆(3)

C , ε
(3)
C , S

(3)
C

)

we can introduce a non-degenerate ternary “pairing” (see e.g. [27] for binary case) 〈 , , 〉(3) :
HA × HB × HC → K, trilinear over K, satisfying

〈
η

(3)
A (a) , b, c

〉(3)
=

〈
a, ε

(3)
B (b) , c

〉(3)
,

〈
a, η

(3)
B (b) , c

〉(3)
=

〈
ε
(3)
A (a) , b, c

〉(3)
,

〈
b, η

(3)
B (b) , c

〉(3)
=

〈
a, b, ε

(3)
C (c)

〉(3)
,

〈
a, b, η

(3)
C (c)

〉(3)
=

〈
a, ε

(3)
B (b) , c

〉(3)
,

〈
a, b, η

(3)
C (c)

〉(3)
=

〈
ε
(3)
A (a) , b, c

〉(3)
,

〈
η

(3)
A (a) , b, c

〉(3)
=

〈
a, b, ε

(3)
C (c)

〉(3)
,

〈
m

(3)
A (a1 ⊗ a2 ⊗ a3) , b, c

〉(3)
=

〈
a1 ⊗ a2 ⊗ a3, ∆

(3)
B (b) , c

〉(3)
,

〈
∆(3)

A (a) , b1 ⊗ b2 ⊗ b3, c
〉(3)

=
〈
a, m

(3)
B (b1 ⊗ b2 ⊗ b3) , c

〉(3)
,

〈
a, m

(3)
B (b1 ⊗ b2 ⊗ b3) , c

〉(3)
=

〈
a, b1 ⊗ b2 ⊗ b3, ∆

(3)
C (c)

〉(3)
,

〈
a,∆(3)

B (b) , c1 ⊗ c2 ⊗ c3

〉(3)
=

〈
a, b, m

(3)
C (c1 ⊗ c2 ⊗ c3)

〉(3)
,

〈
a, b, m

(3)
C (c1 ⊗ c2 ⊗ c3)

〉(3)
=

〈
∆(3)

A (a) , b, c1 ⊗ c2 ⊗ c3

〉(3)
,

〈
a1 ⊗ a2 ⊗ a3, b, ∆

(3)
C (c)

〉(3)
=

〈
m

(3)
A (a1 ⊗ a2 ⊗ a3) , b, c

〉(3)
,

〈
S

(3)
A (a) , b, c

〉(3)
=

〈
a, S

(3)
B (b) , c

〉(3)
=

〈
a, b, S

(3)
C (c)

〉(3)
,

where a, ai ∈ HA, b, bi ∈ HB. The ternary “paring” between HA⊗HA⊗HA and HB ⊗HB ⊗HB

is given by 〈a1 ⊗ a2 ⊗ a3, b1 ⊗ b2 ⊗ b3〉(3) = 〈a1, b1〉(3) 〈a2, b2〉(3) 〈a3, b3〉(3). These constructions
can naturally lead to ternary generalization of duality concept and quantum double [14, 12, 13].
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[2] Lawrence R., Algebras and triangle relations, topological methods in field theory, Singapore, World Sci.,
1992.

[3] Carlsson R., Cohomology of associative triple systems, Proc. Amer. Math. Soc., 1976, V.60, N 1, 1–7.

[4] Lister W.G., Ternary rings, Trans. Amer. Math. Soc., 1971, V.154, 37–55.

[5] Kerner R., Ternary algebraic structures and their applications in physics, Preprint Univ. P. & M. Curie,
Paris, 2000.

[6] Dörnte W., Unterschungen über einen verallgemeinerten Gruppenbegriff, Math. Z., 1929, V.29, 1–19.

[7] Sweedler M.E., Hopf algebras, New York, Benjamin, 1969.

[8] Nill F., Axioms for weak bialgebras, Preprint Inst. Theor. Phys. FU, Berlin, 1998; math.QA/9805104.

[9] Nikshych D. and Vainerman L., Finite quantum groupoids and their applications, Preprint Univ. California
Los Angeles, 2000; math.QA/0006057.

[10] Duplij S. and Li F., Regular solutions of quantum Yang–Baxter equation from weak Hopf algebras, Czech. J.
Phys., 2001, V.51, N 12, 1306–1311.

[11] Li F. and Duplij S., Weak Hopf algebras and singular solutions of quantum Yang–Baxter equation, Commun.
Math. Phys., 2002, V.225, N 1, 191–217.

[12] Kassel C., Quantum groups, New York, Springer-Verlag, 1995.

[13] Majid S., Foundations of quantum group theory, Cambridge, Cambridge University Press, 1995.

[14] Drinfeld V.G., Quantum groups, Proceedings of the ICM, Berkeley, Phode Island, AMS, 1987, 798–820.

[15] Rusakov S.A., Some applications of n-ary group theory, Minsk, Belaruskaya navuka, 1998.

[16] Dudek W.A. and Michalski J., On a generalization of Hosszú theorem, Demonstratio Math., 1982, V.15,
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[21] Sokolov E.I., On the theorem of Gluskin–Hosszú on Dörnte groups, Mat. Issled., 1976, V.39, 187–189.

[22] Dudek W.A., Autodistributive n-groups, Annales Sci. Math. Polonae, Commentationes Math., 1993, V.23,
1–11.

[23] Bremner M. and Hentzel I., Identities for generalized lie and jordan products on totally associative triple
systems, J. Algebra, 2000, V.231, N 1, 387–405.

[24] Takhtajan L., On foundation of the generalized Nambu mechanics, Comm. Math. Phys., 1994, V.160, 295–
315.

[25] Madore J., Introduction to noncommutative geometry and its applications, Cambridge, Cambridge Univer-
sity Press, 1995.

[26] Kogorodski L.I. and Soibelman Y.S., Algebras of functions on quantum groups, Providence, AMS, 1998.

[27] Chari V. and Pressley A., A guide to quantum groups, Cambridge, Cambridge University Press, 1996.


