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Abstract: We investigate a generalization of Hopf algebta(2) by weakening the
invertibility of the generatoK, i.e. exchanging its invertibilit,k K ~1 = 1 to the reg-
ularity KKK = K. This leads to a weak Hopf algebussl, (2) and aJ/-weak Hopf
algebravsl, (2) which are studied in detail. It is shown that the monoids of group-like
elements ofvsl, (2) andvsl, (2) are regular monoids, which supports the general con-
jucture on the connection betweek weak Hopf algebras and regular monoids. Moreover,
from wsl, (2) a quasi-braided weak Hopf aIgetI_V:éf is constructed and it is shown that

the corresponding quagi-matrix is regularR” R R = R™.

1. Introduction

The concept of a weak Hopf algebra as a generalization of a Hopf algebra [29, 1] was
introduced in [18] and its characterizations and applications were studied in [20]. A
k-bialgebra H = (H, u, n, A, ¢) is called aweak Hopf algebra if there existsT e
Homy(H, H) such thatid *x T xid = id andT xid * T = T, whereT is called a

weak antipode of H. This concept also generalizes the notion of the left and right Hopf
algebras [24,12].

The first aim of this concept is to give a new sub-class of bialgebras which includes
all of Hopf algebras such that it is possible to characterize this sub-class through their
monoids of all group-like elements [18, 20]. It was known that for every regular monoid
S, its semigroup algebraS overk is a weak Hopf algebra as the generalization of a
group algebra [19].

The second aim is to construct some singular solutions of the quantum Yang-Baxter
equation (QYBE) and research QYBE in a larger scope. On this hand, in [20] a quantum
guasi-doubleD (H) for a finite dimensional cocommutative perfect weak Hopf algebra
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192 F. Li, S. Duplij

with invertible weak antipode was built and it was verified that its quasiatrix is a
regular solution of the QYBE. In particular, the quantum quasi-double of a finite Clifford
monoid as a generalization of the quantum double of a finite group was derived [20].

In this paper, we will construct two weak Hopf algebras in the other direction as a
generalization of the quantum algebia(2) [22,2]. We show thatvs(>(g) possesses a
quasiR-matrix which becomes a singular (in fact, regular) solution of the QYBE, with
a parametey. In this reason, we want to treat the meaninguwet, (2) and its quasi-
R-matrix just assl, (2) [28,16]. It is interesting to note thatsl, (2) is a natural and
non-trivial example of weak Hopf algebras.

2. Weak Quantum Algebras

For completeness and consistency we remind the definition of the enveloping algebra
U, = U, (s1(2) (see e.g. [16]). Ley € C andg # £1,0. The algebrd/, is generated
by four variables (Chevalley generatofs) F, K, K ~1 with the relations

Kk =KkKk1=1, 1)
KEK™'=4°E, 2
KFK™1=¢7°F, ()

K—-K1
EF —FE=———. (4)
q-q

Now we try to generalize the invertibility condition (1). The first thought is weaken
the invertibility to regularity, as it is usually made in semigroup theory [17] (see also [10,
6, 7] for higher regularity). So we will consider such weakening the algﬁg)r(a[q (2)),

in which instead of the sgtk, K =1} we introduce a paifK,,, K, } by means of the
regularity relations

KwEwKw = Ky, FwKwEw = Euﬁ (5)

If K, satisfying (5) is unique for a givek,, then it is callednverse of K, (see
e.g. [27,11]). The regularity relations (5) imply that one can introduce the variables

Juw = KKy, Juw =KyKy. (6)
In terms ofJ,, the regularity conditions (5) are

JuKy =Ky,  KypJy =Ky, 7

J K K Ky (8)
Since the noncommutativity of generatds, andK ,, very much complexifies the

generalized constructiénwe first consider the commutative case and imply in what
follow that

Juw = Ju. )

2 This case will be considered elsewhere.
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Let us list some useful properties &f, which will be needed below. First we note
that commutativity ofk,, andK ,, leads to idempotency condition

J2 =Ty, (10)
which means that,, is a projector (see e.g. [15]).

Conjecture 1. In algebras satisfying the regularity conditions (5) there exists as minimum
one zero divisot/,, — 1.

Remark 1. In addition with unity 1 we have an idempotent analog of unffywhich
makes the structure of weak algebras more complicated, but simultaneously more inter-
esting.

For any variableX we will define “J-conjugation” as

x, € 5.x0, (11)

and the corresponding mapping will be writtenegs(X) : X — X, . Note that the
mappinge,, (X) is idempotent

& (X)=e,(X). (12)

Remark 2. In the invertible cas&,, = K, K,, = K1 we haveJ,, = 1 ande,, (X) =
X =id (X) forany X, soe, = id.

It is seen from (5) that the generatdss, andK ,, are stable under/;,-conjugation”
Kj, = JuKwly =Ky, Ky, =JyKuJy = Ky. (13)
Obviously, for anyX
KuwXKy =KXy, Ky, (14)
and for anyX andY
KyXKy =Y = K,X;, Ky =7Yy,. (15)

Another definition connected with the idempotent analog of udijtyis the “J,,-
product” for any two element¥ andY, viz.

X0, Y Exy. (16)

Remark 3. From (7) it follows that the J,,-product” coincides with the usual product,
if X ends with generatork,, andK ,, on right side ot starts with them on left side.

Let /@) = Ki K/ then we will need a formula

(K>
‘]15}’]) = Krlqu = iwj’fi L= (17)
K, ,i<],
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which follows from the regularity conditions (7). The variabJé§’ satisfy the regularity
conditions

JGD gGD g — i) (18)
and stable under/-conjugation” (11)152, = Jﬂj).

The regularity conditions (7) lead to the noncancellativity: for any two elemgnts
andY the following relations hold valid:

X=Y=K,X=K,Y, (19)

KX =K, Y+ X=7Y, (20)
X=Y=K,X=K,Y, (21)

K, X=K,Y »X=7Y, (22)
X=Y=X;,=Yy,, (23)

ij = Y‘]w s X=Y. (24)

The generalization o/, (sl,(2)) by exploiting regularity (5) instead of invertibility
(1) can be done in two different ways.

Definition 1. Define U;” = wsl, (2) asthe algebra generated by the four variables £,
Fy, Ky, K, with the relations:

Kw?w = ?wKws (25)
Kw?wKw = Dy, EwKw_w = ?wa (26)
KuwEw = q°EwKyw, KwEw=q 2EyKu, (27)
KuwFy=q ?FyKy, KuwFu=q°FuKu, (28)

Ky, —K
EywFy — FyEy = q“’_ q_l’”. (29)

We call wsl, (2) aweak quantum algebra

Definition 2. Define U, = vsl,(2) asthe algebra generated by the four variables E,,
F,, K,, K, withtherelations (J, = K, K ,):

K,K, = K,K,, (30)
K,KyKy =Ky, KyKyKy =Ky, (31)
KyE K, = g%Ey, (32)
KyF,Ky = g %F,, (33)
K,—K
EyJyFy — FyJyE, = #. (34)

We call vsl, (2) a J-weak quantum algebra
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In these definitions indeed the first two lines (25)—(26) and (30)—(31) are called to
generalize the invertibilitk K —* = K~1K = 1. Each next line (27)—(29) and (32)—
(34) generalizes the corresponding line (2)—(4) in two different ways respectively. In the
first almost quantum algebtes(, (2) the last relation (29) betwednh and F generators
remains unchanged frosi, (2), while two EK and F K relations are extended to four
ones (27)—(28). Invsl, (2), oppositely, twoEK and FK relations remain unchanged
from sl,(2) (with K1 — K substitution only), while the last relation (34) between
and F generators has the additional multipli&r which role will be clear later. Note
that theEK and FK relations (32)—(33) can be written in the following form close to
(27)—-(28):

KvEoJy = g°JyEyKy, KoEyJy =q 2JyEyKy, (35)
KyFyJy = q 2IyFyKy, KoFoJy =q2JyFyKy. (36)

Using (16) and (7) in the case df we can also present thal,(2) algebra as an
algebra with the J,-product”

Kv @J,, Kv = Ev @JU KU? (37)
KU @]v EU ®]v KU = va EU ®Jv Kv QJ,; EU = Evs (38)
K, Oy, E, Oy, Ev = qulH (39)
Kv @JU Fv @Jv Ev = q_sz» (40)
K, — K
EU@JUFU_F‘UQJUEUZ#' (41)

Remark 4. Due to (7) the only relation where thdy-product” really plays its role is
the last relation (41).

From the following proposition, one can find the connection betviger= wsl, (2),
U, = vsly(2) and the quantum algebss, (2).

Proposition 1. wsl, (2)/(Jy, — 1) = s1,(2); vsly,(2)/(J, — 1) = 5l,4(2).
Proof. For cancellativek,, and K, it is obvious. O

Proposition 2. Quantum algebras wsl, (2) and vsl,(2) possess zero divisors, one of
whichis® (J,,, — 1) which annihilates all generators.

Proof. From regularity (26) and (31) it follow&,, , (Ju,» — 1) = O (see also (1)). Mul-
tiplying (27) onJ,, givesKy EwJy = ¢?EwKyJyw = Ky (EwKw) Ky = ¢2EyKy.
Using the second equation in (27) for the term in the bracket we oﬁ‘t@i(quw Ew)
Ky = ¢°EwKy = (Ju» — 1) E Ky, = 0. For F,, similarly, but we use Eq. (28). By
analogy, multiplying (32) o/, we haveK,E,K ,K,K, = ¢°EyJy, = K E K, =
g%E,J, = ¢%E, = ¢?E,J,, and soE, (J, — 1) = 0. For F, similarly, but we use
Eq.(33). O

Remark 5. Sincesl, (2) is an algebra without zero divisors, some properties/pf2)
cannot be upgraded tosl, (2) andvsl, (2), e.g. the standard theorem of Ore extensions
and its proof (see Theorem 1.7.1 in [16]).

3 We denote byX, » one of the variablex, or X, .
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Remark 6. We conjecture that i/}’ andU! there are no other thafy,, , — 1) zero
divisors which annihilatall generators In other case thorough analysis of them will be
much more complicated and very different from the standard case of non-weak algebras.

We can get some properties@}f’ andU, as follows.

Lemma 1. The idempotent J,, isin the center of wsl, (2).

Proof. For K, it foIIows from (13). Multiplying the first equation in (27) ok ,, we
derive K, (E K. ) = ¢?E,J,, and applying the second equation in (27) we obtain
EyJy = JywE,. For F,, similarly, but we use Eq. (28).0

Lemma 2. There are unique algebra automorphisms w,, and w, of U’ and U, respec-
tively such that

ww,v(Kw,v)
)

Ew,va a)w,v(Ew,v) = Kw,v, 42
ww,v(Ew,v Fy ( )

= Uy a)w,v(Fw,v) = Ew,v-

Proof. The proof is obvious, if we note tha, = id andw? =id. O

As in the case of the automorphismior s, (2) [16], the mappings,, andw, can
be called thaveak Cartan automor phisms.

Remark 7. Note thatw,, # » andw, # w in general case.

The connection between the algebiasl, (2) andvsl,(2) can be seen from the
following

Proposition 3. There exist the following partial algebra morphism x : vsl,(2) —
wsl, (2) such that

x (X) =& (X) (43)

or more exactly: generators ij’) = L, X,J, = Xy, for al X, = Ky, Ky, Ey, F,
satisfy the samerelations as X, (25)—(29).

Proof. Multiplying Eq. (32) onkK, we havek ,E, K ,K, = ¢°E,K,, and using (7) we
obtaink,E,J, = ¢°EyJ,Ky, = KyJyEyJ, = g%J,E,J,K,, and so

2
KUIUEUJU =dq EvJUKvJU,

which has the shape of the first equation in (27). Fprsimilarly using Eq. (33) we
obtain

KU./U Fvlv = q_szJU Kvlv-
Equation (34) can be modified using (7) and then applying (11), then we obtain

vav - Kv]v

EvJ,, FvJU - FvJvaJ,, = 1
q9—49

which coincides with (29).
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For conjugated equations (the second ones in (27)—(28)) after multiplication of (32)

on K, we havekK ,K,E,K, = ¢°K,E, = J,E,J,K, = q°K,J,E,J, or using
definition (11) and (7)

?U.]U EvJv = qizEvJU?vJU .
By analogy from (33) it follows

?U.]U FUJU = quvJU?vJv‘
O

Note that the generatops(,}’) coincide withX,, if J, = 1 only. Therefore, some (but

not all) properties otvsl, (2) can be extended arsl, (2) as well, and below we mostly
will considerwsl, (2) in detail.

Lemma3.Letm > Oandn € Z. Thefollowing relations hold in U’

EnKy, =q 2" K, Ey. FyKy, =q”"K,F (44)
E"K) = ¢®"" K, E", F'K, =q 2"K,F", (45)

,(m,]_)K _ mflf
[Ey. FJ'] = [m]Fp 1 vz v

q—q* (49)
@K =K s
qg—qt v
7(m71)K _ mfl?
q q _
[E}2, Fy] = [m] s (47)
B [m]Em_lqm—le _ q—(m—l)?w
v qg—q1

Proof. The first two relations result easily from Definition 1. The third one follows by
induction using Definition 1 and

Ky, —K
[Ew. F'1 = [Ew, Fi' "Fy + Fi Y Ey, Fyl = [Ey, Fim Y F, + Fp 1 =2 ——2
q9—d9
Applying the automorphism,, (42) to (46), one gets (47).0

Note that the commutation relations (44)—(47) coincide withsf&2) case. For
vsl, (2) the situation is more complicated, because Egs. (32)—(33) cannot be solved
underk, due to noncancellativity (see also (19)—(24)). Nevertheless, some analogous
relations can be derived. Using the morphism (43) one can conclude that the similar
relations (44)—(47) hold fon,ﬁ’) = Jy Xy Jy, from which we obtain fowsl, (2),
JyEMKT = g=#mKrEM ), J,FMKT = g2 K FM ), (48)

LEYK, ="K EV Ty, JoF)K, =q 2" K F)' Ty, (49)
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—(m—l)Kv _ qm—lfv

19
JoEyJyF™ Iy — JyF" J,EyJy = [m]J, F/" 1 p— (50)
m—1 —(m-Dg
Ky — K
— = Sy,
q—q-
—(m—l)K _ m—lf
JoE™ JyFydy — JyFyJyE™ Iy = [m]2 p _”q_ql vEn-ly,  (51)
= [m]J Em—lqm_lKv —q~"mVEK,
- v .
’ qg—q7t

It is important to stress that due to noncancellativity of weak algebras we cannot
cancel these relations of (see (19)—(24)).

In order to discuss the basis@}’ = wsl, (2), we need to generalize some properties
of Ore extensions (see [16]).

3. Weak Ore Extensions

LetR be an algebra ovérandR[¢] be the free lefR-module consisting of all polynomials
of the formP = 3" ,a;t' with coefficients inR. If a, # 0, define degP) = n; say
deg0) = —oo. Let o be an algebra morphism &. An «-derivation of R is ak-linear
endomorphisnéd of R such that (ab) = a(a)§(b) + 5(a)b for all a, b € R. It follows
thats(1) = 0.

Theorem 1. (i) Assume that R[z] has an algebra structure such that the natural inclu-
sion of R into R[¢] is a morphism of algebras and deg P Q) < deq P) + deq Q)
for any pair (P, Q) of elements of R[¢]. Then there exists a unique injective algebra
endomorphisme of R and a unique «-derivation § of R suchthat ta = a(a)t + 5(a)
for all a € R;

(ii) Conversely, given an algebra endomorphism « of R and an «-derivation § of R,
there exists a unique algebra structure on R[¢] such that the inclusion of R into R[7]
isan algebra morphismand ra = a(a)r + §(a) for all a € R.

Proof. (i) Take any 0# a € R and consider the product. We have de@Ga) <
degt)+dega) = 1. By the definition oR[7], there exists uniquely determined elements
a(a) andé(a) of R such thata = a(a)t + &(a). This defines maps andé in a unique
fashion. The left multiplication by being linear, so are ands. Expanding both sides
of the equality(ta)b = t(ab) in R[t] usingta = a(a)t + 8(a) fora, b € R, we get

a(a)a(b)t + a(a)s(b) + 6(a)b = a(ab)t + 5(ab).

It follows thata (ab) = a(a)a(b) ands(ab) = a(a)s(b) + §(a)b, and,a(1)t + 8(1) =
t1=1.S0,x(1) =1,8(1) = 0. Therefore, we know that is an algebra endomorphism
ands$ is ana-derivation. The uniqueness afands follows from the freeness dR[¢]
overR.

(i) We need to construct the multiplication &t{z] as an extension of that dd such
thatra = a(a)t + 6 (a). For this, it needs only to determine the multiplicatiarfor any
aeR.
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LetM = {(fij))i.j=1: fij € End(R) and each row and each column has only finitely
1

many fi; # 0} andl = 1 is the identity ofM.

ForaeR,leta:R—- R sat.isygga(r) = ar. Thena € Endi(R); and forr € R,
(aa)(r) = a(ar) = a(@)a(r) = (a(a)a)(r), (§a)(r) = 8(ar) = a(a)d(r) + 8(a)r =
(ot(a)8 + 8(a))(r) thusaa = a(a)a sa = a(a)d + S(a) in End, (R), and, obviously,

for a, beRab_ab a+b_a+b ]

)
od

LetT = v | €M and defined : R[t] — M satisfying®(}_"_ya;t’) =

Z?:O(a\,-l)T". It is seen thatd is ak-linear map.
Lemma 4. Themap ® isinjective.
Proof. Letp =" ,a;t'. Assumed(p) =

0,
0i-1
Fore;, = 1; |, obviously,{e;}i>1 are linear independent. Sinéél) = 0 and
041
0x
0,
01
a(l) = 1, we haveTe; = 8(L); = ¢j41 andTe; = e; 41 for anyi > 0. Thus,
a(Diy1
042
0,

0= ®(Pler = Y ! o@DTer = Y ! yadiei+1. It means thai; = 0 for all i, then
ai =a;1=a1=0.HenceP =0. O

Lemma 5. The following relation holds 7' @1) = (a(a)1)T + 8(a)l.
Proof. We have

ot(a)(S + 5(a)
oz(a)oz a(a)8 + 8(a)

Q)

T@I) = . =

o . . a(a)a

= a(@)T + 8@ = (@@DT +5(a)l.



200 F. Li, S. Duplij

Now, we complete the proof of Theorem 1. L&denote the subalgebra generated
by T andal (all a € R) in M. From Lemma 5, we see that every elemens @ian be
generated linearly by some elements in the forn@d$7” (a € R, n > 0).

But ®(at") = (@I)T", so®(R[t]) = S, i.e. ® is surjective. Then by Lemma &, is
bijective. It follows thatR[z] andS are linearly isomorphic.

Defineta = ®~1(T(@I)), thenwe can extend this formula to define the multiplication
of R[] with fg = ® L1(xy) forany f, g € R[r] andx = ®(f), y = ®(g). Under
this definition,R[¢] becomes an algebra addis an algebra isomorphism froR(z] to
S, and,ra = @ XT@I) = @ 1@ DT +8(@)]) = a(a)t + 8(a) for alla € R.
Obviously, the inclusion oR into R[¢] is an algebra morphism.o

Remark 8. Note that Theorem 1 can be recognized as a generalization of Theorem 1.7.1
in [16], sinceR does not need to be without zero divisargloes not need to be injective
and only degP Q) < deq P) + deg Q).

Definition 3. We call the algebra constructed fromo and § aweak Ore extensiorof R,
denoted as R, [¢, «, §].

LetS, « bethelinear endomorphismRfdefined as the sum of IIZ possible com-

positions of copies o and ofn —k copies ofx. By inductionn, fromra = a(a)t+5(a)
under the condition of Theorem 1(ii), we gétz = Y ;_, Sk (@)t"~* and moreover,

(Z _oait )(Z " obit ) S A i, wherec; = pr:o ap > r_oSpk(bizpti)-
Corollary 1. Under the condition of Theorem 1(ii), the following statements hold:

(i) Asaleft R-module, Ry [t, o, 8] isfree with basis {¢'};>0;
(i) If« isanautomorphism, then Ry, [¢, «, 5] isalso aright free R-module with the same
basis {t'}i>o.

Proof. (i) It follows from the fact thaR,, [z, @, 8] is justR[z] as a leftR-module.

(i) Firstly, we can showthaR,, [z, «, 8] = Zi>0z"R, i.e.foranyp € Ryl[t, a, 8], there
areap,ai1, - - a, € R suchthayp = >!'_,t'a;. Equivalently, we show by induction on
n that for anyb € R, bt" can be in the forn}_7_, t'a; for some; .

Whenn = 0, it is obvious. Suppose that far< k — 1 the result holds. Consider the
casen = k. Sinceux is surjective, there is € R such that = «"(a) = S,.0(a). But
t"a =37 _oSnx(@)t" ™k, we getht" = t"a — Y §_; Spx(a)"F =3 _ta; by the
hypothesis of induction for sonag with a, = a. Foranyi anda, b € R, (t'a)b = t' (ab)
sinceR,, [, «, 8] is an algebra. TheR,, [z, «, 8] is a rightR-module.

Supposef (t) = t"a, + --- + tay + Ag = 0 fora; € R anda,, # 0. Thenf (z) can
be written as an element Bf7] by the formula”a = Y~} _, Sn,k(a)t”—k whose highest
degree term is just that ofa, = > ;_, S,,,k(a,,)t"*", i.e.a"(a,)t". From (i), we get
a"(a,) = 0. Itimpliesa, = 0. It is a contradiction. HencR,, [z, «, 8] is a free right
R-module. O

We will need the following:

Lemma 6. Let R bean algebra, o bean algebraautomorphismand § bean «-derivation
of R. IfRisaleft (resp. right) Noetherian, then so istheweak Oreextension Ry, [¢, «, 8].

The proof can be made similarly as for Theorem 1.8.3 in [16].
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Theorem 2. The algebra wsl, (2) is Noetherian with the basis

P, = {E. FiK. E.FIKn E.FIJ,) (52)

whwow?

wherei, j, [ are any non-negative integers, m is any positive integer.

Proof. Asis well known, the two-variable polynomial algetif&, K ,,]is Noetherian
(seee.qg.[15]). TheAg = k[Ky, K]/ (Jw Ky — Ky, Ky Jyw — K ) is also Noetherian.
For anyi, Jj= 0 anda, b, ¢ € k, if at least one element af, b, c does not equal 0,
aKi +bK. +cJy, isnotin the idealJ, Ky — Ky, Ky Juw — Ku) Of k[K 4, K 1. SO,
in Ag, aK’, +bK’ +cJy, # 0. Itfollows that{K’ , K’ , J,, : i, j > 0} is a basis ofAo.

Letay satisfyas(K,) = ¢°K, anda1(K ) = ¢ 2K . Thenay can be extended to
an algebra automorphism ety andA1 = Ag[Fy,, @1, 0] is a weak Ore extension dfy
fromoa = «g andé = 0. By Corollary 1,A1 is a free leftAg-module with basi$F1{;},~zo.
Thus, A1 is ak-algebra with basi$k’ FJ, K\ F;. J,,F : 1 and j run respectively
over all non-negative integens,runs over all positive integersBut, from the definition
of the weak Ore extension, we havg, F, = ¢~ 2/ FJK. K F) = ¢* F)K",
Jw F{U = F,{, Jw. S0, we conclude than{; K,ID, FJ;?Z)', F{U Jy : L andj run respectively
over all non-negative integens, runs over all positive integerss a basis ofd;.

Let ap satisfyaa(FiKL) = g 2 FJKL, ax(FIK) = ¢?"F) K, aa(FJy) =
Fd, Jw. Thenaz can be extended to an algebra automorphism griet § satisfy

8(1) = 8(Kw) = 8(Ky) =0,

j-1 —2i 2ig
izl 19 “Kw—q“ Ky
S(FQIJKUJ)ZZFH/J g —q 1 w?
i=0

j-1 —2i 2i
._ . K, — K, —
SFIK,) =Y Pt v Teg
= q9-—q

j-1 —2i 2
. . K, — K
8<F’{’Jw)=ZF1{;_1q w f]l wa

i—0 qg—9q

1=
for j > Oand! > 0. Then just as in the proof of Lemma VI.1.5 in [16], it can be shown
thats can be extended to ar-derivation ofA1 such thatd, = A1[E,,, a2, §] IS aweak
Ore extension ofi1. Then inAo,

EyKy=02(Ky)Ey +8(Ky) =q *KyEy, EyKy=q°KyEy,
Kw - ?w
EyFy =ax(Fy)Ey +6(Fy) = FyEy + m
From these, we conclude thap = U{}” as algebras. Thus, from Lemma@;’ is
Noetherian. By Corollary 1U§1” is free with basis{EfU}iZo as a leftA;-module. Thus,

as ak-linear space{/}” has the basiQ, = (FIK! El F,{jng;U F,{)JwE;U N

wTw?
run over all non-negative integers, runs over all positive integeysBy Lemma 3 any
x € Py, (resp.Q,,) can bek-linearly generated by some element€xf (resp.P,), and
thereforeP,, andQ,, generate the same spaldg. O
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The similar theorem can be proved fal, (2) as well.

Theorem 3.The algebra vsl, (2) is Noetherian with the basis
Pv:{JUE{;JUFqull)sJUELJUFJET’JinJvFJJU}a (53)

where i, j, [ are any non-negative integers, m is any positive integer.
Proof. The two-variable polynomial algebid K, K ,] is Noetherian (see e.g. [15]).
ThenAg = k[K,, K,1/(JuK, — Ky, K»Jy, — K,) is also Noetherian. For anyj >0
anda, b, c € k, if atleast one element af b, c does notequal @K’ + bKU +cJy isnot
in the ideal(J, K, — K,, K ,J, — K ) of k[K,,, K ,]. SO, inAg, aK! +bf£ +cJy, #0.
It follows that{K’, K/, J, : i, j > O} is a basis ofAo.

Let oy satisfya1(K,) = ¢%K, anda1(K,) = ¢—°K,. Thenay can be extended to

an algebra automorphism oty andA1 = Ag[J, Fy Jy, @1, 0] is a weak Ore extension
of Ag froma = a1 andé = 0. By Corollary 7,A1 is a free leftAg-module with basis

{JyF{ 1,}i=0. Thus,Ay is ak-algebra with basi¢k! F{ J,, K F{ J,. J,F{ J, : 1 andj
run respectively over all non-negative integetsiuns over all positive integeysFrom
the definition of the weak Ore extension, we ha&ée‘«”v Jy=q 2 J,F! KK F’ Jy =

g2 J, F’K , J,F! = FlJ,. So, we conclude thdtF; KlJ,, FIK Ko Ty, JoF] Ty 0 1
and jrun respectlvely over all non-negative mtegenzsruns over all posmve mteg ers
is a basis ofd;. _ _ . '

Let ap satisfy ax(J, F{KL) = ¢ 2J,FIKL, ax(J,FIK)) = ¢*"J,FIK,,

az(JyFlJy) = J,FiJ,. Thenay can be extended to an algebra automorphism an
Let § satisfy

8(1) = 8(Ky) =8(K,) =0

j—1 2 2
i ol 19 “Ky—q7 Ky
S FIKY) =Y J,F] S —r
i=0
j-1 —2i 2%
19 Ky —q9Ky—i
8(JF/K)_ZJFJ —K,,
i=0 14
2i 2i 7
— 42K
(JUF JU> ZJUFJ 19~ Ky 1 =9 2oy,
q—q-

for j > 0 andl > 0. Then just as in the proof of LemmaVI.1.5 in [16], it can be shown
thats can be extended to arp-derivation ofA1 such thatd, = A[J,E,J,, a2, 8] is a
weak Ore extension of;. Then inAy,

JEy Ky = a2(Ky) JyEyJy +8(Ky) = q_szEvJva JUEUFU = quvava
_?v

K
JEyJyFyJy = O52(FU)JUEUJU +8(JUFUJU) = LW, WEyJy + < 1 -

q9—49
From these, we conclude thap = U“ as algebras. Thus, from Lemmalﬁ” is

Noetherian. By Corollary 1U” is free W|th baS|s{JvE’ Jy}i=o as a leftAs- module
Thus, as &-linear spacel/; has the basis

Q, ={JF/K'E 1, J,F/K E' J,, J,FJ J,E! J,},
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wherei, j, I run over all non-negative integens, runs over all positive integers. By
(48)-(51) anyx e P, (resp.Q,) can bek-linearly generated by some elements of
Q, (resp.P,), and therefor®, andQ, generate the same spacg. O

4. Extension to theq = 1 Case

Let us discuss the relation betwe@gY = wsl,(2) andU (sl,(2)). Just like the quantum
algebrasl, (2), we first have to give another presentation&gf.

Letg € Candg # +1,0. DefineU;” as the algebra generated by the five variables
Ew, Fu, Ky, K 4, L, with the relations (fqu”’ Egs. (56) and (57) should be exchanged

with (32) and (33) respectively):
Kw?w = ?wva (54)
KyKyKy =Ky, KyKyKy=Ky, (55)
KywEy ZquwKwa K

wEw = q 2EyKy, (56)

KuwFuy=q %FyKy, KuwFy=q°FyKy, (57)

[Lu, Ew] = q(EwKy + KyEy), (58)

[Ly, Ful = —¢ Y (FyKuw + KuwFu), (59)
EwFy — FyEyw =Ly, (q—q YLy = (Ky— Ku). (60)

For vsl, (2) we can similarly define the aIgebléq”/,

KyKy = KyK,, (61)

KyKy Ky =K,, KK,K,=K,, (62)

Ky E\K, = ¢°E,, (63)

K.F,Ky =q %F,, (64)

LyJyEy — EyJyLy = q(EyKy + Ky Ey), (65)
LyJyFy — FyJyLy = —q Y (F,K, + Ky F)). (66)
EyJyFy — FyJyEy = Ly, (g —q YL, = (Ky — Ky). (67)

Note that contrary td/;” and U/, the algebrai]f’ and U;” are defined for all
invertible values of the parameter, in particular forg = 1.

Proposition 4. The algebra U’ is isomorphic to the algebra U, with ¢,, satisfying
Puw(Ew) = Eu, 0u(Fu) = Fu, 0u(Kp) = Ky, 0u(Ky) = K.
Proof. The proof is similar to that of Proposition VI.2.1 in [16] fel, (2). It suffices to

check thatp,, and the mag/,, : U;“’ - Uy satisfyingyry, (Ey) = Ey, Yy (Fy) = Fy,
VY (Ky) = Ky, Yuw(Ly) = [Ey, Fy] are reciprocal algebra morphismsa

On the other hand, we can give the following relationship betvﬁg}éfrandU(gl(Z))
whose proof is easy.
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Proposition 5.For g = 1

(i) thealgebraisomorphismU(sl(2)) = U} /(K,, — 1) holds;
(i) thereexistsaninjective algebramorphismz fromU;” to U(s[(2))[Kw]/(K$ —Ky)
satisfying 7(Ey) = XKy, 7(Fp) =Y, 71(Ky) = Ky, 7(L) = HK,,.

Remark 9. In Proposition 5(ii),w is only injective, but not surjective sindé? # 1 in
U(sl(2)[K1/(K® — K) and thenX does not lie in the image of.

5. Weak Hopf Algebras Structure

Here we define weak analogs insl, (2) andvsl,(2) for the standard Hopf algebra
structuresA, ¢, S — comultiplication, counit and antipod, which should be algebra mor-
phisms.

For the weak quantum algebtas(,(2) we define the mapg,, : wsl,(2) —
wsly(2) ® wsly(2), ey : wsly(2) — kandT, : wsl,(2) — wsl,(2) satisfying
respectively

Aw(Ew)=1®Ew+Ew®Kwa A(Fw)sz®l+Ew®Fwa (68)
Aw(Kw) =Ky ® Ky, Aw(Ew) = Ew ®?w» (69)
ew(Ew) = eyw(Fy) =0, g,(Ky) = Sw(fw) =1, (70)

Tw(Ew) = _Ew?w’ Tw(Fw) = —Ky Fy, T(Kw) = Ew’ Tw(Ew) = Ky. (71)

The difference with the standard case (we follow notations of [16]) is in substitution
of K~1 with K, and the last line, where instead of antippthe weak antipod,, is
introduced [18].

Proposition 6. The relations (68)—71) endow wsl, (2) with a bialgebra structure.

Proof. It can be shown by direct calculation that the following relations hold valid:

Ay (Ku)Aw(Kw) = Ap(Kw) A (Ky), (72)
Ay (Ku) A (K ) A (Ky) = Ay (Ky), (73)
Ay (K ) Ay (Ku) Ay (K ) = Ay (K ), (74)
Aw(Kw)Aw(Ew) = g% Auw(Ew) Ay (Ky), (75)
Aw(K ) Aw(Ey) = q 2 Ap(Ew) Ay(Ky), (76)
Aw(Kw)Aw(Fp) = ¢ 72 Ay (Fu) Ay (Ky), (77)
A (K ) Aw(Fu) = g2 Ay (Fi) Ay (K ), (78)

(Aw(Kw) - Aw(Ew)) .

Ay (Ey) Ay (Fu) — Ay (Fy) Ay (Eyw) = 1
(@—g7)

(79)
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ew(Ku)ew(Kw) = eu(Kw)ew(Ky), (80)
ew(Kw)ew(Kw)ew(Ky) = ey (Ky), (81)
ew(Kw)ew(Ku)ew(Kw) = ew(Kw), (82)

ew(Kw)ew(Ew) = g%ew(Ey)ew(Ky). (83)

ew(Kw)ew(Ew) = ¢ %euw(Ew)ew(Kw), (84)

ew(Kw)ew(Fu) = ¢ 22w (Fu)ew(Ky), (85)

ew(Kw)ew(Fu) = q%ew(Fu)ew(Kw). (86)

u(Eu)en (Fu) — u(Fy)ey (Ey) = SoE0) = 0ullu), (87)
(g—q™bH

Ty (Kw) T (Kw) = Ty (Ky) Ty (K ), (88)
Ty (Ky) T (K ) Ty (Ky) = Ty (Ky), (89)
Ty (K ) T (Kuw) Ty (K ) = Ty (K ), (90)

Tw(Ew)Tw(Kw) = q°Ty(Kw) Ty (Ey), (91)

Tw(Ew)Tw(Kw) = g *Ty(Kuw) T (Ku), (92)

Tw(Fu)Tw(Kw) = ¢ 2Ty (Kuw) T (Fu), (93)

Tw(Fu)Tw(Kw) = ¢°Ty (K ) T (Fu), (94)

Tuw(Fu)Tw (Ew) = Tw(Ew) Tuw(Fu) = (Twui;”)__;ﬁ)(m) (95)

Therefore, through the basis in TheoremA2ande,, can be extended to algebra
morphisms fromwsl, (2) to wsl,(2) ® wsl,(2) and fromwsl,(2) to k, T,, can be
extended to an anti-algebra morphism frami, (2) to wsl, (2) respectively.

Using (72)—(87) it can be shown that

(Ay ®1d)AL(X) = (Id @A) Ay(X), (96)
(6w I AL(X) = ([dReyw)Aw(X) =X (97)

foranyX = E,, F,, K, or K ,,. Let i, andn,, be the product and the unit afsl, (2)
respectively. Hencewsl, (2), pw, nw, Aw, &) becomes a bialgebrao O

Next we introduce the star product in the bialgetwal, (2), .y, Nw, Aw, &) SiM-
ilar to the standard way (see e.g. [16])

(A*y B)(X) =y [A® B] Ay(X). (98)
Proposition 7. T, satisfies the regularity conditions

(id %y Ty *yy 1) (X) = X, (99)
(T *w d*y Tyy)(X) = Ty (X) (100)

forany X = E,, F,, K, or K,,. It meansthat T, is a weak antipode.
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Proof. Follows from (72)—(95) by tedious calculations. Po= K,,,K ,, it is easy, and
so we consideX = E,,, as an example. We have

(id *yy Ty *y 1) (Ey) = py [(1d %y Ty) Q@ id] Ay (Ey)
= p [(id %y Tyy) @ 1A] (1 ® Ew + Ev @ Ku)
= (id %y Tyy) (1) id (Ey) + (id xy Tyy) (Eyp) id (Ky)
= Uy [[dRTy] Ay (D) id (Ey) + 1y [i[d ®T,] Ay (Ey) id (Ky)
= Uy [dRTW] (AR D id (Ey) + pyw [ldRTy] (1Q Ey + Ey @ Ky) id (Ky)
=T, DIid(Ey) +id Q) T, (Ey)id (Ky) +id (Ey) Ty (Ky) id (Ky)
=FEp—EwKy -Kp+Ey-Ky-Ky=E,=Id(E,).

By analogy, for (100) an&X = E,, we obtain

(T *w 1y TW)(Ew) = pw [(Tw *w id) @ Ty] Ay (Eyw)

=y [(Ty % DT, AR Ey + Ey ® Ky)

= (T *w 1d) ()T (Ew) + (T %y id) (Ey) Ty (Kuw)

= uy [Ty ®id] A® 1) Ty (LEL) + py [Ty ®1d] (1® Ey + Ey @ Kyy) Ty (Kuy)
=Ty (D) Ty (Ey) + Ty (1) id (Ey) Ty (Ky) + Ty (Ey) id (Ky) Ty (Kw)

= —EyKy+EyKy — EwKyKyKy = —EwKy = Ty(Ey).

O
Corollary 2. Thebialgebra wsl, (2) isaweak Hopf algebra with the weak antipode 7.
We can get an inner endomorphism as follows:

Proposition 8. Tuz, isan inner endomorphism of the algebra wsl, (2) satisfying for any
X e wsly (2),

T2(X) = KyXKy, (101)
especially
TZ(Ky) =id(Ky), TZ2(Kw)=id(Ku). (102)
Proof. Follows from (71). O
Assume that with the operatiops,, 7., Ay, &y the algebravsl, (2) would possess
an antipodeS so as to become a Hopf algebra, which should satiSfy,, id)(K,) =
nwéw(Ky), and so it should follow tha$ (K ,,)K,, = 1. But, it is not possible to hold
sinceS(K,,) can be written as a linear sum of the basis in Theorem 2. It implies that it

is impossible forwsl, (2) to become a Hopf algebra for the operations above.

Corollary 3. wsl, (2) isanexample of a non-commutative and non-cocommutativeweak
Hopf algebra which is not a Hopf algebra.
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In order forU(}”’ to become a weak Hopf algebra, it is enough to defingE,,),

Aw(Fu), Ay (Kw), Aw(Kw), ew(Ew), ew(Fy), ew(Kw), &w(Kw), Tw(Eyw), Tw(Fy),
T (Ky), Ty (K y) just as inwsl, (2) and define

1 — Ky — Ky
Aw(Lw) = q _q_l(Kw & Kw - Kw ® Kw)» gw(Lw) = Oa Tw(Lw) = m

From Proposition 4 we conclude thasl, (2) is isomorphic to the algebr@’” with
¢w- Moreover, one can see easily tatis an isomorphism of weak Hopf algebras from
wsl, (2) toUY".

For theJ-weak quantum algebnas(, (2) we suppose that some additiorfalshould
appear even in the definitions of comultiplication and antipod. A thorough analysis gives
the following nontrivial definitions:

Ay(Ey) = Jy ® LEyJy + IEyJ, ® Ky, (103)
Ay(F)) = L FyJy ® Jy + Ky @ JyFy Jy, (104)
Ay(Ky) = Ky ® Ky, Ay(Ky) =K, ® Ky, (105)
eo(Ey) = 6y(F)) =0, &y(Ky) = &y(Ky) =1, (106)
Ty(Ey) = —LEKy, Ty(F,) =—K,F,J,, (107)
Ty(Ky) =Ky, Ty(K,) =K,. (108)

Note that from (105) it follows that
Ay(Jy) =Ty ® Ju, (109)
and soJ, is a group-like element.
Proposition 9. The relations (103)—-108) endow vsl, (2) with a bialgebra structure.

Proof. First we should prove thak, defines a morphism of algebras framl, (2) ®
vsly (2) into vsl, (2). We check that

Ay (Ky) Ay (Ky) = Ay (Ky) Ay (Ky),  (110)

Ay (Ky) Ay (Ky) Ay (Ky) = Ay (Ky), (112)
Ay (Ky) Ay (Ky) Ay (Ky) = Ay (Ky), (112)
Ay (Ky) Ay (Ey) Ay (Ky) = ¢%Ay (Ey), (113)
Ay (Ky) Ay (F) Ay (Ky) = g 720y (F), (114)
Ay (Ky) — Ay (Ky)
Ay (Ey) Ay (Jo) Ay (Fy) = Ay (Fy) Ay (Ju) Ay (Ey) = T (115)

The relations (110)—(112) are clear from (105). For (113) we have
Ay (Ky) Ay (Ey) Ay (Ky) = (Ky ® Ky) (Jy ® JyEyJy + LLEyJ, ® Ky) (Ky ® Ky)
= Jv ® KUEUEU + KvaEv ® Kv
=q%(Jy @ JyEyJy + JEyJy ® Ky) = g°A, (Ey) .
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Relation (114) is obtained similarly. Next for (115) exploiting (7), (34) and (35)—(36)
we derive
Ay (Ey) Ay (Jy) Ay (Fy) — Ay (Fy) Ay (Jy) Ay (Ey)
= (Ju ® WEyJy + JoEyJy ® Ky) (Jy ® 1) (Lo FuJy ® Jy + Ky ® JyFuJy)
— (WFudy ® Jy + Ky ® JyFyJy) (Jy ® Jy) (Jy ® JuEyJy + JyEyJy ® Ko)
= L FyJy ® JyEyJy — JuFyJy ® JWEyJy + JuEyKy ® Ky FyJ,y
—KyEyJ, ® JyF,Ky + JyE,JyFyJy, ® Ky — JyFy JyEy J, ® K,
+ Ky ® JWEyJyFyJy — Ky ® JyFyJyEyJy
= Jy (EvJyFy — FyJyEy) Jy ® Ky + Ky ® Jy (EyJyFy — FyJyEy)

K, - K — K, - K K,QK,— K, QK.
=va—va®Kv+Kv®Jv > 7]?)-]1): v® Ry ,]l_)® -
q9—q q9—q q9—q
_ Av (Kv) - Av (Kv)

q—q7t '

Then we show thah, (X) is coassociative
(Ay ®id) Ay (X) = (Id®A,) Ay (X). (116)
TakeE as an example. On the one hand

(Ay ®id) Ay (E) = (Ay ®id) (Jy ® JWEyJy + L EyJy ® Ky)
= Ay (Jo) @ WEW Ty + Ay () Ay (E) Ay () ® Ky
=L QLS NLHWE, + Ly LWEL, Ky + WEW, @ Ky ®K,.

On the other hand

(Id®Ay) Ay (E) = (Id®Ay) (Jy @ JyEyJy + JyEyJy @ Ky)

=Jy @ Ay (Jy) Ay (E) Ay (Jy) + W EyJy @ Ay (Ky)

=L@ ®LWEyWy+ Jy®HEW, ® Ky + JLWEyy ® Ky ® Ky,
which coincides with the previous example.

The proof that the counit defines a morphism of algebras framl, (2) ontok is
straightforward and the result has the form

&y (Ky) &y (Ku) = &y (Ky) &0 (Ky), (117)
ev (Kv) &y (Ku) £ (Ky) = &4 (Ky) (118)
&y (Ky) e (Ky) &y (Ky) = &0 (Ky) (119)
e (Kv) &y (Ey) &y (Ko) = g% (Ey) (120)
ey (Ky) &y (F) &y (Ku) = g %60 (Fy)., (121)

&y (Ky) — &y (?v)
q-qt

gy (Ey) &y (Jy) &y (Fy) — &y (Fy) &y () &y (Ey) = (122)
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Moreover, it can be shown that

(80 ®Id) Ay (X) = (Id ®e) Ay (X) = X

for X = E,, F,, Ky, K.

Further we check thal, defines an anti-morphism of algebras frami,(2) to

vslgp(Z) as follows:

m}

T, (Ky) Ty (Kv) =Ty (Ky) Ty (Ky) (123)

T, (Ky) T, (Ky) Ty (Ky) = Ty (Ky) (124)

T, (Ky) T, (K) T, (Ky) = T, (Ky), (125)

Ty (Kv) Ty (Ey) Ty (Ky) = ¢°T, (Ey) (126)

T, (Ky) Ty (F) Ty (Ky) = ¢ 2T, (Fy) (127)
T, (Ky) — T, (Ky)

T, (F) Ty (Ju) Ty (Ey) = T, (En) Ty (L) Ty (Fy) = (128)

q—qt

The first three relations are obvious. For (126) using (107) and (35) we have
Ty (Ky) Ty (E)) Ty (Ky) = Ky (~JyE,Ky) Ky = =Ky (—KoEyJy) Ky
= —q°IyEyJuKy = g°JyEy Ky = ¢°T, (Ey).
For the last relation (128), using (35)—(36), we obtain
Tv (Fv) Tv (]v) Tv (Ev) - Tv (Ev) Tv (Jv) Tv (Fv)
= (KyFyJy) Jy (I EvK ) — (I EvK ) Jy (KyFyJy)

K,—K T, (Ky,) — T, (K
:JU(FUJUEU—EU]UFU)JU:Jqu_q_lvjvz v ( ;)_q_ul( v)'

Therefore, we conclude th(ats[q (2), Wy, Ny, Ay, T,,) has the structure of a bialgebra.

The following property off}, is crucial for understanding the structure of the bialgebra

(vﬁ[q(z)’ Mva Uv, Au, Tv)

Proposition 10. For any X € vsl, (2) we have (cf. (101)<(102))

TZ (Ky) =& (Ky), T (Ky) =& (Ko, (129)
T2 (E,) = KyE,Ky, T?(F)) = K,F,K,, (130)

where e, (X) isdefined in (11).

Proof. Follows from (7) and (107)—(108). As an example for we haveTv2 (Ey) =
T, (_JvaKv) =-T (Ev) Ty (En) Ty (Jy) = Ky (JUEUKU) Jy =KyEyKy. O

The star product ifvsly (2), o, 7y, Ay, Ty)) has the form

(Axy B) (X) = oy [A ® B] Ay(X). (131)
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Proposition 11. T, satisfiesthe regularity conditions
(& *y Ty %y &)(X) =8, (X), (132)
(Ty %y € *y Ty)(X) = Ty (X) (133)
forany X = E,, F,, K, or K.
Proof. Follows from (103)—(108) and (131). F&¢ = K,,K, it is easy, and so we
considerX = E,, as an example. We have
(& *y Ty *y )(Ey) = Uy [(8) %y Ty) ® €] Ay(Ey)
=y [(& % T) ® &) (Jy ® LELJ, + L EyJ, @ Ky)
= (eyxy Ty) (Jy) & (JyEyJy) + (& xy Ty) (JELJy) € (Ky)
= lu“U [el) ® Tv] AU(‘]U)eU (JUEUJU) + I'LU [eU ® Tl}] AU(EU)eU (KU)
=y [6 @ Ty] (Jy ® Jy) & (Ey)
+up[8 @ Ty] (Jy @ WEyJy + JyEyvJy ® Ky) € (Ky)
=& (Vo) Ty (Jo) & (Ey) + & (Ju) Ty (JuEvJy) & (Ky) + & (Ey) Ty (Ky) & (Ky)
=Jy-Jy - JoEySy = Jy - o EKy - Ju Koy + o EyJy - Ky - JyKydy
= JvaJv =6 (Ev) .
By analogy, for (133) and = E, we obtain
(Ty *y € *y TY)(Ey) = iy [(Ty %y &) @ Ty] Ay(Ey)
=y [(Ty % &) @ Ty] (Jy ® LEW Ty + W EyJy ® Ky)
= (Ty %y &) (J)Ty (JyEyJy) + (Ty xy &) (Ey)T, (Ky)
=y [Ty ® &] (Jo ® ) Ty (JLEyJy)
+ up [Ty @ &] (Jy ® JWEyJy + JyEvJy @ Ky) Ty (Ky)
= Tl} (JU) e’l) (JU) Tl) (‘]UEUJU) + Tl} (J'U) eU (JUEUJU) Tl) (Kl))
+ Tv (JvaJv) €y (Kv) Tv (Kv) = _Jv : Jv . Jv (JvaFv) Jv + Jv : -]vaJv . ?v
—Jy (Jva?v) Jy - WKy Jy ’?v = _JUEU?U = Ty(Ey).
O
From (132)—(133) it follows thatsl, (2) is not a weak Hopf algebra in the definition
of [18]. So we will call it aJ-weak Hopf algebra and T, a J-weak antipode. As it is
seen from (99)—(100) and (132)—(133) the difference between them is in the exchange
id with e,.
Remark 10. The variableg, can be treated as an= 2 example of the “tower identity”
egfg) introduced for semisupermanifolds in [9,10] or the “obstruc@?) for general
mappings, categories and the Yang—Baxter equation in [6-8].

Comparing (68)—(71) with (103)-(108) we conclude that the connectian,ofr,,
gy andA,, Ty, &, can be written in the following way:

Ay (X) = Ay (& (X)), (134)
T, (X) =Ty (& (X)), (135)
gy (X) = &y (& (X)), (136)

which means that additionally to the partial algebra morphism (43) there exists a partial
coalgebra morphism which is described by (134)—(136).
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6. Group-Like Elements

Now, we discuss the s€t(wsl, (2)) of all group-like elements olsl, (2). As is well-
known (see e.g. [14]) a semigroyps called an inverse semigroup if for everye S,
there existsaunique e S suchthakyx = x andyxy = y, and amonoid is a semigroup
with identity. We will show the following

Proposition 12. The set of all group-like elements G (wsl, (2)) = {J ) = K,’UF{U i,
run over all non-negative integers}, which forms a regular monoid under the multipli-
cation of wsl, (2).
Proof. Supposer € wsl, (2) is a group-like element, i.&\,,(x) = x ® x. By Theorem
2,xcanbewrittenas =Y, , , @i E}, Fi KL, + Bijm EL, Fiy K, + vij X, Fi) J,,. Here
and in the sequel, every, 8 andy with subscripts is in the field and does not equal
zero. Then
Ap() = Y [aijiAuw(EL FIKL) + Aw(Bijm EL FIK ) + My (vij Eyy B Ju)]
i,j,l,m
= > [0iji1® Ey + Ey ® Ku) (Fy ® 1+ Ky ® Fu)/ (Kyy ® Kyp)'

i,j.lm

+ ,Bijm(l ® Ew + Eu) & Kw)i(Fw ® 1+ Ew ® Fw)j(Ew & ?w)m

+9ij(1® Ew + Ew ® Ku)' (Fuy ® 1+ Ky ® Fu)! Ju;
and

X@x = ( 3 @i ELFLKL + Bim EL FIK y + yi,E;,ng‘Jw)
i,j,l,m
® ( Z (X,'le:")Fl],;K,lu + ,szmEIIUF,{)F:Z + VijE,qud;Jw)-
i,j,l,m
Itisseenthatif £ 0orj # 0, Ay, (x) isimpossible to equal ® x. So,i = 0 and

j=0.Wegetr =Y, /KL + BuK, + Ju. Then

Ap@) = [kl @ Kl + Ky @ Ky + Ty ® Ju]:

I,m

XQx = Z [alal/KllU ® Kfl: —i—oqﬂm/KfU ®f$ +a1KfU ® Ju
LU ,m,m’
—+ Oll/ﬂm?Zl X Klll: + ﬂmﬂm’E:Z ®f:ﬁ + ﬂm?:ﬁ ® -]w
topdy @ KL + B du @ Koy + Juy ® Ty
If there exists # I/, thenx ® x possesses the monomig, ®K5;, which does not appear
in Ay (x). It contradictsA,, (x) = x ® x. Hence we have only a uniqueSimilarly,
there exists a unique. Thusx = o K{U + ﬁmfz + Jy. Moreover, it is easy to see that

a K, ﬂmfﬁ andJ,, can not appear simultaneously in the expressian dherefore,
we conclude that = o; Kfu, ﬁmfﬁ or J,, (no summation) and we have

Ay (JIDy = gD g Jih, (137)



212 F. Li, S. Duplij

It follows that G(wsl,(2)) = (9 — K{UK’U : i, j run over all non-negative
integers.

For anyJ) = Ki K/ e G(wsl,(2)), one can find/V) = K4 K., € G(wsl,(2)

such that the regularity (18) takes pla¢§j)l,§ji)Jlffj) = éfj), which means that
G(wsl, (2)) forms a regular monoid under the multiplicatiomo$(, (2). O

Forvsl, (2) we have a similar statement.
Proposition 13.The set of all group-like elements G (vsl, (2)) = (I8 = K;F{) i,

run over all non-negative integers}, which forms a regular monoid under the multipli-
cation of vsl, (2).

Proof. Supposer € vsl,(2) is a group-like element, i.eA,(x) = x ® x. By The-
orem 3,x can be written as = Y, ; ,, @ity EL I FU KL + Bijm W EL T FI K, +
vij JoELJy Fil J,. Here and in the sequel, evary 8 andy with subscripts is in the field
k and does not equal zero. Then
Ay(x) = Y leijiAy (L EL T FIKY)
i,j,l,m
+ Ay(Bijm W EL T FJK ) + Ay (vij J L Ty F J0)]
= Y leiji(y ® 1) (Jy ® JEudy + JyEyJ, ® Ky)

i,j,l,m
X (Jy @ J)(Jo Fydy @ Jy +?v ® JUFUJU)’i(Kv ® Kv)l
+ ﬁijm(Jv ® Jv)(Jv ® JvaJv + JvaJv & Kv)i
X (Jy @ J)(Jy FyJy @ Jy +?v ® JvFvJv)j(?v ®Fv)m
+ Vij(-]v ® Ju)(Jy @ hEyJy + WELWy, ® Kv)i
x (Jy @ L) (L FyJy ® Jy +Ev & JvFvJv)ij];
and
— .. i J ! . i iT™ . i J
X@x = ( 3" By ELI FI KL + Biym I ELI FIR) + i)y EL I, F Jv)
i,j,l,m
iy i N . i iK™ . i J
®( Y. i ELJ FK} + BijmJoEy oK, + vij WEL I, ], ).
i,j,l,m
Itisseenthatif £ 0orj # 0, Ay(x) is impossible to equal ® x. So,i = 0 and
j=0.Wegett =Y, , oK) + K, + J,. Then

Ay(x) = Y [wKL @ K} + BuK, @K, +Jy ® J):

I,m

XQx = Z [oqotl/Kf)@Kg—i—alﬂm/Kf)@?;n +011K£®Jv

LU ,m,m
+ o BuKy @KL 4 Bubuw Ky @Ky +BuKy ® Jy
tapdy @ KD + B dy @K,y + Jy ® Jy .
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If there existsl # I, thenx ® x possesses the monomik ® K, which does not
appearim, (x). It contradictsA, (x) = x ® x. Hence we have only a uniqieSimilarly,
there exists a uniqua. Thusx = quf, + ﬂmf;" + J, Moreover, it is easy to see that
aK!, ﬁm?'f and J, can not appear simultaneously in the expressiaon. dtherefore,
we conclude that = o; K,’J, ﬂmfzn or J, (no summation) and we have

Ay(IDy = gD @ Jib, (138)

It follows that G(vsl,(2)) = (8 = K;Fﬂ : i, j run over all non-negative
integers. ' ‘

For anyJ\” = KK e G(vsl,(2)), one can find/\/" = K/K', € G(vsl,(2))
such that the regularity (18) takes plagf” sY" 1 = j{) which means that
G (vsly (2)) forms a regular monoid under the multiplicatiomef, (2). O

These results show thatsl, (2) andvsl,(2) are examples of a weak Hopf algebra
whose monoid of all group-like elements is a regular monoid. It incarnates further the
corresponding relationship between weak Hopf algebras and regular monoids [19].

7. Regular Quasi-R-Matrix

From Proposition 1 we have seen that, (2)/(J,, —1) = sl,(2). Now, we give another
relationship betweewsl, (2) andsl,(2) so as to construct a non-invertible universal
R¥-matrix fromwsl, (2).

Theorem 4. wsl, (2) possesses an ideal W and a sub-algebra Y satisfying wsl, (2) =
Y @ Wand W = s, (2) as Hopf algebras.

Proof. Let W be the linear sub-space generated By, F,K',, EL Fi K, EL F 7, -
foralli > 0,j > 0,/ > 0andm > 0}, andY is the linear sub-space generated by
{Ei Fy):i>0,j> 0}.ltiseasytoseethatsl,(2) = Y& W; wsl, (2 Wwsl,(2) C W,
thus,W is anideal; andy is a sub-algebra absl, (2). Note that the identity o is J,.
Moreover,W is a Hopf algebra with the unif,,, the comultiplicationA? satisfying

AV(Ey) = Juy ® Eyy + Ey ® Ky, (139)
AW (Fy) = Fy ® Jy + Ky ® F, (140)
AEE/(KUJ) =Ky ® Ky, Ag(fw) = Ew ®fw, (141)

and the same counit, multiplication and antipode asjtfy, (2). Let p be the algebra
morphism fromsl, (2) to W satisfyingp(E) = E,, p(F) = Fy, p(K) = K,, and
p(K~Y) = K,. Thenp is, in fact, a Hopf algebra isomorphism sintg! F; K.,
E.F)K., E.F)J, :foralli >0,j >0,/ > 0andm > 0} is a basis ofW by
Theorem 2. O

Let us assume here thatis a root of unity of orded in the fieldk, whered is an
odd integer and > 1.
Setl = (E{, F, K& — J,,) the two-sided ideal of/* generated byed, Fil, K¢ —

J.,. Define the algebr#l, = UY/I.
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Remark 11. Note thatk ", = J,, in U, =UY/IsinceKd = J,,.

It is easy to prove that is also a coideal ot/;, andT,, (/) € I. ThenI is a weak
Hopf ideal. It follows thatl7;) has a unique weak Hopf algebra structure such that the
natural morphism is a weak Hopf algebra morphism, so the comultiplication , the counit
and the weak antipode di_IZ} are determined by the same formulas wi}t. We will

show thatlU, is a quasi-braided weak Hopf algebra. As a generalization of a braided
bialgebra andk-matrix we have the following definitions [18].

Definition 4. Let there be k-linear maps u : HQ@ H —- H,n : k - H,A : H —
H®H, s : H— kinak-linear space H suchthat (H, u, n) isak-algebraand (H, A, ¢)
is a k-coalgebra. We call H an almost bialgebra if A isa k-algebra morphism, i.e.
A(xy)=Ax)A(y) foreveryx,y € H.

Definition 5. Analmost bialgebra H = (H, u, n, A, ¢) iscalledquasi-braided, if there
exists an element R of thealgebra H ® H satisfying

AP (xX)R = RA(x) (142)

for all x ¢ H and
(A ®idy)(R) = R13R23, (143)
(idg ®A)(R) = R13R12. (144)

Such R is called a quasi-R-matrix.

By Theorem 4, we have/, = UY/I = Y/I & W/I = Y/(ES. Fd) & U, where
U, = sly(2)/(E4, Fii, K¢ — 1) is afinite Hopf algebra. We know in [16] that the sub-
algebraB, of U, generated byE;) K, : 0 < m,n < d — 1} is a finite dimensional
Hopf sub-algebra anﬁq is a braided Hopf algebra as a quotient of the quantum double
of B,. The R-matrix of U, is

~ 1 @ =4 /242G j)-2i] ok i k)
R== ) T ENK, ® FyK).
0<i,j,k<d—1 ’

4 J4 ~
Sincesl, (2) = W as Hopf algebras andz¢, F?, K¢ — 1) = I, we getU, = W/I
as Hopf algebras under the induced morphism.dthenW /1 is a braided Hopf algebra

with a R-matrix,

1k
RY — 1 Z (g _k‘l' ) gFeD/24 2= =2 gk i @ kg
O<k=<d-1;1<i,j<d [T

Because the identity o/ is J,,, there exists the inversB” of R* such that
RYRY = RYRY = J,,. Then we have

RYR"R" = R", (145)
RYRYRY = R, (146)
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which shows that thi®-matrix is regular in(7,1. It obeys the following relations:

AP (x)R” = R¥ Ay (x) (147)

foranyx € W/I and
(Ay ®Id)(R™) = Ri3R23," (148)
(id ®A ) (R”) = R{RY, (149)

which are also satisfied ﬁq. ThereforeR™ is a von Neumann'’s regular quaBHmatrix
of U,. So, we get the following

Theorem 5.U, is a quasi-braided weak Hopf algebra with
1 O L NP . ,
- Z T qk(k 1)/242k(i—j) leEzlj)Kzlu ®F5)KI{)
O<k<d—-1;1<i,j<d ’

RY =

asits quasi-R-matrix, which is regular.

The quasiR-matrix from the/-weak Hopf algebrasl, (2) has a more complicated
structure and will be considered elsewhere.

8. Discussion

In conclusion we would like to compare the presented generalization of the Hopf al-
gebra with the existing ones. A weak Hopf algebra in sense of [4, 30, 26}-knaar
vector spaced that is both an associative algeli#d, «, n) and a coassociative coal-
gebra(H, Aweak eweak) related to each other in a certain self-dual way [3,26] and that
possesses an antipofigeak satisfying (in Sweedler notations [29])

Sweak (x1)) *@ = La)éweak (x12)) . (150)
x(1)Sweak (¥2)) = eweak (1)) 12, (151)

(pre-antipode), and if in addition

Sweak (X(l)) X(2) Sweak (X(S)) = Sweak (x) , (152)

thenSweak can be called a Nill's antipode. Weak Hopf algebras have “weaker” axioms

related to the unit and countweak(xyz) = eweak(xy(1))eweak(y2)z) and A\féak(l) =

(Apear (D) ® 1) (1 ® Aweak(1)). Sothe comultiplication is non-unitalyeak(l) # 11

(like in weak quasi Hopf algebras [23]) and the counit is only “weakly” multiplicative,
e(xy) = e(x1)e(l)y). Therefore they can be callewn-unital weak Hopf algebras.

Note that this kind of “weakness” is the “strength” of weak Hopf algebras [3], because
it allows (even in the finite dimensional and semisimple cases) the weak Hopf algebra
to possess non-integral (quantum) dimensions. The earlier propodalse @l gebras

[13], quantumgroupoids[25], the (finite dimensionafeneralized Kac algebras[31] are

weak Hopf algebras in this sense [26], not the most general ones, but having an involutive
antipode. The weak antipodeintroduced in [18] and in this pap€r,, andT,) is not
usually a pre-antipode in the sense (150)—(151). Therefore the class of non-unital Hopf
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algebras [26, 3] (or quantum groupoids [25]) and the class of weak Hopf algebras [18,
20,5] are not included in each other. In fact, we have the following relation:

A— B —C

D

E

where A denotes a Hopf algebr& a non-unital weak Hopf algebr&, a non-unital
almost weak Hopf algebrd) a weak Hopf algebra anfl an almost weak Hopf algebra.
From this, we see easily that just Hopf algebras compose their common subclass.

Nill [26] points out that these algebras have many examples in the theory of quantum
chain models. Dissimilarly, our examples come from regular monoid algebras [18—20]
and also from this paper, i.esl,;(2), vsl, (2), etc.

Note that although the weak Hopf algebras in this paper and the non-unital weak Hopf
algebras introduced earlier do not include each other usually, their antipodes are defined
by a similar method, that is, by using of the regularity of antipodes in the involution
algebra of the original algebras. Therefore, we believe that it is possible to characterize
certain aspects in similar ways. A further interesting work, which we want to continue, is
to study our weak Hopf algebras through similar objects and methods for the non-unital
weak Hopf algebras and moreover, to find applications in the theory of quantum chain
models and other relative areas.
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