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Regular obstructed categories and topological quantum
field theory
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A proposal of the concept ofn-regular obstructed categories is given. The corre-
sponding regularity conditions for mappings, morphisms, and related structures are
considered. Ann-regular topological quantum field theory is introduced. The con-
nection of time nonivertibility with the regularity is shown. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1473681#

I. INTRODUCTION

In the generalized histories approach1 to quantum theory the whole universe is represented
a class of ‘‘histories.’’ In this approach the standard Hamiltonian time evolution is replaced
partial semigroup called a ‘‘temporal support.’’ A possible realization of such program ca
described in terms of cobordism manifolds and corresponding categories.2 The temporal suppor
arises naturally as a cobordismM, where the boundary]M of M is a disjoint sum of the ‘‘incom-
ing’’ boundary manifoldS0 and the ‘‘outgoing’’ oneS1 . This means that the cobordismM
represents certain quantum process transformingS0 into S1 . In other words,S1 is a time conse-
quence ofS0 . Obviously, we have two opposite possibilities to declare which boundary is
initial one.

Let N be a cobordism with the ‘‘outgoing’’ boundary ofM as its ‘‘incoming boundary’’ andS2

as the ‘‘outgoing boundary.’’ Then there is a cobordismN+M whose incoming boundary isS0 ,
and the outgoing one isS3 . In this case we say that these two cobordisms are glued alongS1 .
Such gluing of cobordisms up to diffeomorphisms define a partial semigroup operation. On
consider cobordism with several incoming and outgoing boundary manifolds. The class o
sible histories can be represented by gluing of cobordisms in several different ways. Henc
is the corresponding coherence problem for such description.

Let Cob be a category of cobordisms, where the boundary]M of MPCob is a disjoint sum
of the incoming boundary manifoldS0 and the outgoing oneS1 . There is also the cylinde
cobordismS3@0,1# such that](S3@0,1#)5SCS* . The class of boundary components is d
noted by Cob0 . According to Atiyah,3 Baez and Dolan,4 the topological quantum field theor
~TQFT! is a functorF from the category Cob to the category Vect of finite-dimensional ve
spaces. This means thatF sends every manifoldSPCob0 into vector spaceF(S) such that

F~S* !5~F~S!!* , F~S0CS1!5~FS0! ^ ~FS1!, F~B !5I , ~1!

and a cobordismM (S0 ,S1) to a mappingF(M )P linI(FS0 ,FS1) such thatF(S3@0,1#)
5 idFS , where I is a field, andS* is the same manifoldS but with the opposite orientation
Kerler5 found examples of categories formed by some classes of cobordism manifolds pres
some operations like the disjoint sum or surgery. It was discussed by Baez and Dolan4 that it is not
easy to describe such categories in a coherent way. Crane6,7 applied the category theory to a
algebraic structure of the quantum gravity.

a!On leave of absence from Kharkov National University, Kharkov 61001, Ukraine. Electronic mail:
Steven.A.Duplij@univer.kharkov.ua

b!Electronic mail: wmar@ift.uni.wroc.pl
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The idea of regularity as generalized invertibility was first introduced by von Neumann8 and
applied by Penrose for matrices.9 Let R be a ring. If for an elementaPR there is an elementa!

such that

aa!a5a, a!aa!5a!, ~2!

then a is said to be regular anda! is called a generalized inverse inverse ofa. Generalizing
transition from invertibility to regularity is a widely used method of abstract extension of var
algebraic structures. The intensive study of such regularity and related directions was develo
many different fields, e.g., generalized inverses theory,10–12semigroup theory,13–19supermanifold
theory,20–22 Yang–Baxter equation in endomorphism semigroup and braided al
bialgebras,23–25 weak bialgebras, week Hopf algebras,26 and category theory.27

In this paper we are going to study certain class of categories which can be useful f
study of quantum histories with noninvertible time, quantum, gravity, and field theory. The
larity concept for linear mappings and morphisms in categories are studied. Higher order re
ity conditions are described. Commutative diagrams are replaced by ‘‘semicommutative’’
The distinction between commutative and semicommutative cases is measured by a n
obstruction proportional to the difference of some self-mappingse(n) from the identity. This
allows one to regularize the notion of categories, functions, and related algebraic structure
interesting that this procedure is unique up to an equivalence defined by invertible morphism
regularity concept is nontrivial for equivalence classes of nonivertible morphisms. The re
version of TQFT is a natural application of the formalism presented here. In this cas
n-regularity means that a time evolution is noninvertible, although repeated aftern steps, but up to
a classes of obstructions. Our considerations are based on the concepts of generalized inv12,27

and semisupermanifolds.20

The paper is organized as follows. In Sec. II we consider linear mappings without require
of ‘‘invertibility.’’ If f :X→Y is a linear mapping, then instead of the inverse mappingf 21:Y
→X we use less restricted ‘‘regular’’f ! one by extending ‘‘invertibility’’ to ‘‘regularity’’ according
to

f + f !+ f 5 f , f !+ f + f !5 f !. ~3!

We also propose some higher regularity conditions. In Sec. III the higher regularity noti
extended to morphisms of categories. Commutative diagrams are replaced by semicomm
ones. The concept of regular cocycles of morphisms in a category is described. An exi
theorem for these cocycles is given. The corresponding generalization of certain categorica
tures as tensor operation, algebras and coalgebras, etc., to our higher regularity case is
Sec. IV. Regular equivalence classes of cobordism manifolds and the corresponding structu
considered in Sec. V. Ann-regular TQFT is introduced as ann-regular obstructed category repr
sented by some special classes of cobordisms called ‘‘interactions.’’ Our study is not comp
is only a proposal for new algebraic structures related to topological quantum theories.

II. GENERALIZED INVERTIBILITY AND REGULARITY

Let X andY be two linear spaces over a fieldk. We use the following notation. Denote by IdX

and IdY the identity mappings IdX :X→X and IdY :Y→Y. If f :X→Y is a linear mapping, then the
image off is denoted by Imf, and the kernel by Kerf .

Here we are going to study some generalizations of the standard concept of invert
properties of mappings. Our considerations are based on the article of Nashed.12 Let f :X→Y be a
linear mapping. Iff + f r

215IdY for some f r
21:Y→X, then f is called aretraction, and f r

21 is the
right inverse. Similarly, iff l

21+ f 5IdX , then it is called acoretraction, f l
21 is the left inverse off.

A mapping f 21 is called an inverse off if and only if it is both right and left inverse off.
This standard concept of invertibility is in many cases too strong to be fulfilled. To ob

more weak conditions one has to introduce the following ‘‘regularity’’ conditions
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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f + f in
! + f 5 f , ~4!

where f in
! :Y→X is called aninner inverse, and suchf is calledregular. Similar ‘‘reflexive regu-

larity’’ conditions

f out
! + f + f out

! 5 f out
! ~5!

define anouter inverse fout
! . Notice that in generalf in

! Þ f out
! Þ f 21 or it can be thatf 21 does not

exist at all.
Definition 1:A mappingf satisfying one of the conditions~4! or ~5! is said to be regular or

three-regular. A generalized inverse of a mappingf is a mappingf !, which is both inner and oute
inversef !5 f in

! 5 f out
! .

Lemma 2: If fin
! is an inner inverse of f, then a generalized inverse f! exists, but need not be

unique.
Proof: If f in

! is an inner inverse, then

f !5 f in
! + f + f in

! ~6!

is always both inner and outer inverse i.e., generalized inverse. It follows from~6! that both
regularity conditions~4! and ~5! hold. h

Definition 3: Let us define two operatorsPf :Y→Y andPf !:X→X by

Pfª f + f !, Pf !ª f !+ f . ~7!

Lemma 4: These operators satisfy

Pf+Pf5Pf , Pf+ f 5 f +Pf !5 f
~8!

Pf !+Pf !5Pf !, Pf !+ f !5 f !+Pf5 f !.

h

Lemma 5: If f! is the generalized inverse of the mapping f, then the following properties
obvious:

Im f 5Im~ f + f !!, Ker~ f + f !!5Ker f !,
~9!

Im~ f !+ f !5Im f !, Ker~ f !+ f !5Ker f .

In addition there are two decompositions

X5Im f !
% Ker f , Y5Im f % Ker f !. ~10!

The restriction fu Im f!:Im f!→Im f is one to one mapping, and operators Pf , Pf ! are projectors of
Y, X ontoIm f, Im f!, respectively.

Theorem 6: Let f:X→Y be a linear mapping. If P and Q are projectors corresponding to
following two decompositions

X5M % Ker f , Y5Im f % N, ~11!

respectively, then there exist unique generalized inverse of f, and

f !
ª i + f̃ 21+Q, ~12!

where f̃ª f uM , and i:M�X.
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Here we try to construct higher analogs of generalized invertibility and regularity condi
~4! and ~5!. Let us consider two mappingsf :X→Y and f !:Y→X and introduce two additiona
mappingsf !!:X→Y and f !!!:Y→X. We propose here the following higher regularity conditio

f + f !+ f !!+ f !!!+ f 5 f . ~13!

This equation defines a four-regularity condition. By cyclic permutations we obtain

f !+ f !!+ f !!!+ f + f !5 f !,

f !!+ f !!!+ f + f !+ f !!5 f !!, ~14!

f !!!+ f + f !+ f !!+ f !!!5 f !!!.

By recursive considerations we can propose the following formula ofn-regularity:

~15!

wheren52k, k51,2,... and their cyclic permutations.

~16!

We can introduce ‘‘higher projector’’ by

~17!

It is easy to check the following properties:

Pf
~2k!+ f 5 f ~18!

and idempotencePf
(2k)+Pf

(2k)5Pf
(2k) .

Theorem 7: Let f:X→Y be a linear mapping. If P and Q are projectors corresponding to
following two decompositions

X5M % Ker f , ‘ Y5Im f % N, ~19!

respectively, and

f !uIm f 5 f !!!u Im f , ~20!
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



to any

t

ntity
l-

e

3333J. Math. Phys., Vol. 43, No. 6, June 2002 Regular obstructed categories and TQFT

Downloaded
then the five-regularity condition of f can be reduced to the two three-regularity conditions

f + f !+ f 5 f , f !+ f !!+ f !5 f !. ~21!

III. SEMICOMMUTATIVE DIAGRAMS AND REGULAR OBSTRUCTED CATEGORIES

In Sec. II we considered mappings and regularity properties for two given spacesX and Y,
because we studied various types of inverses. Now we will extend these considerations
number of spaces and introduce semicommutative diagrams~first introduced in Ref. 20!.

A directed graphC is a pair$C0 ,C1% and a pair of functions

C0¸
t

s

C1 , ~22!

where elements ofC0 are said to beobjects, elements ofC1 are said to bearrows or morphisms,
sf is said to be adomain (or source)of f, and tf is a codomain (or target)of f PC1 . If s f5X

PC0 , andt f 5YPC0 , then we use the following notationX→
f

Y and

C~X,Y!ª$ f PC1 :s f5X,t f 5Y%. ~23!

We denote by End(X) the collection of all morphisms defined onX into itself, i.e., End(X)
ªC(X,X),XPC0 .

Two arrows f ,gPC1 such thatt f 5sg are said to be composable. If in additions f5X, sg

5t f 5Y, andtg5Z, then we use the notationX→
f

Y→
g

Z. In this case a compositionf +g of two
arrows f :X→Y and g:Y→Z can be defined as an arrowf :X→Y. The associativity means tha
h+(g+ f )5(h+g)+ f 5h+g+ f . An identity id in C is an inclusionXPC0� idXPEnd(X) such that

f + idX5 idY+ f 5 f ~24!

for everyX, YPC1 , andX→
f

Y.
A directed graphC equipped with associative composition of composable arrows and ide

satisfying some natural axioms is said to be acategory.28,29 If C is a category, then right cance
lative morphisms areepimorphismswhich satisfyg1+ f 5g2+ f⇒g15g2 , whereg1,.2:Y→Z and
left cancellative morphisms aremonomorphismswhich satisfy f +h15 f +h2⇒h15h2 , where

h1,.2:Z→X. A morphismX→
f

Y is invertible means that there is a morphismY→
g

X such thatf
+g5 idY andg+ f 5 idX . Instead of such invertibility we can use the regularity condition~4!, i.e.,
f +g+ f 5 f , whereg plays the role of an inner inverse.12

Usually, for three objectsX, Y, Z and three morphismsf :X→Y andg:Y→Z andh:Z→X one
can have the ‘‘invertible’’ triangle commutative diagramh+g+ f 5IdX . Its regular extension has th
form

f +h+g+ f 5 f . ~25!

Such a diagram
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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can be called asemicommutative diagram. By cyclic permutations of~25! we obtain

h+g+ f +h5h,
~26!

g+ f +h+g5g.

These formulas define the concept of three-regularity.
Definition 8: A mapping f :X→Y satisfying conditions~25! and ~26! is said to be three-

regular. The mappingh:Z→X is called the first three-inversion and the mappingg:Y→Z the
second one.

The above-given concept can be expanded to any number of objects and morphisms.
Definition 9: Let C5(C0 ,C1) be a directed graph. Ann-regular cocycle~X,f! in C, n

51,2,..., is a sequence of composable arrows inC,

X1→
f 1

X2→
f 2

¯ →
f n21

Xn→
f n

X1 , ~27!

such that

f 1+ f n+¯+ f 2+ f 15 f 1 ,

f 2+ f 1+¯+ f 3+ f 25 f 2 , ~28!

f n+ f n21+¯+ f 1+ f n5 f n ,

and

eX1

~n!
ª f n+¯+ f 2+ f 1PEnd~X1!,

eX2

~n!
ª f 1+¯+ f 3+ f 2PEnd~X2!, ~29!

eXn

~n!
ª f n21+¯+ f 1+ f nPEnd~Xn!.

Definition 10: Let ~X,f! be an n-regular cocycle inC, then the correspondenceeX
(n) :Xi

PC0°eXi

(n)PEnd(Xi), i 51,2,...,n, is called ann-regular cocycle obstruction structure on~X,f! in

C.
Lemma 11: We have the following relations

f i+eXi

~n!5 f i , eXi 11

~ i ! + f i5 f i , eXi

~n!+eXi

~n!5eXi

~n! ~30!

for i 51,2,...,n(modn).
Proof: The lemma simply follows from relations~28! and ~29!. h

Definition 12: An n-regular obstructed category is a directed graphC with an associative
composition and such that every object is a component of ann-regular cocycle.

Example 1:If all obstructions are equal to the identityeXi

(n)5 idXi
, and
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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f n+¯+ f 2+ f 15 idX1
,

f 1+¯+ f 3+ f 25 idX2
, ~31!

f n21+¯+ f 1+ f n5 idXn
,

then the sequence~27! is trivially n-regular. Observe that the trivial two-regularity is just the us
invertibility, hence every grupoidG is a trivially two-regular obstructed category. We are int
ested with obstructed categories equipped with some obstruction different from the identity

Definition 13: The minimum numbern5nobstr such thateX
(n)Þ idX is called the obstruction

degree.
Example 2:Every inverse semigroupS is a nontrivial two-regular obstructed category. It h

only one object, morphisms are the elements ofS.
Theorem 14: Let C be a category, and

X1→
f 1

X2→
f 2

¯ →
f m21

Xn→
f n

X1 ~32!

be a sequence of morphisms of categoryC. Assume that there is a sequence

Y1→
f̃ 1

Y2→
f̃ 2

¯ →
f̃ n21

Yn→
f̃ n

Y1 , ~33!

where Yi is a subobject of Xi such that there is a collection of mappingsp i :Xi→Yi and i:Yi

→Xi satisfying the conditionp i+i i5 idYi
for i 51,2,...,n. If in addition

f̃ n+¯ f̃ 2+ f̃ 15 idY1
,

f̃ 1+¯ f̃ 3+ f̃ 25 idY2
,

~34!
¯

f̃ n21+¯ f̃ 1+ f̃ n5 idYn
,

and

f iªt i 11+ f̃ i+p i ~35!

then the sequence~62! is an n-regular cocycle.
Proof: The corresponding obstruction structure is given by

eXi

~n!5i i+p i . ~36!

If xPKer f 1 , then the theorem is trivial, ifxPXi \Ker f 1 , then we obtain

~ f 1+ f n+¯+ f 2+ f 1!~x!5i2+ f̃ 1+p1+i1+ f̃ n+¯+ f̃ 2+ f̃ 1+p1~x!5i2+ f̃ 1+p15 f 1~x!,

where conditions~34! and ~35! have been used. We can calculate all cyclic permutations
similar way. h

Example 3: There is an n-regular obstructed categoryC5(C0 ,C1), where C05$Xi : i
51,...,n(modn11)% and C15$ f i : i 51,...,n(modn11)% are described in the above-mention
theorem.

Definition 15:Let ~X,f!, ~Y,g! be twon-regular cocycles inC. An n-regular cocycle morphism
a: (X, f )→(Y,g) is a sequence of morphismsaª(a1 ,...,an) such that the diagram
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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X1 →
f 1 X2 →

f 2

¯ →
f n21 Xn →

f n X1

↓a1 ↓a2 ↓an ↓a1

Y1 →
g1 Y2 →

g2

¯ →
gn21 Yn →

gn Y1

~37!

is commutative. If every componenta i of a is invertible, thena is said to be ann-regular cocycle
equivalence.

It is obvious that then-regular cocycle equivalence is an equivalence relation.
Definition 16: Let C be ann-regular obstructed category. A collection of all equivalen

classes ofn-regular cocycles inC and correspondingn-regular cocycle morphisms is denoted b
Reg(n)(C) and is said to be ann-regularization ofC.

Comment 17:It is obvious that then-regular cocycle equivalence is an equivalence relat
Equivalence classes of this relation are just elements of Reg(n)(C). Our n-regular cocycles and
obstruction structures are unique up to an invertiblen-regular cocycle morphism. If@~X,f!# is an
equivalence class ofn-regular cocycles, then there is the corresponding class ofn-regular obstruc-
tion structureseX

(n) on it. The correspondence is a one to one.

IV. REGULARIZATION OF FUNCTORS AND RELATED STRUCTURES

We are going to introduce the concepts ofn-regular functors, natural transformations, inv
lution, duality, and so on. All of our definitions are in the general case the same as in the
category theory,29 but the preservation of the identity idX is replaced by the requirement o
preservation of obstructionseX

(n) up to then-regular cocycle equivalence.
It is known that for two usual categoriesC andD a functorF:C→D is defined as a pair o

mappings (F0 ,F1), whereF0 sends objects ofC into objects ofD, andF1 sends morphisms ofC
into morphisms ofD

F1~ f +g!5F1~ f !+F1~g!, F1idX5 idF0X , ~38!

for XPC0 , FXPD0 .
Let C and D be two n-regular obstructed categories. We postulate that all definitions

formulated on everyn-regular cocycle~X,f! in C up to then-regular cocycle equivalence, andi
51,2,...~mod n!.

Definition 18:An or n-regular cocycle functorF(n):C→D is a pair of mappings (F0
(n) ,F1

(n)),
whereF0

(n) sends objects ofC into objects ofD, andF1
(n) sends morphisms ofC into morphisms

of D such that

F1
~n!~ f i+ f i 11!5F1

~n!~ f i !+F1
~n!~ f i 11!, F1

~n!~eXi

~n!!5eF0~Xi !
~n! , ~39!

whereXPC0 .
Lemma 19: LetC and D be n-regular obstructed categories, and let

X1→
f 1

X2→
f 2

¯ →
f n21

Xn→
f n

X1 ~40!

be an n-regular cocycle inC. If F(n):C→D is n-regular cocycle functor, then

F~n!~ f i !+eXi

~n!5F~n!~ f i !. ~41!

Proof: It is a simple calculation

F~n!~ f i !5F~n!~ f +eXi

~n!!5F~n!~ f !+F~n!~eXi

~n!!5F~ f i !+eF0Xi

~n! . ~42!

h
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Multifunctors can be regularized in a similar way.
Let F(n) andG(n) be twon-regular cocycle morphisms of the categoryC into the categoryD.
Definition 20:An n-regular natural transformations:F(n)→G(n) of F(n) into G(n) is a collec-

tion of functorss5$sXi
:F0(Xi)→G0(Xi)% such that

sXi 11
+F1

~n!~ f i !5G1
~n!~ f i !+sXi

, ~43!

for f i :Xi→Xi 11 .
Definition 21:An n-regular obstructed monoidal categoryC[C( ^ ,I ) can be defined as usua

but we must remember that instead of the identity idX^ idY5 idX^ Y we have an obstruction struc
ture eX

(n)5$eXi

(n)PEnd(Xi);n51,2,...% satisfying the condition

eXi ^ Yi

~n! 5eXi

~n!
^ eYi

~n! ~44!

for every twon-regular cocycles~X,f! and (Y, f 8).
Let C be ann-regular obstructed monoidal category. We introduce an*-operation inC as a

function which sends every objectXi into objectXi* called the dual ofX,

Xi** 5Xi , ~Xi ^ Yi !* 5Xi* ^ Yi* , ~45!

reverse all arrows

~ f +g!* 5g* + f * . ~46!

The categoryC equipped with such*-operation is called ann-regular obstructed monoidal cat
egory with duals.

Lemma 22: LetC be an n-regular obstructed monoidal category with duals. If~X,f! is an
n-regular cocycle inC, then there is a corresponding n-regular cocycle(X* , f * ) in C* , called the
dual of ~X,f!.

Proof: If we reverse all arrows in~X,f! and replace all objects by the corresponding du
then we obtain (X* , f * ), where

X1* →
f n*

Xn* →
f n21*

¯→
f 2*

X2* →
f 1*

X1* ~47!

is a sequence such that

f 1* + f n* +¯+ f 2* + f 1* 5 f 1* , eX
1*

~n!
ª f n* +¯+ f 2* + f 1* , ~48!

wheref i* :Xi 11* →Xi* , i 51,...,n, andXn11* [X1* is the dual. We have corresponding relations
all cyclic permutations. h

Definition 23:An n-regular pairinggC in ann-regular obstructed monoidal categoryC can be
defined in an analogy to the usual case as a collection of mappings

gC5$gXi
[^2u2&Xi

:Xi* ^ Xi→I % ~49!

satisfying some natural consistency conditions and in addition the following regularity relat

gXi 11
+~ f i* ^ f i !5gXi

, ~50!

and

^eX
i*

~n!
Xi* uXi&Xi

5^Xi* ueXi

~n!Xi&Xi
, ~51!
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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where~X,f! is a regularn-cocycle inC, and let (X* , f * ) be the corresponding duals.
It is known that an associative algebra in an ordinary category is an objectA of this category

such that there is a multiplicationm:A^ A→A which is also a morphism of this category sat
fying some axioms like the associativity, the existence of the unity.

Definition 24: Let C be ann-regular obstructed monoidal category. Ann-regular cocycle
algebraA in the categoryC is an object of this category equipped with an associative multi
cationm:A^ A→A such that

m+~eA
~n!

^ eA
~n!!5eA

~n!+m. ~52!

Obviously such multiplication does not need to be unique.
One can define ann-regular cocycle coalgebra or bialgebra in a similar way. A comultipli

tion D:A→A^ A can be regularized according to the relation

D+eA
~n!5~eA

~n!
^ eA

~n!!+D. ~53!

Definition 25:Let A be ann-regular cocycle algebra. IfA is also regular coalgebra such th
D(ab)5D(a)D(b), then it is said to be ann-regular cocycle almost bialgebra.

If A is an n-regular cocycle algebra, then we denote byhomm(A,A) the set of morphisms
sPhomC(A,A) satisfying the condition

s+m5m+~s^ s!. ~54!

Let A be ann-regular cocycle almost bialgebra. We define the convolution product

s!tªm+~s^ t !+D, ~55!

where s,tPhomm(A,A). If A is a regularn-cocycle almost bialgebra, then the convoluti
product is regular.

Definition 26: A two-regular cocycle almost bialgebraH equipped with an elementS
Phomm(H,H) such that

S! idH!S5S, idH! idH5 idH ~56!

is said to be a two-regular cocycle almost Hopf algebraH.
The above-given definition is a regular analogy of week Hopf algebras considered in Re

Similar algebras has been also considered in Ref. 30 and 31.
Lemma 27: IfA is an n-regular cocycle algebra, then there is an n-regular cocycle coalge

A* such that31

^D~j!,x1^ x2&5^j,m~x1^ x2!&, ~57!

where x1 , x2PA, jPA* .
Proof: Let us apply the regularity condition~52! to the above-given duality condition~57!.

Then the lemma follows from relations~44!, ~53!, and~51!. h

Lemma 28: LetA be an n-regular cocycle almost bialgebra. Then the dualA* is also
n-regular cocycle almost bialgebra

^D~j!,x1^ x2&5^j,m~x1^ x2!&,
~58!

^m̂~j ^ z!,x1^ x2&5^j ^ z,D̂x&.

Let A be ann-regular cocycle algebra. Then we can define a leftn-regular cocycleA-module as
an object equipped with anA-module actionrM :A^ M→M such that
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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rM+~m^ idM !5rM+~ idA^ rM !,
~59!

rM+~eA
~n!

^ eM
~n!!5eM

~n!+rM .

If A is ann-regular cocycle coalgebra, then one can define ann-regular cocycle comoduleM in a
similar way. For a coactiondM :A→A^ M of A on M we have the following regularity condition

dM+~eA
~n!

^ eM
~n!!5eM

~n!+%M . ~60!

Remark 1:Observe that we have the following duality betweenA-module actionrM :A
^ M→M andA* -comodule coactionsdM* :A* →M* ^ A* ,

^dM* ~j!,a^ x&5^j%M~a^ x!&, ~61!

whereaPA, xPM , jPA* .

V. REGULAR COBORDISMS AND TQFT

Let Cob be a directed graph of cobordisms whose objects Cob0 are d-dimensional compac
smooth and oriented manifolds without boundary and whose arrows are classes of cob
manifolds with boundaries. We would like to discuss the correspondingn-regular cocycles and
their meaning. For this goal we use here a parametrization such that the boundary]M is a
multiconnected space, a disjoint sum of the ‘‘incoming’’ boundary manifoldS in and the ‘‘outgo-
ing’’ one Sout. We call them ‘‘physical.’’ The empty boundary component is also admissible.
S0 , S1PCob0 , then the disjoint sum is denoted byS0qS1 . For a manifoldSPCob0 there is the
corresponding manifoldS* with the opposite orientation.

We wish to represent quantum processes of certain physical system by cobordism ma
M with the incoming boundary manifoldS0 ~an ‘‘input’’ !, and the outgoing oneS0 ~an ‘‘output’’!.
The incoming boundary manifoldS0 represents an initial condition of the system, the outgo
boundary represents the final configuration, and the cobordism manifolds represent possibl
action of the system. Note that the same cobordism manifoldM but with different boundary
parametrization represent different physical processes!

Definition 29:An ‘‘interaction’’ is a triple S0
MS1

, where the incoming boundary manifoldS0

is multiconnected space withm components and the outgoing oneS1 is equipped withn compo-
nents, andM is a class of cobordism manifolds up to parametrization preserving diffeomorfi
S0 , S1PCob0 , MPCob1 .

Definition 30:The ‘‘opposite interaction’’ ofS0
MS1

is the ‘‘interaction’’S1
MS0

op with reversed

boundary parametrization, i.e., the incoming boundary ofM is the outgoing boundary ofMop and
vice versa.

Example 4:A ‘‘collapsion’’ of SPCob0 is an arbitrary ‘‘interaction’’ of the formsSMB , this
means the incoming boundary isS and the outgoing boundary is empty. The correspond
‘‘expansion’’ of S is the opposite of the collapsion.

Definition 31: Let us denote byCob5(Cob0 ,Cob1) a directed graph whose objects a
Cob0[Cob0 and arrowsCob1 are ‘‘interactions.’’ A composition of two interactionsS1

M1S2
and

S2
M2S3

is an interactionS1
(M1S2

M2)S3
, whereM1S2

M2 is a result of gluingM1 and M2

alongS2 .
The trivial gluing along the empty boundary component is also admissible. For instanc

can glue a ‘‘collapsion’’ ofS and the corresponding ‘‘expansion’’ in the trivial way. In this way w
obtain an interactionS(MMop)S . If we glue the expansion ofS and the collapsion ofS alongS,
then we obtain a class of manifolds with empty boundaries.

Example 5:Classes of two-dimensional surfaces with holes provide examples of string
actions.

We wish to build the temporal support semigroup as an arbitrary sequence
 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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X1→
f 1

X2→
f 2

¯ →
f n21

Xn ~62!

of objects and arrows of a directed graphC indexed by a discrete time. We wish to represent

interactionS1
MS2

as an arrowX1→
f

X2 of C. Obviously composable arrowsX1→
f 1

X2→
f 2

X3 should
represent the gluingS1

(M1S2
M2)S3

. Two interactionsS1
MS2

andS
18
M8S

28
should be represente

by the same arrowX1→
f

X2 if and only if both interactions are ‘‘parallel~simultaneous! in the
time.’’

Let us assume that the directed graphC is an n-regular monoidal category with duals. Le

X1→
f 1

X2→
f 2

¯ →
f n21

Xn be ann-regular cocycle. If there is an equivalence> in Cob such that objects
of the n-regular cocycle represent equivalence classes of> and arrows represent time cons
quences, then we say that we have ann-regular TQFT.

What doesn-regularity mean here? It is natural to assume that the oppositeS2
MS1

op of S1
MS2

should be represented by a reversed arrowX1←
f

X2 . The trivial two-regularity is clear, it mean
that the time is invertible. We postulate that the time is directed and always runs further,
back, never stops. In other words, ‘‘our time’’ is not invertible in general, but it can ben-regular,
where the regularity is nontrivial.

Example 6:Let us consider for instance the two-regular ‘‘interactions.’’ Let

S1
M1S2

and S2
M2S1

be two interactions, thenS1
(M1S2

M2)S1
and S2

(M2S1
M1)S2

can be represented as arrow

X1→
f 1

X2→
f 2

X1 , and X2→
f 2

X1→
f 1

X2 , respectively. Interactions S1
M1S2

M2S1
M1S2

and

S2
M2S1

M1S2
M2S1

should be represented byX1→
f 1

X2→
f 2

X1→
f 1

X2 , and X2→
f 2

X1→
f 1

X2→
f 2

X1 , re-
spectively. Now the two-regularity conditions are clear.

Observe that the regularity concept can be useful for the construction of quantum theory
whole universe with nonivertible time evolution. In fact the nontrivialn-regularity conditions
mean that all processes always go further, never back, never stop, but are cyclically repeatin
n-steps up to an equivalence.
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