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Abstract: We investigate a generalization of Hopf algebraslq (2) by weakening the
invertibility of the generatorK, i.e. exchanging its invertibilityKK−1 = 1 to the reg-
ularity KKK = K. This leads to a weak Hopf algebrawslq (2) and aJ -weak Hopf
algebravslq (2) which are studied in detail. It is shown that the monoids of group-like
elements ofwslq (2) andvslq (2) are regular monoids, which supports the general con-
jucture on the connection betweek weak Hopf algebras and regular monoids. Moreover,
fromwslq (2) a quasi-braided weak Hopf algebraU

w

q is constructed and it is shown that

the corresponding quasi-R-matrix is regularRwR̂wRw = Rw.

1. Introduction

The concept of a weak Hopf algebra as a generalization of a Hopf algebra [29,1] was
introduced in [18] and its characterizations and applications were studied in [20]. A
k-bialgebra1 H = (H,µ, η,�, ε) is called aweak Hopf algebra if there existsT ∈
Homk(H,H) such thatid ∗ T ∗ id = id andT ∗ id ∗ T = T , whereT is called a
weak antipode of H . This concept also generalizes the notion of the left and right Hopf
algebras [24,12].

The first aim of this concept is to give a new sub-class of bialgebras which includes
all of Hopf algebras such that it is possible to characterize this sub-class through their
monoids of all group-like elements [18,20]. It was known that for every regular monoid
S, its semigroup algebrakS over k is a weak Hopf algebra as the generalization of a
group algebra [19].

The second aim is to construct some singular solutions of the quantum Yang-Baxter
equation (QYBE) and research QYBE in a larger scope. On this hand, in [20] a quantum
quasi-doubleD(H) for a finite dimensional cocommutative perfect weak Hopf algebra

� Project (No. 19971074) supported by the National Natural Science Foundation of China.
1 In this paper,k always denotes a field.
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with invertible weak antipode was built and it was verified that its quasi-R-matrix is a
regular solution of the QYBE. In particular, the quantum quasi-double of a finite Clifford
monoid as a generalization of the quantum double of a finite group was derived [20].

In this paper, we will construct two weak Hopf algebras in the other direction as a
generalization of the quantum algebraslq(2) [22,2]. We show thatwsl2(q) possesses a
quasi-R-matrix which becomes a singular (in fact, regular) solution of the QYBE, with
a parameterq. In this reason, we want to treat the meaning ofwslq(2) and its quasi-
R-matrix just asslq(2) [28,16]. It is interesting to note thatwslq(2) is a natural and
non-trivial example of weak Hopf algebras.

2. Weak Quantum Algebras

For completeness and consistency we remind the definition of the enveloping algebra
Uq = Uq (sl(2)) (see e.g. [16]). Letq ∈ C andq �= ±1,0. The algebraUq is generated
by four variables (Chevalley generators)E, F ,K,K−1 with the relations

K−1K = KK−1 = 1, (1)

KEK−1 = q2E, (2)

KFK−1 = q−2F, (3)

EF − FE = K −K−1

q − q−1 . (4)

Now we try to generalize the invertibility condition (1). The first thought is weaken
the invertibility to regularity, as it is usually made in semigroup theory [17] (see also [10,
6,7] for higher regularity). So we will consider such weakening the algebraUq

(
slq(2)

)
,

in which instead of the set
{
K,K−1

}
we introduce a pair

{
Kw,Kw

}
by means of the

regularity relations

KwKwKw = Kw, KwKwKw = Kw. (5)

If Kw satisfying (5) is unique for a givenKw, then it is calledinverse of Kw (see
e.g. [27,11]). The regularity relations (5) imply that one can introduce the variables

Jw = KwKw, Jw = KwKw. (6)

In terms ofJw the regularity conditions (5) are

JwKw = Kw, KwJw = Kw, (7)

JwKw = Kw, KwJw = Kw. (8)

Since the noncommutativity of generatorsKw andKw very much complexifies the
generalized construction2, we first consider the commutative case and imply in what
follow that

Jw = Jw. (9)

2 This case will be considered elsewhere.
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Let us list some useful properties ofJw which will be needed below. First we note
that commutativity ofKw andKw leads to idempotency condition

J 2
w = Jw, (10)

which means thatJw is a projector (see e.g. [15]).

Conjecture 1. In algebras satisfying the regularity conditions (5) there exists as minimum
one zero divisorJw − 1.

Remark 1. In addition with unity 1 we have an idempotent analog of unityJw which
makes the structure of weak algebras more complicated, but simultaneously more inter-
esting.

For any variableX we will define “J -conjugation” as

XJw
def= JwXJw (11)

and the corresponding mapping will be written asew (X) : X → XJw . Note that the
mappingew (X) is idempotent

e2
w (X) = ew (X) . (12)

Remark 2. In the invertible caseKw = K,Kw = K−1 we haveJw = 1 andew (X) =
X = id (X) for anyX, soew = id.

It is seen from (5) that the generatorsKw andKw are stable under “Jw-conjugation”

KJw = JwKwJw = Kw, KJw = JwKwJw = Kw. (13)

Obviously, for anyX

KwXKw = KwXJwKw, (14)

and for anyX andY

KwXKw = Y ⇒ KwXJwKw = YJw . (15)

Another definition connected with the idempotent analog of unityJw is the “Jw-
product” for any two elementsX andY , viz.

X �Jw Y
def= XJwY. (16)

Remark 3. From (7) it follows that the “Jw-product” coincides with the usual product,
if X ends with generatorsKw andKw on right side orY starts with them on left side.

Let J (ij) = Ki
wK

j

w then we will need a formula

J (ij)w = Ki
wK

j

w =


K
i−j
w , i > j,

Jw, i = j,

K
j−i
w , i < j,

(17)
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which follows from the regularity conditions (7). The variablesJ (ij) satisfy the regularity
conditions

J (ij)w J (ji)w J (ij)w = J (ij)w (18)

and stable under “J -conjugation” (11)J (ij)wJw
= J

(ij)
w .

The regularity conditions (7) lead to the noncancellativity: for any two elementsX

andY the following relations hold valid:

X = Y ⇒ KwX = KwY, (19)

KwX = KwY � X = Y, (20)

X = Y ⇒ KwX = KwY, (21)

KwX = KwY � X = Y, (22)

X = Y ⇒ XJw = YJw, (23)

XJw = YJw � X = Y. (24)

The generalization ofUq
(
slq(2)

)
by exploiting regularity (5) instead of invertibility

(1) can be done in two different ways.

Definition 1. Define Uw
q = wslq(2) as the algebra generated by the four variables Ew,

Fw, Kw, Kw with the relations:

KwKw = KwKw, (25)

KwKwKw = Kw, KwKwKw = Kw, (26)

KwEw = q2EwKw, KwEw = q−2EwKw, (27)

KwFw = q−2FwKw, KwFw = q2FwKw, (28)

EwFw − FwEw = Kw −Kw

q − q−1 . (29)

We call wslq(2) a weak quantum algebra.

Definition 2. Define Uv
q = vslq(2) as the algebra generated by the four variables Ev ,

Fw, Kv , Kv with the relations (Jv = KvKv):

KvKv = KvKv, (30)

KvKvKv = Kv, KvKvKv = Kv, (31)

KvEvKv = q2Ev, (32)

KvFvKv = q−2Fv, (33)

EvJvFv − FvJvEv = Kv −Kv

q − q−1 . (34)

We call vslq(2) a J-weak quantum algebra.
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In these definitions indeed the first two lines (25)–(26) and (30)–(31) are called to
generalize the invertibilityKK−1 = K−1K = 1. Each next line (27)–(29) and (32)–
(34) generalizes the corresponding line (2)–(4) in two different ways respectively. In the
first almost quantum algebrawslq(2) the last relation (29) betweenE andF generators
remains unchanged fromslq(2), while twoEK andFK relations are extended to four
ones (27)–(28). Invslq(2), oppositely, twoEK andFK relations remain unchanged
from slq(2) (with K−1 → K substitution only), while the last relation (34) betweenE
andF generators has the additional multiplierJv which role will be clear later. Note
that theEK andFK relations (32)–(33) can be written in the following form close to
(27)–(28):

KvEvJv = q2JvEvKv, KvEvJv = q−2JvEvKv, (35)

KvFvJv = q−2JvFvKv, KvFvJv = q2JvFvKv. (36)

Using (16) and (7) in the case ofJv we can also present thevslq(2) algebra as an
algebra with the “Jv-product”

Kv �Jv Kv = Kv �Jv Kv, (37)

Kv �Jv Kv �Jv Kv = Kv, Kv �Jv Kv �Jv Kv = Kv, (38)

Kv �Jv Ev �Jv Kv = q2Ev, (39)

Kv �Jv Fv �Jv Kv = q−2Fv, (40)

Ev �Jv Fv − Fv �Jv Ev = Kv −Kv

q − q−1 . (41)

Remark 4. Due to (7) the only relation where the “Jw-product” really plays its role is
the last relation (41).

From the following proposition, one can find the connection betweenUw
q = wslq(2),

Uv
q = vslq(2) and the quantum algebraslq(2).

Proposition 1.wslq(2)/(Jw − 1) ∼= slq(2); vslq(2)/(Jv − 1) ∼= slq(2).

Proof. For cancellativeKw andKv it is obvious. �
Proposition 2. Quantum algebras wslq(2) and vslq(2) possess zero divisors, one of
which is3

(
Jw,v − 1

)
which annihilates all generators.

Proof. From regularity (26) and (31) it followsKw,v
(
Jw,v − 1

) = 0 (see also (1)). Mul-
tiplying (27) onJw givesKwEwJw = q2EwKwJw ⇒ Kw

(
EwKw

)
Kw = q2EwKw.

Using the second equation in (27) for the term in the bracket we obtainKw
(
q2KwEw

)
Kw = q2EwKw ⇒ (Jw − 1) EwKw = 0. For Fw similarly, but we use Eq. (28). By
analogy, multiplying (32) onJv we haveKvEvKvKvKv = q2EvJv ⇒ KvEvKv =
q2EvJv ⇒ q2Ev = q2EvJv, and soEv (Jv − 1) = 0. ForFv similarly, but we use
Eq. (33). �
Remark 5. Sinceslq(2) is an algebra without zero divisors, some properties ofslq(2)
cannot be upgraded towslq(2) andvslq(2), e.g. the standard theorem of Ore extensions
and its proof (see Theorem I.7.1 in [16]).

3 We denote byXw,v one of the variablesXw orXv .
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Remark 6. We conjecture that inUw
q andUv

q there are no other than
(
Jw,v − 1

)
zero

divisors which annihilateall generators. In other case thorough analysis of them will be
much more complicated and very different from the standard case of non-weak algebras.

We can get some properties ofUw
q andUv

q as follows.

Lemma 1. The idempotent Jw is in the center of wslq(2).

Proof. ForKw it follows from (13). Multiplying the first equation in (27) onKw we
deriveKw

(
EwKw

) = q2EwJw, and applying the second equation in (27) we obtain
EwJw = JwEw. ForFw similarly, but we use Eq. (28).�
Lemma 2. There are unique algebra automorphisms ωw and ωv of Uw

q and Uv
q respec-

tively such that

ωw,v(Kw,v) = Kw,v, ωw,v(Kw,v) = Kw,v,

ωw,v(Ew,v) = Fw,v, ωw,v(Fw,v) = Ew,v.
(42)

Proof. The proof is obvious, if we note thatω2
w = id andω2

v = id. �
As in the case of the automorphismω for slq(2) [16], the mappingsωw andωv can

be called theweak Cartan automorphisms.

Remark 7. Note thatωw �= ω andωv �= ω in general case.

The connection between the algebraswslq(2) and vslq(2) can be seen from the
following

Proposition 3. There exist the following partial algebra morphism χ : vslq(2) →
wslq(2) such that

χ (X) = ev (X) (43)

or more exactly: generators X(v)
w = JvXvJv = XvJv for all Xv = Kv,Kv,Ev, Fv

satisfy the same relations as Xw (25)–(29).

Proof. Multiplying Eq. (32) onKv we haveKvEvKvKv = q2EvKv, and using (7) we
obtainKvEvJv = q2EvJvKv ⇒ KvJvEvJv = q2JvEvJvKv, and so

KvJvEvJv = q2EvJvKvJv ,

which has the shape of the first equation in (27). ForFv similarly using Eq. (33) we
obtain

KvJvFvJv = q−2FvJvKvJv .

Equation (34) can be modified using (7) and then applying (11), then we obtain

EvJvFvJv − FvJvEvJv = KvJv −KvJv

q − q−1

which coincides with (29).
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For conjugated equations (the second ones in (27)–(28)) after multiplication of (32)
on Kv we haveKvKvEvKv = q2KvEv ⇒ JvEvJvKv = q2KvJvEvJv or using
definition (11) and (7)

KvJvEvJv = q−2EvJvKvJv .

By analogy from (33) it follows

KvJvFvJv = q2FvJvKvJv .

�
Note that the generatorsX(v)

w coincide withXw if Jv = 1 only. Therefore, some (but
not all) properties ofwslq(2) can be extended onvslq(2) as well, and below we mostly
will considerwslq(2) in detail.

Lemma 3. Let m ≥ 0 and n ∈ Z. The following relations hold in Uw
q :

EmwK
n
w = q−2mnKn

wE
m
w, Fmw K

n
w = q2mnKn

wF
m
w , (44)

EmwK
n

w = q2mnK
n

wE
m
w, Fmw K

n

w = q−2mnK
n

wF
m
w , (45)

[Ew,Fmw ] = [m]Fm−1
w

q−(m−1)Kw − qm−1Kw

q − q−1 (46)

= [m]q
m−1Kw − q−(m−1)Kw

q − q−1 Fm−1
w ,

[Emw, Fw] = [m]q
−(m−1)Kw − qm−1Kw

q − q−1 Em−1
w (47)

= [m]Em−1
w

qm−1Kw − q−(m−1)Kw

q − q−1 .

Proof. The first two relations result easily from Definition 1. The third one follows by
induction using Definition 1 and

[Ew,Fmw ] = [Ew,Fm−1
w ]Fw + Fm−1

w [Ew,Fw] = [Ew,Fm−1
w ]Fw + Fm−1

w

Kw −Kw

q − q−1 .

Applying the automorphismωw (42) to (46), one gets (47).�
Note that the commutation relations (44)–(47) coincide with theslq (2) case. For

vslq(2) the situation is more complicated, because Eqs. (32)–(33) cannot be solved
underKv due to noncancellativity (see also (19)–(24)). Nevertheless, some analogous
relations can be derived. Using the morphism (43) one can conclude that the similar
relations (44)–(47) hold forX(v)

w = JvXvJv, from which we obtain forvslq(2),

JvE
m
v K

n
v = q−2mnKn

vE
m
v Jv, JvF

m
v K

n
v = q2mnKn

v F
m
v Jv, (48)

JvE
m
v K

n

v = q2mnK
n

vE
m
v Jv, JvF

m
v K

n

v = q−2mnK
n

vF
m
v Jv, (49)
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JvEvJvF
m
v Jv − JvF

m
v JvEvJv = [m]JvFm−1

v

q−(m−1)Kv − qm−1Kv

q − q−1 (50)

= [m]q
m−1Kv − q−(m−1)Kv

q − q−1 Fm−1
v Jv,

JvE
m
v JvFvJv − JvFvJvE

m
v Jv = [m]q

−(m−1)Kv − qm−1Kv

q − q−1 Em−1
v Jv (51)

= [m]JvEm−1
v

qm−1Kv − q−(m−1)Kv

q − q−1 .

It is important to stress that due to noncancellativity of weak algebras we cannot
cancel these relations onJv (see (19)–(24)).

In order to discuss the basis ofUw
q = wslq(2), we need to generalize some properties

of Ore extensions (see [16]).

3. Weak Ore Extensions

LetR be an algebra overk andR[t]be the free leftR-module consisting of all polynomials
of the formP = ∑n

i=0 ait
i with coefficients inR. If an �= 0, define deg(P ) = n; say

deg(0) = −∞. Let α be an algebra morphism ofR. An α-derivation of R is ak-linear
endomorphismδ of R such thatδ(ab) = α(a)δ(b)+ δ(a)b for all a, b ∈ R. It follows
thatδ(1) = 0.

Theorem 1. (i) Assume that R[t] has an algebra structure such that the natural inclu-
sion of R into R[t] is a morphism of algebras and deg(PQ) ≤ deg(P ) + deg(Q)
for any pair (P,Q) of elements of R[t]. Then there exists a unique injective algebra
endomorphism α of R and a unique α-derivation δ of R such that ta = α(a)t+ δ(a)

for all a ∈ R;
(ii) Conversely, given an algebra endomorphism α of R and an α-derivation δ of R,

there exists a unique algebra structure on R[t] such that the inclusion of R into R[t]
is an algebra morphism and ta = α(a)t + δ(a) for all a ∈ R.

Proof. (i) Take any 0 �= a ∈ R and consider the productta. We have deg(ta) ≤
deg(t)+deg(a) = 1. By the definition ofR[t], there exists uniquely determined elements
α(a) andδ(a) of R such thatta = α(a)t + δ(a). This defines mapsα andδ in a unique
fashion. The left multiplication byt being linear, so areα andδ. Expanding both sides
of the equality(ta)b = t (ab) in R[t] usingta = α(a)t + δ(a) for a, b ∈ R, we get

α(a)α(b)t + α(a)δ(b)+ δ(a)b = α(ab)t + δ(ab).

It follows thatα(ab) = α(a)α(b) andδ(ab) = α(a)δ(b)+ δ(a)b, and,α(1)t + δ(1) =
t1 = t . So,α(1) = 1, δ(1) = 0. Therefore, we know thatα is an algebra endomorphism
andδ is anα-derivation. The uniqueness ofα andδ follows from the freeness ofR[t]
overR.

(ii) We need to construct the multiplication onR[t] as an extension of that onR such
thatta = α(a)t + δ(a). For this, it needs only to determine the multiplicationta for any
a ∈ R.
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LetM = {(fij )i,j≥1 : fij ∈ Endk(R) and each row and each column has only finitely

manyfij �= 0} andI =



1
1
. . .


 is the identity ofM.

Fora ∈ R, let â : R → R satisfyinĝa(r) = ar. Thenâ ∈ Endk(R); and forr ∈ R,
(αâ)(r) = α(ar) = α(a)α(r) = (α̂(a)α)(r), (δâ)(r) = δ(ar) = α(a)δ(r) + δ(a)r =
(α̂(a)δ + δ̂(a))(r), thusαâ = α̂(a)α, δâ = α̂(a)δ + δ̂(a) in Endk(R), and, obviously,
for a, b ∈ R, âb = âb̂; â + b = â + b̂. �

Let T =



δ

α δ

α
. . .

. . .


 ∈ M and define/ : R[t] → M satisfying/(

∑n
i=0 ait

i) =

∑n
i=0(âiI )T

i . It is seen that/ is ak-linear map.

Lemma 4. The map / is injective.

Proof. Let p = ∑n
i=0 ait

i . Assume/(p) = 0.

For ei =




01
...

0i−1
1i

0i+1
...

0n




, obviously,{ei}i≥1 are linear independent. Sinceδ(1) = 0 and

α(1) = 1, we haveT ei =




01
...

0i−1
δ(1)i
α(1)i+1

0i+2
...

0n




= ei+1 andT ie1 = ei+1 for any i ≥ 0. Thus,

0 = /(P )e1 = ∑n
i=0(âiI )T

ie1 = ∑n
i=0 âiei+1. It means that̂ai = 0 for all i, then

ai = ai1 = âi1 = 0. HenceP = 0. �
Lemma 5. The following relation holds T (̂aI ) = (α̂(a)I )T + δ̂(a)I .

Proof. We have

T (̂aI ) =



δ

α δ

α
. . .

. . .






â

â

. . .


 =



α̂(a)δ + δ̂(a)

α̂(a)α α̂(a)δ + δ̂(a)

α̂(a)α
. . .

. . .




= α̂(a)T + δ̂(a)I = (α̂(a)I )T + δ̂(a)I.
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Now, we complete the proof of Theorem 1. LetS denote the subalgebra generated
by T andâI (all a ∈ R) in M. From Lemma 5, we see that every element ofS can be
generated linearly by some elements in the form as(̂aI )T n (a ∈ R, n ≥ 0).

But/(atn) = (̂aI )T n, so/(R[t]) = S, i.e./ is surjective. Then by Lemma 4,/ is
bijective. It follows thatR[t] andS are linearly isomorphic.

Defineta = /−1(T (̂aI )), then we can extend this formula to define the multiplication
of R[t] with fg = /−1(xy) for anyf, g ∈ R[t] andx = /(f ), y = /(g). Under
this definition,R[t] becomes an algebra and/ is an algebra isomorphism fromR[t] to
S, and,ta = /−1(T (̂aI )) = /−1((α̂(a)I )T + δ̂(a)I ) = α(a)t + δ(a) for all a ∈ R.
Obviously, the inclusion ofR into R[t] is an algebra morphism.�
Remark 8. Note that Theorem 1 can be recognized as a generalization of Theorem I.7.1
in [16], sinceR does not need to be without zero divisors,α does not need to be injective
and only deg(PQ) ≤ deg(P )+ deg(Q).

Definition 3. We call the algebra constructed from α and δ a weak Ore extensionof R,
denoted as Rw[t, α, δ].

LetSn,k be the linear endomorphism ofR defined as the sum of all

(
n

k

)
possible com-

positions ofk copies ofδ and ofn−k copies ofα. By inductionn, fromta = α(a)t+δ(a)
under the condition of Theorem 1(ii), we gettna = ∑n

k=0 Sn,k(a)t
n−k and moreover,( ∑n

i=0 ait
i
)( ∑m

i=0 bit
i
)

= ∑n+m
i=0 ci t

i , whereci = ∑i
p=0 ap

∑p
k=0 Sp,k(bi−p+k).

Corollary 1. Under the condition of Theorem 1(ii), the following statements hold:

(i) As a left R-module, Rw[t, α, δ] is free with basis {t i}i≥0;
(ii) If α is an automorphism, then Rw[t, α, δ] is also a right free R-module with the same

basis {t i}i≥0.

Proof. (i) It follows from the fact thatRw[t, α, δ] is justR[t] as a leftR-module.

(ii) Firstly, we can show thatRw[t, α, δ] = ∑
i≥0 t

iR, i.e. for anyp ∈ Rw[t, α, δ], there
area0,a1,· · · ,an ∈ R such thatp = ∑n

i=0 t
iai . Equivalently, we show by induction on

n that for anyb ∈ R, btn can be in the form
∑n

i=0 t
iai for someai .

Whenn = 0, it is obvious. Suppose that forn ≤ k− 1 the result holds. Consider the
casen = k. Sinceα is surjective, there isa ∈ R such thatb = αn(a) = Sn,0(a). But
tna = ∑n

k=0 Sn,k(a)t
n−k, we getbtn = tna − ∑n

k=1 Sn,k(a)t
n−k = ∑n

i=0 t
iai by the

hypothesis of induction for someai with an = a. For anyi anda, b ∈ R, (t ia)b = t i (ab)

sinceRw[t, α, δ] is an algebra. ThenRw[t, α, δ] is a rightR-module.
Supposef (t) = tnan + · · · + ta1 + A0 = 0 for ai ∈ R andan �= 0. Thenf (t) can

be written as an element ofR[t] by the formulatna = ∑n
k=0 Sn,k(a)t

n−k whose highest
degree term is just that oftnan = ∑n

k=0 Sn,k(an)t
n−k, i.e.αn(an)tn. From (i), we get

αn(an) = 0. It impliesan = 0. It is a contradiction. HenceRw[t, α, δ] is a free right
R-module. �

We will need the following:

Lemma 6. Let R be an algebra, α be an algebra automorphism and δ be an α-derivation
of R. If R is a left (resp. right) Noetherian, then so is the weak Ore extension Rw[t, α, δ].

The proof can be made similarly as for Theorem I.8.3 in [16].
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Theorem 2.The algebra wslq(2) is Noetherian with the basis

Pw = {EiwF jwKl
w,E

i
wF

j
wK

m

w,E
i
wF

j
wJw}, (52)

where i, j, l are any non-negative integers, m is any positive integer.

Proof. As is well known, the two-variable polynomial algebrak[Kw,Kw] is Noetherian
(see e.g. [15]). ThenA0 = k[Kw,Kw]/(JwKw−Kw,KwJw−Kw) is also Noetherian.
For anyi, j ≥ 0 anda, b, c ∈ k, if at least one element ofa, b, c does not equal 0,

aKi
w + bK

j

w + cJw is not in the ideal(JwKw −Kw,KwJw −Kw) of k[Kw,Kw]. So,

inA0, aKi
w + bK

j

w + cJw �= 0. It follows that{Ki
w,K

j

w, Jw : i, j ≥ 0} is a basis ofA0.
Letα1 satisfyα1(Kw) = q2Kw andα1(Kw) = q−2Kw. Thenα1 can be extended to

an algebra automorphism onA0 andA1 = A0[Fw, α1,0] is a weak Ore extension ofA0

fromα = α1 andδ = 0. By Corollary 1,A1 is a free leftA0-module with basis{Fjw}i≥0.
Thus,A1 is a k-algebra with basis{Kl

wF
j
w,K

m

wF
j
w, JwF

j
w : l andj run respectively

over all non-negative integers,m runs over all positive integers}. But, from the definition
of the weak Ore extension, we haveKl

wF
j
w = q−2ljF

j
wK

l
w, K

m

wF
j
w = q2mjF

j
wK

m

w ,

JwF
j
w = F

j
wJw. So, we conclude that{FjwKl

w, F
j
wK

m

w, F
j
wJw : l andj run respectively

over all non-negative integers,m runs over all positive integers} is a basis ofA1.
Let α2 satisfyα2(F

j
wK

l
w) = q−2lF

j
wK

l
w, α2(F

j
wK

m

w) = q2mF
j
wK

m

w , α2(F
j
wJw) =

F
j
wJw. Thenα2 can be extended to an algebra automorphism onA1. Let δ satisfy

δ(1) = δ(Kw) = δ(Kw) = 0,

δ(F jwK
l
w) =

j−1∑
i=0

Fj−1
w

q−2iKw − q2iKw

q − q−1 Kl
w,

δ(F jwK
l

w) =
j−1∑
i=0

Fj−1
w

q−2iKw − q2iKw

q − q−1 K
l

w,

δ
(
FjwJw

)
=

j−1∑
i=0

Fj−1
w

q−2iKw − q2iKw

q − q−1 Jw

for j > 0 andl ≥ 0. Then just as in the proof of Lemma VI.1.5 in [16], it can be shown
thatδ can be extended to anα2-derivation ofA1 such thatA2 = A1[Ew, α2, δ] is a weak
Ore extension ofA1. Then inA2,

EwKw = α2(Kw)Ew + δ(Kw) = q−2KwEw, EwKw = q2KwEw,

EwFw = α2(Fw)Ew + δ(Fw) = FwEw + Kw −Kw

q − q−1 .

From these, we conclude thatA2 ∼= Uw
q as algebras. Thus, from Lemma 6,Uw

q is
Noetherian. By Corollary 1,Uw

q is free with basis{Eiw}i≥0 as a leftA1-module. Thus,

as ak-linear space,Uw
q has the basisQw = {FjwKl

wE
i
w, F

j
wK

m

wE
i
w, F

j
wJwE

i
w : i, j, l

run over all non-negative integers,m runs over all positive integers}. By Lemma 3 any
x ∈ Pw (resp.Qw) can bek-linearly generated by some elements ofQw (resp.Pw), and
thereforePw andQw generate the same spaceUw

q . �
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The similar theorem can be proved forvslq(2) as well.

Theorem 3.The algebra vslq(2) is Noetherian with the basis

Pv = {
JvE

i
vJvF

j
v K

l
v, JvE

i
vJvF

j
v K

m

v , JvE
i
vJvF

j
v Jv

}
, (53)

where i, j, l are any non-negative integers, m is any positive integer.

Proof. The two-variable polynomial algebrak[Kv,Kv] is Noetherian (see e.g. [15]).
ThenA0 = k[Kv,Kv]/(JvKv −Kv,KvJv −Kv) is also Noetherian. For anyi, j ≥ 0

anda, b, c ∈ k, if at least one element ofa, b, c does not equal 0,aKi
v+bKj

v+cJv is not

in the ideal(JvKv −Kv,KvJv −Kv) of k[Kv,Kv]. So, inA0, aKi
v + bK

j

v + cJv �= 0.

It follows that{Ki
v,K

j

v, Jv : i, j ≥ 0} is a basis ofA0.
Let α1 satisfyα1(Kv) = q2Kv andα1(Kv) = q−2Kv. Thenα1 can be extended to

an algebra automorphism onA0 andA1 = A0[JvFvJv, α1,0] is a weak Ore extension
of A0 from α = α1 andδ = 0. By Corollary 7,A1 is a free leftA0-module with basis
{JvF jv Jv}i≥0. Thus,A1 is ak-algebra with basis{Kl

vF
j
v Jv,K

m

v F
j
v Jv, JvF

j
v Jv : l andj

run respectively over all non-negative integers,m runs over all positive integers}. From
the definition of the weak Ore extension, we haveKl

vF
j
v Jv = q−2lj JvF

j
v K

l
v,K

m

v F
j
v Jv =

q2mjJvF
j
v K

m

v , JvF
j
v = F

j
v Jv. So, we conclude that{Fjv Kl

vJv, F
j
v K

m

v Jv, JvF
j
v Jv : l

andj run respectively over all non-negative integers,m runs over all positive integers}
is a basis ofA1.

Let α2 satisfy α2(JvF
j
v K

l
v) = q−2lJvF

j
v K

l
v, α2(JvF

j
v K

m

v ) = q2mJvF
j
v K

m

v ,

α2(JvF
j
v Jv) = JvF

j
v Jv. Thenα2 can be extended to an algebra automorphism onA1.

Let δ satisfy

δ(1) = δ(Kv) = δ(Kv) = 0,

δ(JvF
j
v K

l
v) =

j−1∑
i=0

JvF
j−1
v

q−2iKv − q2iKv

q − q−1 Kl
v,

δ(JvF
j
v K

l

v) =
j−1∑
i=0

JvF
j−1
v

q−2iKv − q2iKv

q − q−1 K
l

v,

δ
(
JvF

j
v Jv

)
=

j−1∑
i=0

JvF
j−1
v

q−2iKv − q2iKv

q − q−1 Jv

for j > 0 andl ≥ 0. Then just as in the proof of Lemma VI.1.5 in [16], it can be shown
thatδ can be extended to anα2-derivation ofA1 such thatA2 = A1[JvEvJv, α2, δ] is a
weak Ore extension ofA1. Then inA2,

JvEvKv = α2(Kv)JvEvJv + δ(Kv) = q−2KvEvJv, JvEvKv = q2KvEvJv,

JvEvJvFvJv = α2(Fv)JvEvJv + δ(JvFvJv) = JvFvJvEvJv + Kv −Kv

q − q−1 .

From these, we conclude thatA2 ∼= Uv
q as algebras. Thus, from Lemma 6,Uv

q is
Noetherian. By Corollary 1,Uv

q is free with basis{JvEivJv}i≥0 as a leftA1-module.
Thus, as ak-linear space,Uv

q has the basis

Qv = {JvF jv Kl
vE

i
vJv, JvF

j
v K

m

v E
i
vJv, JvF

j
v JvE

i
vJv},
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wherei, j, l run over all non-negative integers,m runs over all positive integers. By
(48)–(51) anyx ∈ Pv (resp.Qv) can bek-linearly generated by some elements of
Qv (resp.Pv), and thereforePv andQv generate the same spaceUv

q . �

4. Extension to theq = 1 Case

Let us discuss the relation betweenUw
q = wslq(2) andU(slq(2)). Just like the quantum

algebraslq(2), we first have to give another presentation forUw
q .

Let q ∈ C andq �= ±1,0. DefineUw′
q as the algebra generated by the five variables

Ew,Fw,Kw,Kw,Lv with the relations (forUv′
q Eqs. (56) and (57) should be exchanged

with (32) and (33) respectively):

KwKw = KwKw, (54)

KwKwKw = Kw, KwKwKw = Kw, (55)

KwEw = q2EwKw, KwEw = q−2EwKw, (56)

KwFw = q−2FwKw, KwFw = q2FwKw, (57)

[Lw,Ew] = q(EwKw +KwEw), (58)

[Lw, Fw] = −q−1(FwKw +KwFw), (59)

EwFw − FwEw = Lw, (q − q−1)Lw = (Kw −Kw). (60)

Forvslq(2) we can similarly define the algebraUv′
q ,

KvKv = KvKv, (61)

KvKvKv = Kv, KvKvKv = Kv, (62)

KvEvKv = q2Ev, (63)

KvFvKv = q−2Fv, (64)

LvJvEv − EvJvLv = q(EvKv +KvEv), (65)

LvJvFv − FvJvLv = −q−1(FvKv +KvFv), (66)

EvJvFv − FvJvEv = Lv, (q − q−1)Lv = (Kv −Kv). (67)

Note that contrary toUw
q andUv

q , the algebrasUw′
q andUw′

q are defined for all
invertible values of the parameterq, in particular forq = 1.

Proposition 4. The algebra Uw
q is isomorphic to the algebra Uw′

q with ϕw satisfying

ϕw(Ew) = Ew, ϕw(Fw) = Fw, ϕw(Kw) = Kw, ϕw(Kw) = Kw.

Proof. The proof is similar to that of Proposition VI.2.1 in [16] forslq(2). It suffices to
check thatϕw and the mapψw : Uw′

q → Uw
q satisfyingψw(Ew) = Ew,ψw(Fw) = Fw,

ψw(Kw) = Kw, ψw(Lw) = [Ew,Fw] are reciprocal algebra morphisms.�
On the other hand, we can give the following relationship betweenUw′

q andU(sl(2))
whose proof is easy.
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Proposition 5. For q = 1

(i) the algebra isomorphism U(sl(2)) ∼= Uw′
1 /(Kw − 1) holds;

(ii) there exists an injective algebra morphism π fromUw
1 toU(sl(2))[Kw]/(K3

w−Kw)
satisfying π(Ew) = XKw, π(Fw) = Y , π(Kw) = Kw, π(L) = HKw.

Remark 9. In Proposition 5(ii),π is only injective, but not surjective sinceK2 �= 1 in
U(sl(2))[K]/(K3 −K) and thenX does not lie in the image ofπ .

5. Weak Hopf Algebras Structure

Here we define weak analogs inwslq(2) andvslq(2) for the standard Hopf algebra
structures�, ε, S – comultiplication, counit and antipod, which should be algebra mor-
phisms.

For the weak quantum algebrawslq(2) we define the maps�w : wslq(2) →
wslq(2) ⊗ wslq(2), εw : wslq(2) → k and Tw : wslq(2) → wslq(2) satisfying
respectively

�w(Ew) = 1 ⊗ Ew + Ew ⊗Kw, �(Fw) = Fw ⊗ 1 +Kw ⊗ Fw, (68)

�w(Kw) = Kw ⊗Kw, �w(Kw) = Kw ⊗Kw, (69)

εw(Ew) = εw(Fw) = 0, εw(Kw) = εw(Kw) = 1, (70)

Tw(Ew) = −EwKw, Tw(Fw) = −KwFw, T (Kw) = Kw, Tw(Kw) = Kw. (71)

The difference with the standard case (we follow notations of [16]) is in substitution
of K−1 with Kw and the last line, where instead of antipodS the weak antipodTw is
introduced [18].

Proposition 6. The relations (68)–(71) endow wslq(2) with a bialgebra structure.

Proof. It can be shown by direct calculation that the following relations hold valid:

�w(Kw)�w(Kw) = �w(Kw)�w(Kw), (72)

�w(Kw)�w(Kw)�w(Kw) = �w(Kw), (73)

�w(Kw)�w(Kw)�w(Kw) = �w(Kw), (74)

�w(Kw)�w(Ew) = q2�w(Ew)�w(Kw), (75)

�w(Kw)�w(Ew) = q−2�w(Ew)�w(Kw), (76)

�w(Kw)�w(Fw) = q−2�w(Fw)�w(Kw), (77)

�w(Kw)�w(Fw) = q2�w(Fw)�w(Kw), (78)

�w(Ew)�w(Fw)−�w(Fw)�w(Ew) = (�w(Kw)−�w(Kw))

(q − q−1)
; (79)
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εw(Kw)εw(Kw) = εw(Kw)εw(Kw), (80)

εw(Kw)εw(Kw)εw(Kw) = εw(Kw), (81)

εw(Kw)εw(Kw)εw(Kw) = εw(Kw), (82)

εw(Kw)εw(Ew) = q2εw(Ew)εw(Kw), (83)

εw(Kw)εw(Ew) = q−2εw(Ew)εw(Kw), (84)

εw(Kw)εw(Fw) = q−2εw(Fw)εw(Kw), (85)

εw(Kw)εw(Fw) = q2εw(Fw)εw(Kw), (86)

εw(Ew)εw(Fw)− εw(Fw)εw(Ew) = (εw(Kw)− εw(Kw))

(q − q−1)
; (87)

Tw(Kw)Tw(Kw) = Tw(Kw)Tw(Kw), (88)

Tw(Kw)Tw(Kw)Tw(Kw) = Tw(Kw), (89)

Tw(Kw)Tw(Kw)Tw(Kw) = Tw(Kw), (90)

Tw(Ew)Tw(Kw) = q2Tw(Kw)Tw(Ew), (91)

Tw(Ew)Tw(Kw) = q−2Tw(Kw)Tw(Kw), (92)

Tw(Fw)Tw(Kw) = q−2Tw(Kw)Tw(Fw), (93)

Tw(Fw)Tw(Kw) = q2Tw(Kw)Tw(Fw), (94)

Tw(Fw)Tw(Ew)− Tw(Ew)Tw(Fw) = (Tw(Kw)− Tw(Kw))

(q − q−1)
. (95)

Therefore, through the basis in Theorem 2,� andεw can be extended to algebra
morphisms fromwslq(2) to wslq(2) ⊗ wslq(2) and fromwslq(2) to k, Tw can be
extended to an anti-algebra morphism fromwslq(2) towslq(2) respectively.

Using (72)–(87) it can be shown that

(�w ⊗ id)�w(X) = (id ⊗�w)�w(X), (96)

(εw ⊗ id)�w(X) = (id ⊗εw)�w(X) = X (97)

for anyX = Ew,Fw,Kw orKw. Letµw andηw be the product and the unit ofwslq(2)
respectively. Hence(wslq(2), µw, ηw,�w, εw) becomes a bialgebra.� �

Next we introduce the star product in the bialgebra(wslq(2), µw, ηw,�w, εw) sim-
ilar to the standard way (see e.g. [16])

(A �w B) (X) = µw [A⊗ B]�w(X). (98)

Proposition 7.Tw satisfies the regularity conditions

(id �w Tw �w id)(X) = X, (99)

(Tw �w id �w Tw)(X) = Tw(X) (100)

for any X = Ew,Fw,Kw or Kw. It means that Tw is a weak antipode.
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Proof. Follows from (72)–(95) by tedious calculations. ForX = Kw,Kw it is easy, and
so we considerX = Ew, as an example. We have

(id �w Tw �w id)(Ew) = µw [(id �w Tw)⊗ id]�w(Ew)

= µw [(id �w Tw)⊗ id] (1 ⊗ Ew + Ew ⊗Kw)

= (id �w Tw) (1) id (Ew)+ (id �w Tw) (Ew) id (Kw)

= µw [id ⊗Tw]�w(1) id (Ew)+ µw [id ⊗Tw]�w(Ew) id (Kw)

= µw [id ⊗Tw] (1 ⊗ 1) id (Ew)+ µw [id ⊗Tw] (1 ⊗ Ew + Ew ⊗Kw) id (Kw)

= Tw (1) id (Ew)+ id (1) Tw (Ew) id (Kw)+ id (Ew) Tw (Kw) id (Kw)

= Ew − EwKw ·Kw + Ew ·Kw ·Kw = Ew = id (Ew) .

By analogy, for (100) andX = Ew we obtain

(Tw �w id �w Tw)(Ew) = µw [(Tw �w id)⊗ Tw]�w(Ew)

= µw [(Tw �w id)⊗ Tw] (1 ⊗ Ew + Ew ⊗Kw)

= (Tw �w id) (1)Tw (Ew)+ (Tw �w id) (Ew)Tw (Kw)

= µw [Tw ⊗ id] (1 ⊗ 1) Tw (1Ew1)+ µw [Tw ⊗ id] (1 ⊗ Ew + Ew ⊗Kw) Tw (Kw)

= Tw (1) Tw (Ew)+ Tw (1) id (Ew) Tw (Kw)+ Tw (Ew) id (Kw) Tw (Kw)

= −EwKw + EwKw − EwKwKwKw = −EwKw = Tw(Ew).

�
Corollary 2. The bialgebrawslq(2) is a weak Hopf algebra with the weak antipode Tw.

We can get an inner endomorphism as follows:

Proposition 8.T 2
w is an inner endomorphism of the algebra wslq(2) satisfying for any

X ∈ wslq(2),

T 2
w (X) = KwXKw, (101)

especially

T 2
w (Kw) = id (Kw) , T 2

w

(
Kw

) = id
(
Kw

)
. (102)

Proof. Follows from (71). �
Assume that with the operationsµw, ηw,�w, εw the algebrawslq(2) would possess

an antipodeS so as to become a Hopf algebra, which should satisfy(S �w id)(Kw) =
ηwεw(Kw), and so it should follow thatS(Kw)Kw = 1. But, it is not possible to hold
sinceS(Kw) can be written as a linear sum of the basis in Theorem 2. It implies that it
is impossible forwslq(2) to become a Hopf algebra for the operations above.

Corollary 3. wslq(2) is an example of a non-commutative and non-cocommutative weak
Hopf algebra which is not a Hopf algebra.
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In order forUw′
q to become a weak Hopf algebra, it is enough to define�w(Ew),

�w(Fw), �w(Kw), �w(Kw), εw(Ew), εw(Fw), εw(Kw), εw(Kw), Tw(Ew), Tw(Fw),
Tw(Kw), Tw(Kw) just as inwslq(2) and define

�w(Lw) = 1

q − q−1 (Kw ⊗Kw −Kw ⊗Kw), εw(Lw) = 0, Tw(Lw) = Kw −Kw

q − q−1 .

From Proposition 4 we conclude thatwslq(2) is isomorphic to the algebraUw′
q with

ϕw. Moreover, one can see easily thatϕw is an isomorphism of weak Hopf algebras from
wslq(2) toUw′

q .
For theJ -weak quantum algebravslq(2) we suppose that some additionalJv should

appear even in the definitions of comultiplication and antipod.A thorough analysis gives
the following nontrivial definitions:

�v(Ev) = Jv ⊗ JvEvJv + JvEvJv ⊗Kv, (103)

�v(Fv) = JvFvJv ⊗ Jv +Kv ⊗ JvFvJv, (104)

�v(Kv) = Kv ⊗Kv, �v(Kv) = Kv ⊗Kv, (105)

εv(Ev) = εv(Fv) = 0, εv(Kv) = εv(Kv) = 1, (106)

Tv(Ev) = −JvEvKv, Tv(Fv) = −KvFvJv, (107)

Tv(Kv) = Kv, Tv(Kv) = Kv. (108)

Note that from (105) it follows that

�v(Jv) = Jv ⊗ Jv, (109)

and soJv is a group-like element.

Proposition 9. The relations (103)–(108) endow vslq(2) with a bialgebra structure.

Proof. First we should prove that�v defines a morphism of algebras fromvslq(2) ⊗
vslq(2) into vslq(2). We check that

�v (Kv)�v

(
Kv

) = �v

(
Kv

)
�v (Kv) , (110)

�v (Kv)�v

(
Kv

)
�v (Kv) = �v (Kv) , (111)

�v

(
Kv

)
�v (Kv)�v

(
Kv

) = �v

(
Kv

)
, (112)

�v (Kv)�v (Ev)�v

(
Kv

) = q2�v (Ev) , (113)

�v (Kv)�v (Fv)�v

(
Kv

) = q−2�v (Fv) , (114)

�v (Ev)�v (Jv)�v (Fv)−�v (Fv)�v (Jv)�v (Ev) = �v (Kv)−�v

(
Kv

)
q − q−1 . (115)

The relations (110)–(112) are clear from (105). For (113) we have

�v (Kv)�v (Ev)�v

(
Kv

) = (Kv ⊗Kv) (Jv ⊗ JvEvJv + JvEvJv ⊗Kv)
(
Kv ⊗Kv

)
= Jv ⊗KvEvKv +KvEvKv ⊗Kv

= q2 (Jv ⊗ JvEvJv + JvEvJv ⊗Kv) = q2�v (Ev) .
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Relation (114) is obtained similarly. Next for (115) exploiting (7), (34) and (35)–(36)
we derive

�v (Ev)�v (Jv)�v (Fv)−�v (Fv)�v (Jv)�v (Ev)

= (Jv ⊗ JvEvJv + JvEvJv ⊗Kv) (Jv ⊗ Jv)
(
JvFvJv ⊗ Jv +Kv ⊗ JvFvJv

)
− (

JvFvJv ⊗ Jv +Kv ⊗ JvFvJv
)
(Jv ⊗ Jv) (Jv ⊗ JvEvJv + JvEvJv ⊗Kv)

= JvFvJv ⊗ JvEvJv − JvFvJv ⊗ JvEvJv + JvEvKv ⊗KvFvJv

−KvEvJv ⊗ JvFvKv + JvEvJvFvJv ⊗Kv − JvFvJvEvJv ⊗Kv

+Kv ⊗ JvEvJvFvJv −Kv ⊗ JvFvJvEvJv

= Jv (EvJvFv − FvJvEv) Jv ⊗Kv +Kv ⊗ Jv (EvJvFv − FvJvEv) Jv

= Jv
Kv −Kv

q − q−1 Jv ⊗Kv +Kv ⊗ Jv
Kv −Kv

q − q−1 Jv = Kv ⊗Kv −Kv ⊗Kv

q − q−1

= �v (Kv)−�v

(
Kv

)
q − q−1 .

Then we show that�v (X) is coassociative

(�v ⊗ id)�v (X) = (id ⊗�v)�v (X) . (116)

TakeE as an example. On the one hand

(�v ⊗ id)�v (E) = (�v ⊗ id) (Jv ⊗ JvEvJv + JvEvJv ⊗Kv)

= �v (Jv)⊗ JvEvJv +�v (Jv)�v (E)�v (Jv)⊗Kv

= Jv ⊗ Jv ⊗ JvEvJv + Jv ⊗ JvEvJv ⊗Kv + JvEvJv ⊗Kv ⊗Kv.

On the other hand

(id ⊗�v)�v (E) = (id ⊗�v) (Jv ⊗ JvEvJv + JvEvJv ⊗Kv)

= Jv ⊗�v (Jv)�v (E)�v (Jv)+ JvEvJv ⊗�v (Kv)

= Jv ⊗ Jv ⊗ JvEvJv + Jv ⊗ JvEvJv ⊗Kv + JvEvJv ⊗Kv ⊗Kv,

which coincides with the previous example.
The proof that the counitε defines a morphism of algebras fromvslq(2) ontok is

straightforward and the result has the form

εv (Kv) εv
(
Kv

) = εv
(
Kv

)
εv (Kv) , (117)

εv (Kv) εv
(
Kv

)
εv (Kv) = εv (Kv) , (118)

εv
(
Kv

)
εv (Kv) εv

(
Kv

) = εv
(
Kv

)
, (119)

εv (Kv) εv (Ev) εv
(
Kv

) = q2εv (Ev) , (120)

εv (Kv) εv (Fv) εv
(
Kv

) = q−2εv (Fv) , (121)

εv (Ev) εv (Jv) εv (Fv)− εv (Fv) εv (Jv) εv (Ev) = εv (Kv)− εv
(
Kv

)
q − q−1 . (122)



Weak Hopf Algebras and Yang–Baxter Equation 209

Moreover, it can be shown that

(εv ⊗ id)�v(X) = (id ⊗εv)�v(X) = X

for X = Ev, Fv,Kv,Kv.
Further we check thatTv defines an anti-morphism of algebras fromvslq(2) to

vsl
op
q (2) as follows:

Tv (Kv) Tv
(
Kv

) = Tv
(
Kv

)
Tv (Kv) , (123)

Tv (Kv) Tv
(
Kv

)
Tv (Kv) = Tv (Kv) , (124)

Tv
(
Kv

)
Tv (Kv) Tv

(
Kv

) = Tv
(
Kv

)
, (125)

Tv
(
Kv

)
Tv (Ev) Tv (Kv) = q2Tv (Ev) , (126)

Tv
(
Kv

)
Tv (Fv) Tv (Kv) = q−2Tv (Fv) , (127)

Tv (Fv) Tv (Jv) Tv (Ev)− Tv (Ev) Tv (Jv) Tv (Fv) = Tv (Kv)− Tv
(
Kv

)
q − q−1 . (128)

The first three relations are obvious. For (126) using (107) and (35) we have

Tv
(
Kv

)
Tv (Ev) Tv (Kv) = Kv

(−JvEvKv

)
Kv = −q2Kv

(−KvEvJv
)
Kv

= −q2JvEvJvKv = q2JvEvKv = q2Tv (Ev) .

For the last relation (128), using (35)–(36), we obtain

Tv (Fv) Tv (Jv) Tv (Ev)− Tv (Ev) Tv (Jv) Tv (Fv)

= (KvFvJv) Jv
(−JvEvKv

) − (−JvEvKv

)
Jv (KvFvJv)

= Jv (FvJvEv − EvJvFv) Jv = Jv
Kv −Kv

q − q−1 Jv = Tv (Kv)− Tv
(
Kv

)
q − q−1 .

Therefore, we conclude that
(
vslq(2), µv, ηv,�v, Tv

)
has the structure of a bialgebra.

�
The following property ofTv is crucial for understanding the structure of the bialgebra(

vslq(2), µv, ηv,�v, Tv
)
.

Proposition 10.For any X ∈ vslq(2) we have (cf. (101)–(102))

T 2
v (Kv) = ev (Kv) , T 2

v

(
Kv

) = ev
(
Kv

)
, (129)

T 2
v (Ev) = KvEvKv, T

2
v (Fv) = KvFvKv, (130)

where ev (X) is defined in (11).

Proof. Follows from (7) and (107)–(108). As an example forEv we haveT 2
v (Ev) =

Tv
(−JvEvKv

) = −Tv
(
Kv

)
Tv (Ev) Tv (Jv) = Kv

(
JvEvKv

)
Jv = KvEvKv. �

The star product in
(
vslq(2), µv, ηv,�v, Tv

)
has the form

(A �v B) (X) = µv [A⊗ B]�v(X). (131)
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Proposition 11.Tv satisfies the regularity conditions

(ev �v Tv �v ev)(X) = ev (X) , (132)

(Tv �v ev �v Tv)(X) = Tv(X) (133)

for any X = Ev, Fv,Kv or Kv .

Proof. Follows from (103)–(108) and (131). ForX = Kv,Kv it is easy, and so we
considerX = Ev, as an example. We have

(ev �v Tv �v ev)(Ev) = µv [(ev �v Tv)⊗ ev]�v(Ev)

= µv [(ev �v Tv)⊗ ev] (Jv ⊗ JvEvJv + JvEvJv ⊗Kv)

= (ev �v Tv) (Jv)ev (JvEvJv)+ (ev �v Tv) (JvEvJv)ev (Kv)
= µv [ev ⊗ Tv]�v(Jv)ev (JvEvJv)+ µv [ev ⊗ Tv]�v(Ev)ev (Kv)
= µv [ev ⊗ Tv] (Jv ⊗ Jv)ev (Ev)

+ µv [ev ⊗ Tv] (Jv ⊗ JvEvJv + JvEvJv ⊗Kv)ev (Kv)
= ev (Jv) Tv (Jv)ev (Ev)+ ev (Jv) Tv (JvEvJv)ev (Kv)+ ev (Ev) Tv (Kv)ev (Kv)

= Jv · Jv · JvEvJv − Jv · JvJvEvKv · JvKvJv + JvEvJv ·Kv · JvKvJv
= JvEvJv = ev (Ev) .

By analogy, for (133) andX = Ev we obtain

(Tv �v ev �v Tv)(Ev) = µv [(Tv �v ev)⊗ Tv]�v(Ev)

= µv [(Tv �v ev)⊗ Tv] (Jv ⊗ JvEvJv + JvEvJv ⊗Kv)

= (Tv �v ev) (Jv)Tv (JvEvJv)+ (Tv �v ev) (Ev)Tv (Kv)
= µv [Tv ⊗ ev] (Jv ⊗ Jv) Tv (JvEvJv)

+ µv [Tv ⊗ ev] (Jv ⊗ JvEvJv + JvEvJv ⊗Kv) Tv (Kv)

= Tv (Jv)ev (Jv) Tv (JvEvJv)+ Tv (Jv)ev (JvEvJv) Tv (Kv)

+ Tv (JvEvJv)ev (Kv) Tv (Kv) = −Jv · Jv · Jv
(
JvEvKv

)
Jv + Jv · JvEvJv ·Kv

− Jv
(
JvEvKv

)
Jv · JvKvJv ·Kv = −JvEvKv = Tv(Ev).

�
From (132)–(133) it follows thatvslq(2) is not a weak Hopf algebra in the definition

of [18]. So we will call it aJ -weak Hopf algebra andTv a J -weak antipode. As it is
seen from (99)–(100) and (132)–(133) the difference between them is in the exchange
id with ev.

Remark 10. The variableev can be treated as ann = 2 example of the “tower identity”
e
(n)
αβ introduced for semisupermanifolds in [9,10] or the “obstructor”e(n)X for general

mappings, categories and the Yang–Baxter equation in [6–8].

Comparing (68)–(71) with (103)–(108) we conclude that the connection of�w, Tw,
εw and�v, Tv, εv can be written in the following way:

�v (X) = �w (ev (X)) , (134)

Tv (X) = Tw (ev (X)) , (135)

εv (X) = εw (ev (X)) , (136)

which means that additionally to the partial algebra morphism (43) there exists a partial
coalgebra morphism which is described by (134)–(136).
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6. Group-Like Elements

Now, we discuss the setG(wslq(2)) of all group-like elements ofwslq(2). As is well-
known (see e.g. [14]) a semigroupS is called an inverse semigroup if for everyx ∈ S,
there exists a uniquey ∈ S such thatxyx = x andyxy = y, and a monoid is a semigroup
with identity. We will show the following

Proposition 12.The set of all group-like elementsG(wslq(2)) = {J (ij) = Ki
wK

j

w : i, j
run over all non-negative integers}, which forms a regular monoid under the multipli-
cation of wslq(2).

Proof. Supposex ∈ wslq(2) is a group-like element, i.e.�w(x) = x ⊗ x. By Theorem

2,x can be written asx = ∑
i,j,l,m αij lE

i
wF

j
wK

l
w+βijmEiwF jwKm

w+γijEiwF jwJw. Here
and in the sequel, everyα, β andγ with subscripts is in the fieldk and does not equal
zero. Then

�w(x) =
∑
i,j,l,m

[αijl�w(E
i
wF

j
wK

l
w)+�w(βijmE

i
wF

j
wK

m

w)+�w(γijE
i
wF

j
wJw)]

=
∑
i,j,l,m

[αijl(1 ⊗ Ew + Ew ⊗Kw)
i(Fw ⊗ 1 +Kw ⊗ Fw)

j (Kw ⊗Kw)
l

+ βijm(1 ⊗ Ew + Ew ⊗Kw)
i(Fw ⊗ 1 +Kw ⊗ Fw)

j (Kw ⊗Kw)
m

+ γij (1 ⊗ Ew + Ew ⊗Kw)
i(Fw ⊗ 1 +Kw ⊗ Fw)

jJw];
and

x ⊗ x =
( ∑
i,j,l,m

αij lE
i
wF

j
wK

l
w + βijmE

i
wF

j
wK

m

w + γijE
i
wF

j
wJw

)

⊗
( ∑
i,j,l,m

αij lE
i
wF

j
wK

l
w + βijmE

i
wF

j
wK

m

w + γijE
i
wF

j
wJw

)
.

It is seen that ifi �= 0 or j �= 0,�w(x) is impossible to equalx ⊗ x. So,i = 0 and
j = 0. We getx = ∑

l,m αlK
l
w + βmK

m

w + Jw. Then

�w(x) =
∑
l,m

[
αlK

l
w ⊗Kl

w + βmK
m

w ⊗K
m

w + Jw ⊗ Jw
];

x ⊗ x =
∑

l,l′,m,m′

[
αlαl′K

l
w ⊗Kl′

w + αlβm′Kl
w ⊗K

m′
w + αlK

l
w ⊗ Jw

+ αl′βmK
m

w ⊗Kl′
w + βmβm′K

m

w ⊗K
m′
w + βmK

m

w ⊗ Jw

+ αl′Jw ⊗Kl′
w + βm′Jw ⊗K

m′
w + Jw ⊗ Jw

]
.

If there existsl �= l′, thenx⊗x possesses the monomialKl
w⊗Kl′

w, which does not appear
in �w(x). It contradicts�w(x) = x ⊗ x. Hence we have only a uniquel. Similarly,
there exists a uniquem. Thusx = αlK

l
w + βmK

m

w + Jw. Moreover, it is easy to see that
αlK

l
w, βmK

m

w andJw can not appear simultaneously in the expression ofx. Therefore,
we conclude thatx = αlK

l
w, βmK

m

w or Jw (no summation) and we have

�w(J
(ij)
w ) = J (ij)w ⊗ J (ij)w . (137)



212 F. Li, S. Duplij

It follows thatG(wslq(2)) = {J (ij)w = Ki
wK

j

w : i, j run over all non-negative
integers}.

For anyJ (ij) = Ki
wK

j

w ∈ G(wslq(2)), one can findJ (ji) = K
j
wK

i

w ∈ G(wslq(2))

such that the regularity (18) takes placeJ (ij)w J
(ji)
w J

(ij)
w = J

(ij)
w , which means that

G(wslq(2)) forms a regular monoid under the multiplication ofwslq(2). �
Forvslq(2) we have a similar statement.

Proposition 13.The set of all group-like elements G(vslq(2)) = {J (ij)v = Ki
vK

j

v : i, j
run over all non-negative integers}, which forms a regular monoid under the multipli-
cation of vslq(2).

Proof. Supposex ∈ vslq(2) is a group-like element, i.e.�v(x) = x ⊗ x. By The-

orem 3,x can be written asx = ∑
i,j,l,m αij lJvE

i
vJvF

j
v K

l
v + βijmJvE

i
vJvF

j
v K

m

v +
γij JvE

i
vJvF

j
v Jv. Here and in the sequel, everyα, β andγ with subscripts is in the field

k and does not equal zero. Then

�v(x) =
∑
i,j,l,m

[αijl�v(JvE
i
vJvF

j
v K

l
v)

+�v(βijmJvE
i
vJvF

j
v K

m

v )+�v(γij JvE
i
vJvF

j
v Jv)]

=
∑
i,j,l,m

[αijl(Jv ⊗ Jv)(Jv ⊗ JvEvJv + JvEvJv ⊗Kv)
i

× (Jv ⊗ Jv)(JvFvJv ⊗ Jv +Kv ⊗ JvFvJv)
j (Kv ⊗Kv)

l

+ βijm(Jv ⊗ Jv)(Jv ⊗ JvEvJv + JvEvJv ⊗Kv)
i

× (Jv ⊗ Jv)(JvFvJv ⊗ Jv +Kv ⊗ JvFvJv)
j (Kv ⊗Kv)

m

+ γij (Jv ⊗ Jv)(Jv ⊗ JvEvJv + JvEvJv ⊗Kv)
i

× (Jv ⊗ Jv)(JvFvJv ⊗ Jv +Kv ⊗ JvFvJv)
j Jv];

and

x ⊗ x =
( ∑
i,j,l,m

αij lJvE
i
vJvF

j
v K

l
v + βijmJvE

i
vJvF

j
v K

m

v + γij JvE
i
vJvF

j
v Jv

)

⊗
( ∑
i,j,l,m

αij lJvE
i
vJvF

j
v K

l
v + βijmJvE

i
vJvF

j
v K

m

v + γij JvE
i
vJvF

j
v Jv

)
.

It is seen that ifi �= 0 or j �= 0,�v(x) is impossible to equalx ⊗ x. So,i = 0 and
j = 0. We getx = ∑

l,m αlK
l
v + βmK

m

v + Jv. Then

�v(x) =
∑
l,m

[
αlK

l
v ⊗Kl

v + βmK
m

v ⊗K
m

v + Jv ⊗ Jv
];

x ⊗ x =
∑

l,l′,m,m′

[
αlαl′K

l
v ⊗Kl′

v + αlβm′Kl
v ⊗K

m′
v + αlK

l
v ⊗ Jv

+ αl′βmK
m

v ⊗Kl′
v + βmβm′K

m

v ⊗K
m′
v + βmK

m

v ⊗ Jv

+ αl′Jv ⊗Kl′
v + βm′Jv ⊗K

m′
v + Jv ⊗ Jv

]
.
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If there existsl �= l′, thenx ⊗ x possesses the monomialKl
v ⊗ Kl′

v , which does not
appear in�v(x). It contradicts�v(x) = x⊗x. Hence we have only a uniquel. Similarly,
there exists a uniquem. Thusx = αlK

l
v + βmK

m

v + Jv Moreover, it is easy to see that
αlK

l
v, βmK

m

v andJv can not appear simultaneously in the expression ofx. Therefore,
we conclude thatx = αlK

l
v, βmK

m

v or Jv (no summation) and we have

�v(J
(ij)
v ) = J (ij)v ⊗ J (ij)v . (138)

It follows that G(vslq(2)) = {J (ij)v = Ki
vK

j

v : i, j run over all non-negative
integers}.

For anyJ (ij)v = Ki
vK

j

v ∈ G(vslq(2)), one can findJ (ji)v = K
j
vK

i

v ∈ G(vslq(2))

such that the regularity (18) takes placeJ (ij)v J
(ji)
v J

(ij)
v = J

(ij)
v , which means that

G(vslq(2)) forms a regular monoid under the multiplication ofvslq(2). �
These results show thatwslq(2) andvslq(2) are examples of a weak Hopf algebra

whose monoid of all group-like elements is a regular monoid. It incarnates further the
corresponding relationship between weak Hopf algebras and regular monoids [19].

7. Regular Quasi-R-Matrix

From Proposition 1 we have seen thatwslq(2)/(Jw−1) = slq(2). Now, we give another
relationship betweenwslq(2) andslq(2) so as to construct a non-invertible universal
Rw-matrix fromwslq(2).

Theorem 4.wslq(2) possesses an ideal W and a sub-algebra Y satisfying wslq(2) =
Y ⊕W and W ∼= slq(2) as Hopf algebras.

Proof. LetW be the linear sub-space generated by{EiwF jwKl
w,E

i
wF

j
wK

m

w,E
i
wF

j
wJw :

for all i ≥ 0, j ≥ 0, l > 0 andm > 0}, andY is the linear sub-space generated by
{EiwF jw : i ≥ 0, j ≥ 0}. It is easy to see thatwslq(2) = Y⊕W ;wslq(2)Wwslq(2) ⊆ W ,
thus,W is an ideal; and,Y is a sub-algebra ofwslq(2). Note that the identity ofW isJw.
Moreover,W is a Hopf algebra with the unitJw, the comultiplication�W

w satisfying

�W
w (Ew) = Jw ⊗ Ew + Ew ⊗Kw, (139)

�W
w (Fw) = Fw ⊗ Jw +Kw ⊗ Fw, (140)

�W
w (Kw) = Kw ⊗Kw, �W

w (Kw) = Kw ⊗Kw, (141)

and the same counit, multiplication and antipode as inwslq(2). Let ρ be the algebra
morphism fromslq(2) to W satisfyingρ(E) = Ew, ρ(F ) = Fw, ρ(K) = Kw and

ρ(K−1) = Kw. Thenρ is, in fact, a Hopf algebra isomorphism since{EiwF jwKl
w,

EiwF
j
wK

m

w , EiwF
j
wJw : for all i ≥ 0, j ≥ 0, l > 0 andm > 0} is a basis ofW by

Theorem 2. �
Let us assume here thatq is a root of unity of orderd in the fieldk, whered is an

odd integer andd > 1.
SetI = (Edw, F

d
w,K

d
w − Jw) the two-sided ideal ofUw

q generated byEdw, F
d
w,K

d
w −

Jw. Define the algebraU
w

q = Uw
q /I .
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Remark 11. Note thatK
d

w = Jw in U
w

q = Uw
q /I sinceKd

w = Jw.

It is easy to prove thatI is also a coideal ofUq andTw(I) ⊆ I . ThenI is a weak
Hopf ideal. It follows thatU

w

q has a unique weak Hopf algebra structure such that the
natural morphism is a weak Hopf algebra morphism, so the comultiplication , the counit
and the weak antipode ofU

w

q are determined by the same formulas withUw
q . We will

show thatU
w

q is a quasi-braided weak Hopf algebra. As a generalization of a braided
bialgebra andR-matrix we have the following definitions [18].

Definition 4. Let there be k-linear maps µ : H ⊗ H → H,η : k → H,� : H →
H⊗H,ε : H → k in a k-linear spaceH such that (H,µ, η) is a k-algebra and (H,�, ε)
is a k-coalgebra. We call H an almost bialgebra, if � is a k-algebra morphism, i.e.
�(xy) = �(x)� (y) for every x, y ∈ H .

Definition 5. An almost bialgebraH = (H,µ, η,�, ε) is called quasi-braided, if there
exists an element R of the algebra H ⊗H satisfying

�op(x)R = R�(x) (142)

for all x ∈ H and

(�⊗ idH )(R) = R13R23, (143)

(idH ⊗�)(R) = R13R12. (144)

Such R is called a quasi-R-matrix.

By Theorem 4, we haveU
w

q = Uw
q /I = Y/I ⊕ W/I ∼= Y/(Edw, F

d
w) ⊕ Ũq where

Ũq = slq(2)/(Edw, F
d
w,K

d − 1) is a finite Hopf algebra. We know in [16] that the sub-
algebraB̃q of Ũq generated by{EmwKn

w : 0 ≤ m, n ≤ d − 1} is a finite dimensional
Hopf sub-algebra and̃Uq is a braided Hopf algebra as a quotient of the quantum double
of B̃q . TheR-matrix of Ũq is

R̃ = 1

d

∑
0≤i,j,k≤d−1

(q − q−1)k

[k]! qk(k−1)/2+2k(i−j)−2ijEkwK
i
w ⊗ FkwK

j
w.

Sinceslq(2)
ρ∼= W as Hopf algebras and(Ed, F d,Kd − 1)

ρ∼= I , we getŨq ∼= W/I

as Hopf algebras under the induced morphism ofρ. ThenW/I is a braided Hopf algebra
with aR-matrix,

Rw = 1

d

∑
0≤k≤d−1;1≤i,j≤d

(q − q−1)k

[k]! qk(k−1)/2+2k(i−j)−2ijEkwK
i
w ⊗ FkwK

j
w.

Because the identity ofW/I is Jw, there exists the inversêRw of Rw such that
R̂wRw = RwR̂w = Jw. Then we have

RwR̂wRw = Rw, (145)

R̂wRwR̂w = R̂w, (146)
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which shows that thisR-matrix is regular inUq . It obeys the following relations:

�op
w (x)R

w = Rw�w(x) (147)

for anyx ∈ W/I and

(�w ⊗ id)(Rw) = Rw13R23,
w (148)

(id ⊗�w)(R
w) = Rw13R

w
12, (149)

which are also satisfied inUq . ThereforeRw is a von Neumann’s regular quasi-R-matrix
of Uq . So, we get the following

Theorem 5.Uq is a quasi-braided weak Hopf algebra with

Rw = 1

d

∑
0≤k≤d−1;1≤i,j≤d

(q − q−1)k

[k]! qk(k−1)/2+2k(i−j)−2ijEkwK
i
w ⊗ FkwK

j
w

as its quasi-R-matrix, which is regular.

The quasi-R-matrix from theJ -weak Hopf algebravslq(2) has a more complicated
structure and will be considered elsewhere.

8. Discussion

In conclusion we would like to compare the presented generalization of the Hopf al-
gebra with the existing ones. A weak Hopf algebra in sense of [4,30,26] is ak-linear
vector spaceH that is both an associative algebra(H,µ, η) and a coassociative coal-
gebra(H,�weak, εweak) related to each other in a certain self-dual way [3,26] and that
possesses an antipodeSweak satisfying (in Sweedler notations [29])

Sweak
(
x(1)

)
x(2) = 1(1)εweak

(
x1(2)

)
, (150)

x(1)Sweak
(
x(2)

) = εweak
(
x1(1)

)
1(2), (151)

(pre-antipode), and if in addition

Sweak
(
x(1)

)
x(2)Sweak

(
x(3)

) = Sweak(x) , (152)

thenSweak can be called a Nill’s antipode. Weak Hopf algebras have “weaker” axioms
related to the unit and counit:εweak(xyz) = εweak(xy(1))εweak(y(2)z) and�(2)

weak(1) =
(�weak (1)⊗ 1) (1 ⊗�weak(1)). So the comultiplication is non-unital�weak(1) �= 1⊗1
(like in weak quasi Hopf algebras [23]) and the counit is only “weakly” multiplicative,
ε(xy) = ε(x1)ε(1(2)y). Therefore they can be callednon-unital weak Hopf algebras.
Note that this kind of “weakness” is the “strength” of weak Hopf algebras [3], because
it allows (even in the finite dimensional and semisimple cases) the weak Hopf algebra
to possess non-integral (quantum) dimensions. The earlier proposals offace algebras
[13], quantum groupoids [25], the (finite dimensional)generalized Kac algebras [31] are
weak Hopf algebras in this sense [26], not the most general ones, but having an involutive
antipode. The weak antipodeT introduced in [18] and in this paper(Tw andTv) is not
usually a pre-antipode in the sense (150)–(151). Therefore the class of non-unital Hopf
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algebras [26,3] (or quantum groupoids [25]) and the class of weak Hopf algebras [18,
20,5] are not included in each other. In fact, we have the following relation:

A B C

D E

✲

❄

✲

❄
✲

whereA denotes a Hopf algebra,B a non-unital weak Hopf algebra,C a non-unital
almost weak Hopf algebra,D a weak Hopf algebra andE an almost weak Hopf algebra.
From this, we see easily that just Hopf algebras compose their common subclass.

Nill [26] points out that these algebras have many examples in the theory of quantum
chain models. Dissimilarly, our examples come from regular monoid algebras [18–20]
and also from this paper, i.e.wslq(2), vslq(2), etc.

Note that although the weak Hopf algebras in this paper and the non-unital weak Hopf
algebras introduced earlier do not include each other usually, their antipodes are defined
by a similar method, that is, by using of the regularity of antipodes in the involution
algebra of the original algebras. Therefore, we believe that it is possible to characterize
certain aspects in similar ways.A further interesting work, which we want to continue, is
to study our weak Hopf algebras through similar objects and methods for the non-unital
weak Hopf algebras and moreover, to find applications in the theory of quantum chain
models and other relative areas.
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