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Generalization of Hopf algebra SIq (2) by weakening the invertibility of the generator 
K, i.e., exchanging its invertibility K K  -1 = 1 to the regularity K-KK --- K is studied. 
Two weak Hopf algebras are introduced: a weak Hopf algebra wsIq (2) and a J-weak Hopf 
algebra VSiq (2) which are investigated in detail. The monoids of group-like elements of 
wsIq (2) and VSiq (2) are regular monoids, which supports the general conjucture on the 
connection betweek weak Hopf algebras and regular monoids. A quasi-braided weak Hopf 
algebra ~qq is constructed from ws[q (2). It is shown that the corresponding quasi-R-matrix 
is regular R~' R~ R ~ = R ~. 

A k-bialgebra t) H = (H, #, ~/, A, c) is called a weak Hop/algebra if there exists 
T E HOmk(H,H)  such that i d , T , i d  = id and T , i d , T  = T where T is called a 
weak antipode of H. The concept of weak Hopf algebra as a generalization of a Hopf 
algebra [1] was introduced and studied in [2]. One of its aims is to construct some 
singular solutions of the quantum Yang-Baxter equation (QYBE) and to study 
QYBE in a larger scope, e.g. [3]. We investigate a weak Hopf algebra ws[q (2) and a 
J-weak Hopf algebra VS[q (2) as generalizations of Siq (2) and non-trivial examples 
of weak Hopf algebras. The fact that the monoids of group-like elements of WS[q (2) 
and VS[q (2) are regular, supports the general conjucture on the connection between 
weak Hopf algebras and regular monoids. A quasi-braided weak Hopf algebra U=~ 
from WSIq (2) is constructed whose quasi-R-matrix is regular. 

Let q • C and q ¢ :kl,0. The quantum enveloping algebra Uq = Uq (Slq(2)) (see 
[4]) is generated by four variables (Chevalley generators) E, F,  K, K -1 with the 
relations K - 1 K  = K K  -1 = 1, K E K  -1 = q2E, K F K  -1 = q -2F ,  E F  - F E  = 

( K  - K - 1 ) / ( q  - q-l) .  Now we try to weaken the invertibility of K to regularity, 
as usual in the semigroup theory [5] (see also [6, 7] for higher regularity). It can be 
done in two different ways. 

*) Presented at the 10th International Colloquium on Quantum Groups: "Quantum Groups and 
Integrable Systems", Prague, 21-23 June 2001 

* * ) E-mail:  Sceven .  A. D u p l i j  Quniver .  kharkov ,  ua, h t t p : / / ~ - h o m e ,  u n i v e r ,  kharkov ,  u a / d u p l i j  
i) E-mail: fangli~ail.hz.zj.cn Project (No. 19971074) supported by the National Natural 

Science Foundation of China. 
i) In this paper, k always denotes a field. 

1306 Czechoslovak Journal of Physics, Vol. 51 (2001), No. 12 



Regular solutions of quantum Yang-Baxter equation ... 

(I) Define U~' = wslq(2), which is called a weak quantum algebra, as the algebra 
generated by the four variables Ew, F~, K~, Kw with the relations: 

K~oK~ = K~oK, o, K~oKwK~ = K,~, K,oK~K~o = K~., (1) 

KwE~ = q2 EwKw, -KwEw = q-2 E, o-Kw, (2) 

K~F~o = q-2 F, og,o, -K,oF.o = q2 F~-Kw, (3) 

K~ - Kw 
E~oFw - FwE~o = q _ q- i  • (4) 

(II) Define Uq = VS[q(2), which is called a J-weak quantum algebra, as the 
algebra generated by the four variables E.,  F~, K~, K .  with the relations (J~ = 
K~K~): 

KvK,~ = K . K . ,  K~K~K~ = K~, K ~ K v K .  = K,~, (5) 

K.E~-K~ = q2E., K.F.-K~ = q-2F.,  E~,J.Fv - F . J v E .  - K .  - K .  q _  q-1  • (6) 

Let Jw = K~oK~o. List some useful properties of J~ which will be needed below. 
Firstly, j 2  = J~o, which means that Jw is a projector. For any variable X, define 
"J-conjugation" as X j ~  = J.~XJw, and the corresponding mapping will be written 
as ew (X)  : X ---. Xj.~. Note that the mapping ew is idempotent. 

P ropos i t i on  1. (i) WSIq(2)/(J~o-1) ~- Stq(2); VSIq(2)/(Jv-1) ~- SIq(2); (ii) Quan- 
tum algebras WSIq(2) and VS[q(2) possess zero divisors, one of which is 2) ( J~o,. - 1) 
which annihilates all generators. 

Since S[q (2) is an algebra without zero divisors, some properties of S[q (2) cannot 
be upgraded to W$[q(2) and V$[q(2), e.g. the standard theorem of Ore extensions 
and its proof (see Theorem 1.7.1 in [4]). 

L e m m a  2. (i) The idempotent Jw is in the center of WSlq(2); (ii} There are unique 
algebra automorphisms ww and w~ (called the weak Cartan automorphisms) of 
U~' and U~, respectively, such that w~,.(K~o,~) = K~,~, w~,.(K,o, .)  = K~o,v, 
w~,v(E~,.)  = F~,. ,  ww,.(F.o,~) = Ew,~. 

In general, ww ~ w and w, ~ w for the automorphism w of S[q(2) [4]. According 
to their definitions, some (but not all) properties of ws[q(2) can be extended on 
v~[q(2) as well, and below we mostly will consider WS[q(2) in detail. 

Let R be an algebra over k and R[t] be the free left R-module consisting of 
all polynomials of the form P = )-~in=0 air i with coefficients in R. If an ~ 0, define 
deg(P) = n; say deg(0) = -oo.  Let a be an algebra morphism of R. An a-derivation 
of R is a k-linear endomorphism 5 of R such that 5(ab) = a(a)5(b) + 5(a)b for all 
a, b E R. It follows that 5(1) = 0. 

2) We denote by X~,u one of the variables X~ or X~. 
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T h e o r e m  3. (i) Assume that R[t] has an algebra structure such that the natural 
inclusion of R into R[t] is a morphism of algebras and deg(PQ) < deg(P) + deg(Q) 
for any pair (P, Q) of elements of R[t]. Then there exists a unique injective algebra 
endomorphism (~ of R and a unique a-derivation 8 of R such that ta = c~(a)t + 6(a) 
for all a E R; 

(ii) Conversely, given an algebra endomorphism a of R and an a-derivation 6 
of R, there exists a unique algebra structure on R[t] such that the inclusion of R 
into R[t] /s an algebra morphism and ta = a(a)t + 6(a) for all a E R. 

Proof. (Schema) (i) Take any 0 ¢ a e R and consider the product ta. We have 
deg(ta) < deg(t) + deg(a) = 1. By the definition of R[t], there exist uniquely 
determined elements a(a)  and 6(a) of R such that ta = a(a)t  + 6(a). The left 
multiplication by t is linear and so are a and 6. Expanding both sides of the equality 
(ta)b = t(ab) in R[t] using ta = a(a)t + 6(a) for a, b E R, we get a(ab) = ~(a)~(b) 
and 6(ab) = (~(a)6(b) + 6(a)b. Moreover, c~ is an algebra endomorphism and 6 is an 
a-derivation whose uniqueness follows from the freeness of R[t] over R. 

(ii) To construct the multiplication on R[t] as an extension of that  on R such that 
ta = c~(a)t + 6(a), only needs to determine the multiplication ta for any a E R. Let 
M = {(fij)i , j>l : f i j  E Endk(R) and each row and each column has only finitely 
many fi j  ~ 0} and I is the identity of M. For a E R, let ~ : R ~ R satisfying 

c~ 6 
"d(r) = at. And, let T = • E M and define ~ : R[t] ---, M, satisfying I~ ". 

" °  

~5(~i= 0 aiti ) n ^ i = ~']i=o(aiI)T . Let S denote the subalgebra generated by T and ~I  
(all a E R) in M. It can be shown that R[t] and S are linearly isomorphic. 

Define ta = ~-I(T( '~I)) ,  which can be extended to define the multiplication 
of R[t] with fg  = qs-l(xy) for any f , g  E R[t] and x = 4~(f), y = ~5(g). Thus 
R[t] becomes an algebra and • is an algebra isomorphism from R[t] to S. And, 
ta = ~- l (T( 'dI ) )  = ¢ ~ - I ( ( ~ ) I ) T  + 6(a)I) = a(a)t + 5(a) for all a e R. [] 

It is recognized as a generalization of Theorem 1.7.1 in [4]. We call the algebra 
constructed from a and 5 a weak Ore extension of R, denoted as R~[t, c~, 5]. 

Under the condition of Theorem 3(ii), R~[t, a,  5] is free with basis {t~}~>0 as a 
left R-module; moreover, if a is an automorphism, then R~[t, a,5] is also a right 
free R-module with the same basis {ti}i>0. 

Let R be an algebra, c~ be an algebra automorphism and 6 be an a-derivation 
of R. If R is a left (resp. right) Noetherian, then so is the weak Ore extension 

[t, 51. 
T h e o r e m  4. The algebra WS[q(2) /s Noetherian with the basis 

P,~ : { E~ F~ K~, E~,F~-K-'j~ , E~ F~ J~ } 

where i , j ,  l are any non-negative integers, m is any positive integer. 
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Proof. (Schema) k[K~,-K~] is Noetherian. Let al  satisfy a l (K~)  = q2K~ and 
a l ( g w )  = q-2gw. Let a2 satisfy a2(F~K~)J l = ~"-21PJ ~--~,  a 2 ( F ~ K ~ )  = 
"2mPJ-~-'m- ~o--~, a2(F~Jw) = F~J~.  Let 5 satisfy 5(F~Kw)J l = )-~i=oJ-1-~PJ-l("-2i~,~ --~ 

_ q2i'-~w)Kb/(q q-l) ,  5(F~Kw ) ~"~j-1 K'j--lg.-2iT./" q2¢-~w)'-~Zw/(q q-l), 
- -  - - - -  £ . . a i = 0  ~ w k t/ lXw - -  - -  

5 (F~J~)  J - '  p j - l ( , - 2 ,  r( = ~'~=0 " ~ ,~ - - w - q 2 i - ~ ) J ~ / ( q - q - 1 )  for j  > 0, l _> 0, and 5(1) = 
5(gw)  = 5 ( g ~ )  = O. 

Then Ao = k[K~,-K~,]/(J~,K~ - K~,,-K~J~ - -K~), A1 = Ao[F~,al,0], 
U~ = A2 = At [Ew, a2, 5] such that Ai+l is a weak Ore extension of Ai. It rol- 

E i lows that U~' is Noetherian and is free with basis { ~}i>o as a left Al-module. 
Moreover, as a k-linear space, U~ has the basis P,~. [ ]  

The similar theorem can be obtained for VS[q(2) as well. 
Let q E C and q ~ +l ,  0. Define U~ ~ as the algebra generated by the five 

variables E~, F~, K~, K~, L. with the relations: 

g,o"K~, = -K~,K,~, gw-K~,gw = Kw, K w g ,  oK~, = K,~, (7) 

K ~ E ~  = q2E~K~,  -K~E~ = q-2E~-Kw, (8) 

K~F~  = q-2 FwK~,  -K~F~ = q2 Fw-Kw, (9) 

[L~,Ew] = q ( E ~ g ~  +-K~E~) ,  [L~,F~] = - q - l ( F ~ g ~  +-K~F~) ,  (10) 

E~F~ - F~E~ = Lw, (q - q-X)L~ = ( g ~  - -K~), (11) 

Then U~ is isomorphic with the algebra U~' with ~ satisfying ~w(E~) = 
E~, ~w(Fw) = F~, ~w(K~)  = Kw, ~,~(-K~) = -Kw. And, the relationship be- 
tween U~" and U(a[(2)) is that for q = 1, (i) the algebra isomorphism U(e[(2)) 
U~'/r  ~'1/~xw - 1) holds; (ii) there exists an injective algebra morphism 7r from U~ to 
U(~i(2))[K~]/(K 3 - g ~ )  satisfying 7r(E~) = x g w ,  7r(F~) = Y ,  Ir(gw) = gw ,  
7r(L) = H K ~ .  

For W~[q(2), define the maps A~o : WZ[q(2) --* W~[q(2)®W~Iq(2), e~ : w~lq(2) --* k 
and Tw : W,[q(2) ---, WS[q(2) satisfying respectively Aw(Ew) = 1 ® Ew + Ew ® K~, 
A(Fw) = F~®I+K---~®F~, A ~ ( K ~ )  = g ~ ® g ~ ,  ZI~(-K~) = g w ® g ~ ,  ~ ( E ~ )  = 
~(F~) = o, ~ ( K ~ ) =  ~ ( - ~ ) =  1, T~(E~)=-E~-~ ,  T~(F~)=-g~F~, 
T ( K w )  = g ~ ,  T~(K~,) = Kw. 

Propos i t ion  5. The relations above endow WS[q(2) with a bialgebra structure pos- 
sessing a weak antipode Tw. 

Propos i t ion  6. T~ is an inner endomorphism of the algebra WS[q(2 ) satisfying 
72~ (X )  = KwX-Kw for any X e W$[q(2). 

Using the Theorem 4, it can be shown that for the operations above, it is not 
possible that WS[q(2) would possess an antipode S so as to become a Hopf algebra. 
Hence, WS[q(2) is an example for a non-commutative and non-cocommutative weak 
Hopf algebra which is not a Hopf algebra. 

Also, we can see easily that U~" comes into a weak Hopf algebra and ~o~ is an 
isomorphism of weak Hopf algebras from ws[q(2) to Uq'. 
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1;br J-weak quantum algebra VS[q(2), a thorough analysis gives the following 
non'trivial definitions A~(E~) = J~ @ J,E~J~ + J~E~J~ ® K~, A~(F~) = J~F~J~ ® 
J~-4-K~®J~F~J~, A~(K~) = K ~ ® K , ,  A~(K~) = g ~ ® g ~ ,  z~(E~) = ev(F~) = O, 
E,,(K.) = 6~(K.)  = 1, T , ( E , )  = -JvE~-Kv, T~(F~) = - K , F ~ J ~ ,  T~(K, )  : -K~, 

= g . .  

These relations endow vsiq(2) with a bialgebra structure with a J-weak antipode 
Tv, i.e. satisfying the regularity conditions (e~ , .  Tv *~ e . ) ( X )  = e .  (X) ,  (Tv *~ 
e~ *v T , ) ( X )  = Tv(X) ,  for any X in V$[q(2). From the difference between id and 
e~, vsiq(2) is not a weak Hopf algebra according to the definition of [2]. So we 
will call it J-weak Hopf algebra and T~ the J-weak antipode. Remark that the 
variable e~ can be treated as n -- 2 example of the "tower identity" e (n) introduced af~ 

for semisupermanifolds in [8, 6] or the "obstructor" e(x n) for general mappings, 
categories and Yang-Baxter equation in [7]. 

Now, we discuss the set G(w~lq(2)) of all group-like elements of WSlq(2). The 
concept of inverse monoid can be found in [5]. 

P r o p o s i t i o n  7. The set of all group-like elements G(ws[q(2)) = {J(iJ) = KwKwi -~J : 
i , j  run over all non-negative integers}, which forms a regular monoid under the 
multiplication of WS[q(2). 

Proof. (Schema) Using of AT(x) ----- x ® x, we can conclude that only x = alK~w, 
/3mg'~'~ or J~. It follows that G(waIq(2)) = {j( i j )  i-~'~J = K ~ K w  : i, j run over all non- 

negative integers} and ~r(iJ)l(Jl)r(iJ)~,~ ~ : J(~J), which means that  G(ws[q(2)) forms 
a regular monoid under the multiplication of w~Iq(2). [] 

For v$iq(2) we can get a similar statement. 

T h e o r e m  8. Wh[q(2) possesses an ideal W and a sub-algebra Y satisfying w$[q(2) = 
Y (B W and W ~- 5Iq(2) as Hopf algebras. 

Proof. (Schema) Let W be generated by ~ j z ~ j - ~ -  ~ j { E ~ , F ~ K ~ , E ~ F ~ K w , E ~ F ~ J , ~ :  for all 
i 3 0}. W i s  i _> O, j _> O, l > 0 and m > 0}, and Y is generated by {E~,F~ : i >_ O,j _> 

a Hopf algebra with the unit Jw, the comultiplication AI w satisfying AW(E~)  = 
J~ ® E~ + E,~ ® K~,  w A (Fw) w = A ~ , ( K w )  = g ~ ® g ~ ,  

w ~  Aw (Kw) = Kw ® K ~  and the antipode Tw. p is trivial. [] 

Let us assume here that  q is a root of unity of order d in the field k where d is 
an odd integer and d > 1. Set I = (E d, F~, g d - J~)  the two-sided ideal of Uq 

and the algebra U~'q = U~/ I .  I is also a coideal of Uq andT~(I )C_  I. Then I is a 

weak Hopf ideal and ~qq has a unique weak Hopf algebra structure with the same 
operations of U~. 

By Theorem 8, V=~ = U ~ / I  = Y / I  ~B W / I  ~- Y / (E~ ,F~)~B[ lq  where Uq : 
S[q(2)/(E~, F~, g d - 1) is a finite dimensional Hopf algebra. As shown in [4], the 
sub-algebra Bq of Uq generated by { / ~ K ~  : 0 < m , n  <_ d - 1} is a finite di- 
mensional Hopf sub-algebra and Uq is a braided Hopf algebra as a quotient of the 
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quantum double of Bq. The R-matrix of Uq is 

q-l~k 
1 ( q -  / ak(k-1)/2T2k(i--j)-2ij~kF(i k j 

= ~ E [k]! ~ - ~ - ' ~  ® F~K~. 
O<_i,j,k<_d-1 

Since,Lq(2) w and (Ed, Fd, K d- 1) I,  we get W/I  under the induced 
morphism of p. Then W / I  possesses also an R-matrix 

Rto = dl E (q-[~]l ] -lnk(k-1)/2+2k(i-j)-2ij p'k Ki--w--w ® F~,gw.k j 
O<k<d-1;l ~_i,j ~_d 

In W/I ,  there exists the i n v e r s e / ~  of R ~' such t h a t / ~ R  w --- R~/~ ~ = J~( the  
identity). Then R~ R~ R ~ = R ~, R~ R~ R ~ = [~ ,  which means that  the R-matrix 
is regular in Uq. So, we get 

T h e o r e m  9. Uq is a quasi-braided weak Hopf algebra with 

q-t~k 
R~ = dl E (q---[k]! ! ~"k(k-1)/2+2k(i-J)-2iJ l~'k ~ ® F~K~k j 

O~k(d-1;l~i,j~d 

as its quasi-R-matrix, which is yon Neumann's regular. 

The quasi-R-matrix from J-weak Hopf algebra vz[q(2) has more complicated 
structure and will be considered elsewhere. 
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