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A proposal of the concept af-regular obstructed categories is given. The corre-
sponding regularity conditions for mappings, morphisms, and related structures are
considered. Am-regular topological quantum field theory is introduced. The con-
nection of time nonivertibility with the regularity is shown. @002 American
Institute of Physics.[DOI: 10.1063/1.1473681

I. INTRODUCTION

In the generalized histories approa¢h quantum theory the whole universe is represented by
a class of “histories.” In this approach the standard Hamiltonian time evolution is replaced by a
partial semigroup called a “temporal support.” A possible realization of such program can be
described in terms of cobordism manifolds and corresponding cateddffes temporal support
arises naturally as a cobordidvh where the boundaryM of M is a disjoint sum of the “incom-
ing” boundary manifold>, and the “outgoing” oneX ;. This means that the cobordism
represents certain quantum process transformiiginto >, . In other wordsz.; is a time conse-
quence ofX,. Obviously, we have two opposite possibilities to declare which boundary is the
initial one.

Let N be a cobordism with the “outgoing” boundary &f as its “incoming boundary” an& ,
as the “outgoing boundary.” Then there is a cobordisi®M whose incoming boundary ¥,
and the outgoing one i¥5. In this case we say that these two cobordisms are glued algng
Such gluing of cobordisms up to diffeomorphisms define a partial semigroup operation. One can
consider cobordism with several incoming and outgoing boundary manifolds. The class of pos-
sible histories can be represented by gluing of cobordisms in several different ways. Hence there
is the corresponding coherence problem for such description.

Let Cob be a category of cobordisms, where the boundltyof M € Cob is a disjoint sum
of the incoming boundary manifold, and the outgoing on&,. There is also the cylinder
cobordism, X[0,1] such thatd(Z x[0,1])=X113*. The class of boundary components is de-
noted by Cop. According to Atiyah® Baez and Dolafl,the topological quantum field theory
(TQFT) is a functorF from the category Cob to the category Vect of finite-dimensional vector
spaces. This means thatsends every manifolf e Coly, into vector space(3) such that

FEF)=(FA2))*, FAZllE)=(F2o)®(FZ1), FI)=I, )

and a cobordismM (24,%;) to a mapping® (M) elin;(F2,,72;) such that A2 x[0,1])

=id s, wherel is a field, and>* is the same manifol@® but with the opposite orientation.
Kerler’ found examples of categories formed by some classes of cobordism manifolds preserving
some operations like the disjoint sum or surgery. It was discussed by Baez and alainis not

easy to describe such categories in a coherent way. Efapwplied the category theory to an
algebraic structure of the quantum gravity.
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The idea of regularity as generalized invertibility was first introduced by von Neuframh
applied by Penrose for matricedet R be a ring. If for an elemerd e R there is an elemera*
such that

aa*a=a, a*aa’=a“, (2

thena is said to be regular and* is called a generalized inverse inverseasfGeneralizing
transition from invertibility to regularity is a widely used method of abstract extension of various
algebraic structures. The intensive study of such regularity and related directions was developed in
many different fields, e.g., generalized inverses th&br? semigroup theory?~° supermanifold
theory?®=22 Yang—Baxter equation in endomorphism semigroup and braided almost
bialgebrag->weak bialgebras, week Hopf algebrdsand category theory/.

In this paper we are going to study certain class of categories which can be useful for the
study of quantum histories with noninvertible time, quantum, gravity, and field theory. The regu-
larity concept for linear mappings and morphisms in categories are studied. Higher order regular-
ity conditions are described. Commutative diagrams are replaced by “semicommutative” ones.
The distinction between commutative and semicommutative cases is measured by a nonzero
obstruction proportional to the difference of some self-mappiel§s from the identity. This
allows one to regularize the notion of categories, functions, and related algebraic structures. It is
interesting that this procedure is unique up to an equivalence defined by invertible morphisms. Our
regularity concept is nontrivial for equivalence classes of nonivertible morphisms. The regular
version of TQFT is a natural application of the formalism presented here. In this case the
n-regularity means that a time evolution is noninvertible, although repeatechadteps, but up to
a classes of obstructions. Our considerations are based on the concepts of generalizetfitiverse,
and semisupermanifoldS.

The paper is organized as follows. In Sec. Il we consider linear mappings without requirement
of “invertibility.” If f:X—Y is a linear mapping, then instead of the inverse mapgingY
— X we use less restricted “regulaf™ one by extending “invertibility” to “regularity” according
to

fof*of=f, frofof*=f* (3)

We also propose some higher regularity conditions. In Sec. Il the higher regularity notion is
extended to morphisms of categories. Commutative diagrams are replaced by semicommutative
ones. The concept of regular cocycles of morphisms in a category is described. An existence
theorem for these cocycles is given. The corresponding generalization of certain categorical struc-
tures as tensor operation, algebras and coalgebras, etc., to our higher regularity case is given in
Sec. IV. Regular equivalence classes of cobordism manifolds and the corresponding structures are
considered in Sec. V. An-regular TQFT is introduced as amregular obstructed category repre-
sented by some special classes of cobordisms called “interactions.” Our study is not complete, it
is only a proposal for new algebraic structures related to topological quantum theories.

II. GENERALIZED INVERTIBILITY AND REGULARITY

Let X andY be two linear spaces over a fikdWe use the following notation. Denote byld
and Id, the identity mappings k:X—X and Id,:Y—Y. If f:X—Y is a linear mapping, then the
image off is denoted by Inf, and the kernel by Kef.

Here we are going to study some generalizations of the standard concept of invertibility
properties of mappings. Our considerations are based on the article of Nseed: X— Y be a
linear mapping. Iffef 1=1dy for somef, *:Y—X, thenf is called aretraction, andf; * is the
right inverse. Similarly, iff,_lof= Idy, then it is called aoretraction fl_1 is the left inverse of.

A mappingf 1 is called an inverse dfif and only if it is both right and left inverse df

This standard concept of invertibility is in many cases too strong to be fulfilled. To obtain

more weak conditions one has to introduce the following “regularity” conditions

Downloaded 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 43, No. 6, June 2002 Regular obstructed categories and TQFT 3331

fof*of =1, (4)

wheref;:Y— X is called aninner inverse and sucH is calledregular. Similar “reflexive regu-
larity” conditions

foue Tofou= fout )

define anouter inverse §,. Notice that in general},#f,#f ! or it can be thaf ~* does not
exist at all.

Definition 1: A mappingf satisfying one of the condition@) or (5) is said to be regular or
three-regular. A generalized inverse of a mapgdirgga mapping *, which is both inner and outer
inversef*=fy="f; .

Lemma 2: If f, is an inner inverse of f, then a generalized inveréeeXists, but need not be
unique

Proof: If f; is an inner inverse, then

fr="frofofy (6)
is always both inner and outer inverse i.e., generalized inverse. It follows f6prthat both
regularity conditiong4) and(5) hold. O

Definition 3: Let us define two operatorB; :Y—Y and Ps«:X— X by
Pf::fof*, Pf*::f*of_ (7)

Lemma 4: These operators satisfy

PrPi=P;, Prf=foPn=f

8
Pf*opf*:Pfr, Pf*of*:f*opf: f*.
O
Lemma 5: If f is the generalized inverse of the mapping f, then the following properties are
obvious:
Imf=Im(fef*), Ker(fof*)=Kerf*,
€)
Im(f*ef)=Imf*, Ker(f*f)=Kerf.
In addition there are two decompositions
X=Imf*®oKerf, Y=ImfoKerf*. (10

The restriction f,,, :Im f*—Im f is one to one mapping, and operators,AP;~ are projectors of
Y, X ontolm f, Im f*, respectively
Theorem 6: Let f:X—Y be a linear mapping. If P and Q are projectors corresponding to the
following two decompositions
X=M@aKerf, Y=ImfaN, (11)
respectively, then there exist unique generalized inverse of f, and

fri=iof 1Q, (12

where f:=f|y,, and i:M—X.
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Here we try to construct higher analogs of generalized invertibility and regularity conditions
(4) and (5). Let us consider two mappingsX—Y and f*:Y— X and introduce two additional
mappingsf**:X—Y andf***:Y— X. We propose here the following higher regularity condition:

fof*of*  of***of =1, (13
This equation defines a four-regularity condition. By cyclic permutations we obtain
Frof**of***ofof*=f*,
f*of ¥ *ofof o Hr = 45, (14)
R ¥ o fof*of* o f*¥t = fra%

By recursive considerations we can propose the following formularefgularity:

n=2k+1
fof*of**---of *k, ..k of:f,
ntl (15)
wheren=2k, k=1,2,... and their cyclic permutations.
2k+1
et e,
For the *x...x-operation we have the following formula:
2k+1 2k+1 2k+1
—— —— ——
(gof)**...*:f**...*og**...*‘ (16)
We can introduce “higher projector” by
2k+1
P =fof o™ rof "%, (17
It is easy to check the following properties:
PPt =1 (18)
and idempotenc@*?Kop{2k) = pi2k)

In general case for a given n=2k all f*, f**,...f*** are different, and, for instance,
(f)*#f**. The existence of analogous conditions for »n odd is a problem.

Theorem 7:Let f:X—Y be a linear mapping. If P and Q are projectors corresponding to the
following two decompositions

X=M@aKerf, ‘Y=Imf®N, (19
respectively, and

fIm =% \m+, (20)
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then the five-regularity condition of f can be reduced to the two three-regularity conditions

fof*of=f, frof**of*=f", (21

Ill. SEMICOMMUTATIVE DIAGRAMS AND REGULAR OBSTRUCTED CATEGORIES

In Sec. Il we considered mappings and regularity properties for two given spaaed Y,
because we studied various types of inverses. Now we will extend these considerations to any
number of spaces and introduce semicommutative diagtfrssintroduced in Ref. 20

A directed graph¢ is a pair{¢,,¢;} and a pair of functions

S

Co=Cy, (22
t

where elements of, are said to bebjects elements off; are said to barrows or morphisms

sfis said to be alomain (or sourcepf f, andtf is a codomain (or targetpf fe &;. If sf=X
f

e &y, andtf=Y e &y, then we use the following notatiod— Y and

E(X,Y):={fe € :sf=X,tf=Y}. (23

We denote by End() the collection of all morphisms defined oX into itself, i.e., EndK)
=C(X,X),X e .

Two arrowsf,ge €; such thattf =sg are said to be composable. If in additisfi=X, sg

f g
=tf=Y, andtg=2Z, then we use the notatiodk— Y —Z. In this case a compositiofrg of two
arrowsf:X—Y andg:Y—Z can be defined as an arroluX—Y. The associativity means that

ho(gef)=(heg)ef=hogef. An identity id in € is an inclusionX e €;—idy e End(X) such that
foidy=idyof=f (24)

f
for every X, Ye €, andX—Y.

A directed graph® equipped with associative composition of composable arrows and identity
satisfying some natural axioms is said to beategory’®?°If ¢ is a category, then right cancel-
lative morphisms ar@pimorphismswhich satisfyg,ef=g,.f=g9,=0,, whereg; ,:Y—Z and
left cancellative morphisms arenonomorphismswhich satisfy foh;=foh,=h;=h,, where

f g9
hy 2:Z—X. A morphismX—Y is invertible means that there is a morphi¥m- X such thatf
og=idy andgef=idy. Instead of such invertibility we can use the regularity condiiién i.e.,
fogef="f, whereg plays the role of an inner inverse.

f “Regularization” f
n=2 =
9 g
Invertible morphisms Noninvertible (regular) morphisms

Usually, for three objectX, Y, Z and three morphism& X—Y andg:Y—Z andh:Z— X one
can have the “invertible” triangle commutative diagrdwgef=Idy. Its regular extension has the
form

fohogof=f. (25)

Such a diagram
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f “Regularization”
n=3 =
h g h g
Invertible morphisms Noninvertible (regular) morphisms

can be called aemicommutative diagranBy cyclic permutations of25) we obtain

hogofoh=h,
(26)
gofohog:g_

These formulas define the concept of three-regularity.

Definition 8: A mapping f:X—Y satisfying conditiong25) and (26) is said to be three-
regular. The mappint:Z— X is called the first three-inversion and the mappmy —Z the
second one.

The above-given concept can be expanded to any number of objects and morphisms.

Definition 9: Let €=(¢&,,&;) be a directed graph. Am-regular cocycle(X,f) in &, n
=1,2,..., is a sequence of composable arrows,in

LETN PR IV R

X1—=Xp—= = Xp— Xy, (27)
such that
fiofor-rofyof =1y,
faofyor-rofzef,=1,, (28)
frof,_qor-ofof =1,
and

e§<n1)==fn°' -rof0f; e End Xy),
eg(nz)::flo...ofgofze End X,), (29
e§<r:])==fn_1°' ofyefy e EndXy).

Definition 10: Let (X,f) be ann-regular cocycle in€, then the correspondenc&&”):xi
€ Q:0|—>e§(’:) e End(X;), i=1,2,...n, is called am-regular cocycle obstruction structure EXf) in

¢.
Lemma 11: We have the following relations

fioeg(':)=fi, eg('i)ﬂofi: fi, e&?)oegg:):eg(':) (30)

fori=1,2,...n(modn).
Proof: The lemma simply follows from relation28) and (29). O
Definition 12: An n-regular obstructed category is a directed gra&plwith an associative
composition and such that every object is a component aof-gagular cocycle.
Example 1:f all obstructions are equal to the identieﬁ:)=idxi, and
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fno' . '°f2°f1: idxl,
f1°"‘°f3°f2:idx2, (31)
frogorofiefy= idxnv

then the sequend@?) is trivially n-regular. Observe that the trivial two-regularity is just the usual
invertibility, hence every grupoid is a trivially two-regular obstructed category. We are inter-
ested with obstructed categories equipped with some obstruction different from the identity.

Definition 13: The minimum numben= ngg, such thate&“)sﬁidx is called the obstruction
degree.

Example 2:Every inverse semigrou is a nontrivial two-regular obstructed category. It has
only one object, morphisms are the elementS.of

Theorem 14: Let € be a category, and

fi fo fpor fy

X1—=Xo—= = Xp—= Xy (32

be a sequence of morphisms of categérAssume that there is a sequence

Yi—=Yy— = Y,—Yq, (33

where Y is a subobject of Xsuch that there is a collection of mappings:X;—Y; and ¢:Y;
— X; satisfying the conditiomiwi:idyi for i=1,2,...n. If in addition

(34)
ToogoFrofy= idy ,
and
fis=ti qofiom (35
then the sequena@®?) is an nrregular cocycle
Proof: The corresponding obstruction structure is given by
eg(':)= Li°T; . (36)

If xeKerf,, then the theorem is trivial, ik e X;\Kerf,, then we obtain

(frofpor-rofyefy)(X)= 52°~f1°771°bl°7n°‘ : '°72°~f1°771(x) = L2°71°71: f1(x),

where conditiong34) and (35) have been used. We can calculate all cyclic permutations in a
similar way. [l
Example 3:There is ann-regular obstructed categorg¢=(¢,,¢;), where €y={X;:i

=1,..n(modn+1)} and &;={f;:i=1,...n(modn+1)} are described in the above-mentioned
theorem.

Definition 15:Let (X,f), (Y,9 be twon-regular cocycles irt. An n-regular cocycle morphism
a: (X,f)—(Y,9g) is a sequence of morphisnas=(«4,...,@,) such that the diagram

Downloaded 22 Sep 2004 to 18.87.1.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



3336 J. Math. Phys., Vol. 43, No. 6, June 2002 S. Duplij and W. Marcinek

f f fro
Xl 1 X2 2 n—1 Xn Xl
lay las Lapy lay (37)
Y, 91 Y, 92 9n-1 Y, 9n Y,

is commutative. If every component of « is invertible, thenx is said to be am-regular cocycle
equivalence.

It is obvious that then-regular cocycle equivalence is an equivalence relation.

Definition 16: Let € be ann-regular obstructed category. A collection of all equivalence
classes oh-regular cocycles ir€ and corresponding-regular cocycle morphisms is denoted by
Red"(¢) and is said to be an-regularization of¢.

Comment 171t is obvious that then-regular cocycle equivalence is an equivalence relation.
Equivalence classes of this relation are just elements of"Key. Our n-regular cocycles and
obstruction structures are unique up to an invertiblegular cocycle morphism. [f(X,f)] is an
equivalence class afregular cocycles, then there is the corresponding classrefjular obstruc-
tion structure={" on it. The correspondence is a one to one.

IV. REGULARIZATION OF FUNCTORS AND RELATED STRUCTURES

We are going to introduce the conceptsrefegular functors, natural transformations, invo-
lution, duality, and so on. All of our definitions are in the general case the same as in the usual
category theory? but the preservation of the identity ids replaced by the requirement of
preservation of obstructior&§<”) up to then-regular cocycle equivalence.

It is known that for two usual categori@sand® a functor 7:€— 29 is defined as a pair of
mappings Fy,F1), WhereF, sends objects aof into objects ofD, and.F; sends morphisms af
into morphisms ofD

Fi(feg)=TF1(f)oFi(g), Faidx=idg x, (39

fOI‘ XE Q:(), fXED().

Let € and® be two n-regular obstructed categories. We postulate that all definitions are
formulated on every-regular cocyclgX,f) in € up to then-regular cocycle equivalence, and
=1,2,...(modn).

Definition 18:An or n-regular cocycle functof":¢—® is a pair of mappingsjfg‘) ,f(ln)),
where (" sends objects of into objects ofD, and A" sends morphisms af into morphisms
of ® such that

FU(fefi ) = AV E) AN (), AP =Ry, (39)

whereX e ¢;.
Lemma 19: Let and® be n-regular obstructed categories, and let

fl f2 fnfl fn

XK1= Xp=rt = Xp= Xy (40)

be an n-regular cocycle ig. If 7Z":¢—® is n-regular cocycle functor, then

FO(H)ee) = F M (F). (41)

Proof: It is a simple calculation
FO(f) = FV(foell)) = FV(F )o F (&) = F(f;)oeltly . (42)
O
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Multifunctors can be regularized in a similar way.
Let M andG™ be twon-regular cocycle morphisms of the categahnto the category®.
Definition 20:An n-regular natural transformatios 7" — g™ of A" into g™ is a collec-
tion of functorss={sxi:}‘o(xi)—>go(xi)} such that

Sx,, oL (F) =G (F)es,, (43

for fi : Xi—Xj 1.

Definition 21:An n-regular obstructed monoidal categ@y ¢(®,1) can be defined as usual,
but we must remember that instead of the identityiily =idy,y we have an obstruction struc-
ture e’ ={ef” e End(X;);n=1,2,..} satisfying the condition

e§<”i)®Yi = e§<”i> ® eﬁ(':) (44)

for every twon-regular cocyclesX,f) and (Y,f').
Let ¢ be ann-regular obstructed monoidal category. We introduce aperation in¢ as a
function which sends every objelt into objectX” called the dual ok,

Xi** :Xi f (Xi®Yi)* =X|* ®Y;k , (45)
reverse all arrows
(feg)* =g*of*. (46)

The category® equipped with such-operation is called an-regular obstructed monoidal cat-
egory with duals

Lemma 22: Let® be an n-regular obstructed monoidal category with duals(Xff) is an
n-regular cocycle inZ, then there is a corresponding n-regular cocy¢¥¢*,f*) in ¢*, called the
dual of (X,f).

Proof: If we reverse all arrows iriX,f) and replace all objects by the corresponding duals,
then we obtain X*,f*), where

o fiea 301
1‘—>X: — '~~—>X§—>X1c (47
is a sequence such that
fXof¥o of5of¥ =% ei(r]{):=f,’§o---of’2*of*, (48)

wheref’ :X* ,—X*,i=1,...,n, andX}, ,=X7 is the dual. We have corresponding relations for
all cyclic permutations. O

Definition 23:An n-regular pairingg, in ann-regular obstructed monoidal categatycan be
defined in an analogy to the usual case as a collection of mappings

9e={0x=(—[—)x: X ®Xi—1} (49)
satisfying some natural consistency conditions and in addition the following regularity relations:
ax,,,°(ff®f)=0x, (50
and

(B [X0)x, = (XT X0, (5)
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where(X,f) is a regulam-cocycle in€, and let X*,f*) be the corresponding duals.

It is known that an associative algebra in an ordinary category is an olbje€this category
such that there is a multiplicatiom: A® A— A which is also a morphism of this category satis-
fying some axioms like the associativity, the existence of the unity.

Definition 24: Let € be ann-regular obstructed monoidal category. Arregular cocycle
algebraA in the category® is an object of this category equipped with an associative multipli-
cationm: A® A— A such that

me(el” @ efV)=eMom. (52

Obviously such multiplication does not need to be unique.
One can define an-regular cocycle coalgebra or bialgebra in a similar way. A comultiplica-
tion A: A— A® A can be regularized according to the relation

AcelV=(eMeel)oA. (53)

Definition 25:Let A be ann-regular cocycle algebra. Il is also regular coalgebra such that
A(ab)=A(a)A(b), then it is said to be an-regular cocycle almost bialgebra.

If A is ann-regular cocycle algebra, then we denotehiym,,(.A,.A) the set of morphisms
sehomg(A,A) satisfying the condition

SemM=me(S®Ss). (54)
Let A be ann-regular cocycle almost bialgebra. We define the convolution product
Skt:=mo(S®t)oA, (55)

where s,tehom, (A, A). If A is a regularn-cocycle almost bialgebra, then the convolution
product is regular.

Definition 26: A two-regular cocycle almost bialgebr& equipped with an elemen$
e hom,(H,H) such that

Sxidy*xS=S, idy*idy=idy (56)

is said to be a two-regular cocycle almost Hopf algehta

The above-given definition is a regular analogy of week Hopf algebras considered in Ref. 26.
Similar algebras has been also considered in Ref. 30 and 31.

Lemma 27: If4 is an n-regular cocycle algebra, then there is an n-regular cocycle coalgebra
A* such that

<A(§),X1®X2>:<§,m(X1®X2)>, (57)

where %, X, e A, £ A*.
Proof: Let us apply the regularity conditiofb2) to the above-given duality conditiofb7).
Then the lemma follows from relatior{g4), (53), and(51). O
Lemma 28: Letd be an n-regular cocycle almost bialgebra. Then the duél is also
n-regular cocycle almost bialgebra

(A(£),X1®@Xz) =(&,M(X1©X7)),
(58

(M(£80),X1@%z) = (£®,Ax).

Let A be ann-regular cocycle algebra. Then we can define ardefgular cocycled-module as
an object equipped with ad-module actiorpy, : A® M—M such that
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pme(M®idy) = pye(id 4@ pu),
(59
pwe(el@el)=elopy .

If A is ann-regular cocycle coalgebra, then one can define-eggular cocycle comodule! in a
similar way. For a coactiod), : A—.A® M of A on M we have the following regularity condition:

sue(ePoen)=eoon. (60)

Remark 1:0bserve that we have the following duality betwedrmodule actionp,,:.A
®M—M and.A*-comodule coactiongy« : A* —M* ® A*,

(Sm(£),aex)=(¢ow(a®Xx)), (61)

whereae A, xe M, ée A*.

V. REGULAR COBORDISMS AND TQFT

Let Cob be a directed graph of cobordisms whose objectg @mbd-dimensional compact
smooth and oriented manifolds without boundary and whose arrows are classes of cobordism
manifolds with boundaries. We would like to discuss the corresponadiregular cocycles and
their meaning. For this goal we use here a parametrization such that the boundaiy a
multiconnected space, a disjoint sum of the “incoming” boundary maniijdand the “outgo-
ing” one X ,,;. We call them “physical.” The empty boundary component is also admissible. Let
30, 2, € Coly, then the disjoint sum is denoted Byl13 ;. For a manifoldX € Coh, there is the
corresponding manifold* with the opposite orientation.

We wish to represent quantum processes of certain physical system by cobordism manifolds
M with the incoming boundary manifold, (an “input”), and the outgoing ong, (an “output”).

The incoming boundary manifold, represents an initial condition of the system, the outgoing
boundary represents the final configuration, and the cobordism manifolds represent possible inter-
action of the system. Note that the same cobordism manifbldut with different boundary
parametrization represent different physical processes!

Definition 29:An “interaction” is a triple seMs s where the incoming boundary manifatg,
is multiconnected space witih components and the outgoing obe is equipped withn compo-
nents, andM is a class of cobordism manifolds up to parametrization preserving diffeomorfisms,
30, 21 €Coly, MeCob.

Definition 30:The “opposite interaction” o My _is the “interaction"gl/\/lg‘(’) with reversed
boundary parametrization, i.e., the incoming boundaryvbfs the outgoing boundary 0%1°° and
vice versa.

Example 4A “collapsion” of % e Coly is an arbitrary “interaction” of the forms Mg, this
means the incoming boundary % and the outgoing boundary is empty. The corresponding
“expansion” of 3, is the opposite of the collapsion.

Definition 31: Let us denote byob=(¢ob,,Cob,) a directed graph whose objects are
¢oby=Col, and arrowsfob, are “interactions.” A composition of two interactiorgsl/\/llz2 and
s,Mps, is an interactions (Mys My)s,, where My M, is a result of gluingM; and M,
along,.

The trivial gluing along the empty boundary component is also admissible. For instance we
can glue a “collapsion” o2, and the corresponding “expansion” in the trivial way. In this way we
obtain an interactio (MM®P)s . If we glue the expansion & and the collapsion ot alongZ,,
then we obtain a class of manifolds with empty boundaries.

Example 5:Classes of two-dimensional surfaces with holes provide examples of string inter-
actions.

We wish to build the temporal support semigroup as an arbitrary sequence
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fi fa foog

Xy—=Xo—= " — Xy (62)

of objects and arrows of a directed graphindexed by a discrete time. We wish to represent an
f fi f2
interactionglj\/lg2 as an arrowX;— X, of €. Obviously composable arrow§, — X,— X5 should
represent the gluing (M;s My)s . Two interactions, My, and;i/\/l’gé should be represented
f
by the same arrowX;— X, if and only if both interactions are “paralldsimultaneousin the
time.”
Let us assume that the directed graphis an n-regular monoidal category with duals. Let
L P P}
X1—X,—-++ — X, be ann-regular cocycle. If there is an equivaleneen €ob such that objects
of the n-regular cocycle represent equivalence classes=aind arrows represent time conse-
quences, then we say that we havenaregular TQFT.
What does-regularity mean here? It is natural to assume that the opppzs’mg‘; of s, Ms,

f
should be represented by a reversed arkgw-X,. The trivial two-regularity is clear, it means
that the time is invertible. We postulate that the time is directed and always runs further, never
back, never stops. In other words, “our time” is not invertible in general, but it can-tegyular,
where the regularity is nontrivial.

Example 6:Let us consider for instance the two-regular “interactions.” Let

s,Mis, and y Moy,

be ftwo finteractions, thef@l(/\/fllgzj\/lz)gl andy (Mazs Mj)s, can be represented as arrows

1 2 2 1
X1—X—Xy, and Xp;—X;—X,, respectively. Interactionss Mys Mps Mys,  and

fi f2 f f2  f1 2

s,Mos Mis Mas, should be represented B, —X,—X;—X;, and X;—X;—X;— X, re-
spectively. Now the two-regularity conditions are clear.

Observe that the regularity concept can be useful for the construction of quantum theory of the
whole universe with nonivertible time evolution. In fact the nontriviategularity conditions
mean that all processes always go further, never back, never stop, but are cyclically repeating after
n-steps up to an equivalence.
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