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A semigroup of N = 1 superconformal transformations is introduced and analyzed. 
Noninvertible ones can describe transitions from body to soul and form a proper ideal 
containing a set of nilpotent transformations. The projective superspace is also considered. 
Transformations twisting the parity of a tangent space are brought in. They can be a 
nonsuperconformal “square root” of noninvertible superconformal transformations and the 
analogs of the Poincare metric and conformal invariance are suggested for them. 

1. INTRODUCTION II. PRELIMINARIES 

The investigation of various transformations on a set 
having an extra structure plays an essential role in physical 
theory. As is well known, l-3 all transformations on a set into 
itself generally form a full semigroup with respect to compo- 
sition, while the transformations preserving structure form a 
semigroup of endomorphisms.’ The invertible one-to-one 
transformations lie in a subgroup of the full semigroup and it 
is these transformations that mainly capture physicists’ at- 
tention since any theory is usually defined over invertible 
elements. Another situation comes when working out theo- 
ries with fermions in superspace approach4 that implies the 
existence of additional anticommuting coordinates. This 
bring into being nilpotent ingredients and zero divisors that 
forces one to deal with really noninvertible functions, but 
nevertheless only invertible transformations forming suit- 
able (super) groups are commonly employed (“super-” will 
be omitted in evident cases). To save the information lost in 
this way it is natural and consistent from the algebraic view- 
point to treat noninvertible transformations on a par with 
invertible ones, i.e., to pass from groups to semigroups. 
Guided by these considerations, we suggest the “super-” and 
“semi-” generalizations of a physical theory to be carried out 
simultaneously. 

Let C’.l be a complex vector superspace with one even 
(z) and one odd (19) coordinates (we consider the holomor- 
phic sector only). In the spirit of, e.g., Rogers approach’ 
these coordinates are valued in a complex Grassmann alge- 
bra with L anticommuting generators A (C, ) (L can be 
infinite” ) . The Cartesian product Ck” 8 CO;‘, where Cy and 
Q;’ are the even and odd sectors of Cr. having the natural 
gradation, is usually identified with C’,l.” If T\T, denotes the 
ideal of nilpotents of C,, then CL = C @  N, , and the projec- 
tion EC L-+C iscalledabodymap9sothate[z,f3] = (zo,O), 
zO& (see Refs. 9-l 1 for more details). We only note that 
the elements from N, are evidently noninvertible, just this is 
important in the following but not the specific structure of 
the superspace. Then it is natural to treat the functions 
c ‘,l -*C, that meet slackened invertibility requirements on 
the same ground with invertible ones and to bring in corre- 
sponding semigroups of transformations instead of groups. 
So the transformation EC’,’ .+ U?’ we deal with is polynomi- 
al in odd coordinates 

On the other hand, at present the most promising uni- 
fied models’ are based on the superstring theory.6 In it, as 
well as in some statistical models,’ the two-dimensional su- 
perconformal (SCf) symmetry* is a vital attribute. So it 
would be exciting to apply the a. m. proposal to that one. 

In this paper we study the semigroup extension of N = 1 
SCf symmetry in two dimensions. In Sec. II the complex 
( 1) 1 )-dimensional superspace is briefly given. Various 
transformations coming into existence due to the weakening 
of invertibility requirements are introduced in Sec. III. Both 
invertible and noninvertible transformations that satisfy the 
same SCf condition form an SCf semigroup. That is analyzed 
in Sec. IV where the projective superspace is also considered. 
In Sec. V we dwell on some exotic transformations that twist 
the parity of a tangent space and can be viewed as a non-SCf 
square root of SCf transformations. The appropriate analogs 
of conformal invariance and the Poincare metric are intro- 
duced. Section VI contains the conclusions and some gener- 
alities. 

.z =fw + Q(z), 

8 = $(z) + &(z), (2.1) 

as is usually required by superanalycity ” but the component 
functions can be noninvertible although they can satisfy par- 
tially supersmoothness conditions.” Hereafter, Roman 
(Greek) letters denote C’,‘+ C’s0 (Q=‘,O+ Co,’ ) functions and 
Tis written on the left. A set of invertible and noninvertible 
T is a semigroup T (with respect to composition) called a 
semigroup of superanalytic transformations. The set of con- 
stants on Cl,’ is an ideal of T. All transformations considered 
below are in various subsemigroups of T. If e[g(z) ] #O, then 
the superanalog for the Jacobian, namely, the Berezinian12 
(Ber in the following), reads for (2.1) as 

where Z = (z,0) and prime denotes d /az. 
For the invertible transformations Ber has a body, i.e., 

E[ Ber( 2 /Z) ] #O. Then an element of the superanalytic se- 
migroup S can be defined as a set of four functions on 
Cl*’ [‘,“I ES and the multiplication law is 
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[i’ ;“I @ [i* ;;] = [;,;:x,:~; ;pg2:;::;p,: *+g?&?] 9 
wherefog=&(z 

It is easily seen that the elements having $(z) = 0 and 
(or) x(z) = 0 form corresponding subsemigroups of S. 
Moreover, there is the homomorphism g7:S+T having 
kerqD= [::I. 

111. REDUCTIONS 

The holomorphic tangent space on C’*’ is locallyt3 
spanned by (D ‘,D), where D = a /a0 + 6V/az and 
D ’ = a /dz, while the dual cotangent space is spanned by 
(dZ,de), where dZ = dz -I- 0 de. (Crane and Rabin’s14 sign 
convention is used here.) Under T these transform as 

d”3= u(?j’) (3.1) 

and 
(dg,d& = (dZ,dQ) U, 

where 
(3.2) 

(3.3) 

So that the exterior differential d = dZ D * + dt3 D is invar- 
iant. Using the relation 

(72 ae - Z az ( 1 a5 a3 =(-Al 9”(5 3 (3.4) 

aeae 

and the multiplicativity property of Bert2 one obtains 
Ber(Z/Z) = Ber U (3.5) 

in case the both sides are well defined. Usually this is 
achieved by choosing &GL( 11 l,C) .15 Then the body of U 
odd-odd part is responsible for well definition of Ber, the 
body of Ueven-even part controlling its invertibility. But in 
general Ucan be in a semigroup and so three possibilities and 
respective types of T arise: (I) Ber exists and is invertible; 
(II) Ber exists but it is pure soul or vanishing; (III) Ber 
cannot be defined at all. (3.6) 

The transformations of type I can be exploited as the 
transition functions between maps when constructing the 
supermanifolds for which GL( 1 [ l,C) is a structure group. 
Some reduction of the latter results in the super-manifold to 
become a super Riemann surface (SRS) .14-” In this connec- 
tion an intriguing question comes into being: What analo- 
gous objects could be built using the transition functions of 
other types? 

Let us consider all possible reductions of Uvia vanishing 
every of its entries in turn. In the trivial cases the entries from 
the right column of U vanish and the even sector is not affect- 
ed. First, D ‘8 = 0 (but Da = a = const #O) determines a 
subsemigroup of transformations To CT and gives 
dZ(z,@ = dz/dz dz and da=adf3 SO that 
Ber( Z/Z) = a - ’ dz/dz which means that the odd sector 

(2.3) 

disjoints being a global transformation 8 = CY + 6%. Hence, 
such T,ET can be called a “semiglobal” transformation for 
which (2.3) holds valid. Note that resemblance with the 
nonsupersymmetric case allows to define, in addition to d, 
the usual do = dza /dz which is invariant under To only. So 
this reduces the whole tangent space to its invariant even 
subspace. Secondly, if Da = CI = 0, then the odd sector of To 
becomes degenerated and it is a left zero in the sense of (2.3). 

Proceeding to nontrivial reductions of Uwe observe two 
remaining possible conditions 

D.?= D&i+, (3.7) 

D2z=D2&& (3.8) 
The former is called an SCf condition and the invertible 
transformations satisfying it are called SCf transforma- 
tions.‘4P16 It is convenient to refer to all of them including 
noninvertible ones as ‘KY” too and to denote a transforma- 
tion satisfying (3.7) as Ts,,. Then using another form of 
(3.7) 

we obtain 

CD& *, (3.9) 

U (Da)’ D”8 
SCf = 0 > 08 ’ (3.10) 

It follows that Ber can be well defined if E[ De] # 0: 
Be&/Z) = Da. (3.11) 

Therefore, a definition of the invertible N = 1 SCf transfor- 
mation can be rewritten in the form 

di?? = (Ber(Z/Z))‘dZ, (3.12) 
which can be extended on general N # 2 in this way 

dz = (Ber(Z/Z))2”2 - N’ dZ (3.13) 
(cf. CohnI and Schoutens” ). 

An Abelian differential (or SCP superdifferential) 
dl (di * = dZ) introduced by Friedan2’ can be used to deter- 
mine line bundles” and line integralsz2 on an SRS. This dE 
transforms inversely to D by means of Ber as 

d? = Ber(Z/Z)dl= (Da)d/. (3.14) 

Then an exterior differential dsCF = dl D is invariant under 
T Stf, which gives rise to the invariant odd subspace of the 
tangent space, and it can be utilized to construct fermionic 
string actions (see Refs. 16,23). 

Another condition (3.8) leads to 
di?= Ad@, (3.15) 

where 

,2-@! 
ae de (3.16) 

and so the transformation satisfying (3.8) can be called a 
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“twisting-parity-(of)-tangent-(space)” (TPt) transforma- 
tion denoted by T,,, . Now the reduced matrix U is 

iI,,, =(i $q. (3.17) 

In general a set of TTPt do not form any semigroup, since the 
shape of U,,, is not preserved without extra requirements. 
Nevertheless, T,,, has another fascinating sense we shall 
find out later on. 

In case e[ D&J # 0 we express 

D’8 = - A’/2(Da) (3.18) 

and obtain Ber in the form 

Ber(Z/Z) = A’A/2(Da)‘. (3.19) 
Since it is pure soul, TPt transformations are of type II or III 
[see (3.6) ] and hence noninvertible. By analogy with the 
SCf superdifferential dl we can introduce a TPt superdiffer- 
ential dt as an object transforming inversely to 

D2 = (D’&& (3.20) 

in the following way 

di= (D28)dt. (3.21) 

We observe that the parity of d? is opposite to that of dt and 
so it is really “parity twisted.” Now a TPt invariant “exterior 
differential” is 

d TPt =dtD2=dib=&,,,, (3.22) 

which could be used to construct a TPt analog of a “line 
bundle.” It follows from (3.19) that 

dzd?= (D8)2Ber(Z/Z)df3dt. (3.23) 

Consequently, if (D8)2 = 1, then (3.23) defines an object 
that transforms via Ber as in the previous SCf case. Now let 
us turn to the structure of SCf and TPt transformations. 

IV. SCf SEMIGROUP 
The SCf condition (3.7) results in 

,y(z) = g(z)W), (4.1) 

f’(z) = t?(z) - t4ww, (4.2) 
which gives the following form of Tsc, 
.5 =f(z) + B$(z)g(z), 
e = tic%) + t%(z). (4.3) 

We do not express here g(z) from (4.2) as is usually 
done’4*24 intentionally to recall that it is possible if 
E[g( z) ] #O only which is one of the cases under considera- 
tion. Also (4.3) can be interestingly interpreted as follows: 
We rewrite it in such a way 

2 = e$4z, +ftz, (4.4) 
and observe the points satisfying z = const to be mapped 
onto a “SCf straight line” with a pure soul “slope” on (&a) 
plane, while the points of the “line” are labelled by 8. 

When searching for a proper subsemigroup of S (2.3) 
we see two functions be fixed by (4.1) and (4.2). Therefore, 
an element of Sscf C S is determined by one even and one odd 
function on C’*O from the odd sector of Tscp, that is 
s[g,$]~S,~~ and the multiplication law in S,,, is 

s[g1Jth 1 @S[&JJ* 1 
= ~[wf2g2 +g;of2*,of2g2*2,~,of2 +gl”f2*2]? 

(4.5) 
where the constraint (4.2) holds valid for every one of the 
elements here. When the functions entered are fixed, S,,r is a 
finitely generated semigroup. It obviously follows from 
(4.5) that an identity of SsCF is e = s[ l,O] and a zero is 
z = s[O,O]. 

A. Classification 

To classify SCf transformations we need an analog of 
Ber for all of them including noninvertible ones. Let us as- 
sume that (3.11) can play the part of such an overdefined 
super Jacobian 

J scf = 08. (4.6) 
Then the invertible T,,, called a body transformation and 
denoted by Tbdy has E [ Jscf ] #O and represents a maximal 
subgroup Gscf C sscf containing the identity eeG,,,. If 
E[ Jscf ] = 0, then T,,, is called a soul transformation Tsou, 
representing a maximal proper ideal I,,, C S,,, (zd,,, ) . 
Hence, Sscf is not a simple semigroup and so the sequence of 
inclusions takes place 

zcI~c=fOcI~~~OcI~~~ =O=I SCf 9 (4.7) 

where Z is a minimal ideal and ZEZ. Note that G,,r is dis- 
joined since S,,, = G,,-f U Iscf and G,,, nI,,-, = 0. Here, 
the Rees quotient S,,, /I,,, can be defined if the equivalence 
relation on S,,, relative to I,,, or some other term of the 
sequence (4.7) is the Rees congruence.“’ To examine the 
left and right cancellativity (or reductivity ) of Sscf , which 
means that s Q s, = s o s, and s, 8 s = s, o s should imply 
Sl = SZ~%zf for any (or all) s&&-r, it is necessary to consid- 
er the following component relations 

*of, - *of2 = g% A - goflv4 9 

gIgof, - g2g”f2 = g’Of, $Of,g, $1 - g’Of2g”f2g2$2 (4.8) 

and 

g(g,of-g2of) =g~(g;of*20f-g:“f~,of)7 

*,~f-*2~f=~~g2~f-gl~f~~ (4.9) 

respectively, where (4.2) holds for every of the elements. It 
follows that in general S,,, is not right cancellative at any 
rate owing to possible nilpotency of the functions entered, 
nevertheless S,,, is reductive. Further algebraic and topo- 
logical features of S,,, can be analyzed by using Refs. l-2 
and Refs. 3, 25, respectively. 

Let us dwell on Gscf brietly. In this case for every 
g k41 Gc, an inverse element is 

g-‘[&$I =g 
[ 

1 - +oj- -’ 
-9 
g”f -I 1 gof-’ ’ 

(4.10) 

where f - ’ denotes the inverse function. Since E[g(z) ] #O 
here one can solve (4.2) under g(z) explicitely and obtain 
the body transformation in the form’4~17~24 
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2 =f(z, + BREW, 
s= $(z) + B\tf’(z) + ql,(z)$Y(z). 

Now Ber is well defined as 

(4.11) 

Jgfy = Ber(Z/Z) = \If'(z) + $(Z)+'(Z) + 0$‘(z) 
(4.12) 

and has a body because from (4.2) it follows that 
E[ f’(z) ] = E[$(z)] #O. This transformation is of type I 
[see (3.6) 1. The element of G,,, can be reexpressed in terms 
of the functions from (4.11) as g* [ A$] then the multiplica- 
tion law will change accordingly. l4 

The soul transformations” can be further subdivided 
into three kinds in line with the sequence (4.7). The com- 
mon property of them is impossible to solve (4.2) underg(z) 
as in the previous case (4.11) . Then the soul transformation 
has the form 

2 =.k (d + ewk,,, (a, 
6 = +(z) + ~gsou, (a. (4.13) 

If$(z) = 0 (4.2) becomes 

f’(z) = ?P~aw, (4.14) 
which cannot be directly integrated because q(z) is nilpo- 
tent. Nevertheless, the solution of (4.14) can be presented as 
the series 

Lou, (~1 = ngo ,n”;;,, ( - -f)“W’WW) + k 
(4.15) 

being finite for a polynomial $(z) . We observe that Tsou, is 
the transformation of type III [see (3.6) 1, therefore only the 
overdefined super Jacobian taking the form 

JE’; = gso”l (z) + we), (4.16) 
may be considered now. In general it has the third degree of 
nilpotency and the second one if g,,,, (z) C Ann[ q(z) 1, 
where Ann [ a] = (&B jab = 0) is a set B of the annihilators 
of a. For gsoU, (z) to have the second degree of nilpotency, 
which corresponds to the mean term in the sequence (4.7)) 
the ansatz gsoU, (z) = a(z)fi(z) is suitable.26 In case 
p(z) = $(z) the even sector disjoints 

5 =fm”, (z), 
3 = w) + ed2)+(z). (4.17) 
Let us introduce a set of left annihilators for a given 

element from S,,, as 
Ann, [s] = {s, ES,,, Is, 8 s = z,s~S,,,} 

and the same for right ones. Then Ann[s] 
=Ann,[s]nAnn,[s]. Writingouts, @s, =zincompo- 

nents 

g2 @I of + $2 A Oft?; % 1 = 0, 

&of, +g,%$* =Q (4.18) 

we observe that Ann, [g] = z, ggGsc-, but the strong inclu- 
sions zC Ann, [g] C IScf take place (a simple example: 
g[z,yz] 8 i [,u Sz,yz + S] = z,i+,,-f ). For elements from 
I,,, we have 

Ann, [iI nGscf#O, 
Ann, [il Wcf #Q, (4.19) 
Ann, [i] CI,,. 

Thus an exciting peculiarity of Sscf is the existence of right 
annihilators other than z for every s&s,, and left ones for 
every idscf . For kIscf we can also define a set of nilpotent 
elements by 

Nil[i] ={id,,,~i~i=z}. (4.20) 
So the strong inclusions z C Nil [ i] C Iscf hold (in this con- 
nection see Ref. 27). 

6. Matrix representation in projective superspace 

The consideration of the projective superspace GP It1 is 
principal and indispensable from various points of view 
(e.g., see Refs. 19,24,28). Here, we touch thequestion of the 
direct SCf symmetry restriction for linear transformations 
on GP’*‘. 

Let X T = (x,y,q ) EC*,’ be the homogeneous coordinates 
on a=P ‘*‘. A general linear transformation 

SMX, (4.21) 
where 

(4.22) 

corresponds to the following fractional linear transforma- 
tion on G’s’ (z = x/u, B = q/y) 

az + b i==+e (Pa - ac)z + Irjb - crd 
(cz -I- d)’ 

, 

a= Pyz+S 
cz+d+e 

(b’y + ec1.z + PS + ed 
(cz + d)* 

(4.23) 

Using the SCf condition (3.7) we immediately derive the 
system of equations for M entries 

e,@SetB=O, (4.24a) 

eSetB=fidetA, (4.24b) 

PperA-everB=2cwcd, (4.24~) 
det A = pe/2cd nw B + yS + e’, (4.24d) 

where 

A= (4.25) 

and per A = ad -I- be is a permanent,29 and E [ cd] # 0, For 
convenience we have formally introduced here a “semima- 
wix” 

(4.26) 

In general, B ‘s form no linear semigroup under usual matrix 
multiplication. For 3 analogs of the ordinary permanent and 
determinant read as 

n-erB=yd+&, (4.27) 
SetB=yd-Sc, (4.28) 

where the first letters are replaced by Greek ones to mark off 
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that the introduced functions are odd. The useful properties 
of them are 

Set B* ner B = 2cdyS, (4.29) 
set Set B n-er B 

det A per A > = 2cdeSet C, 

where 

(4.30) 

(4.31) 

Now let us turn to possible solutions of (4.24). First we 
observe the key relation dividing them into three types to be 
(4.24a). These types are determined by the ways of vanish- 
ing the factors in (4.24a) as follows 

/?&et B = 0, (4.32a) 

e*Set B = 0, (4.32b) 
/3e = 0. (4.32~) 

The first equation has the solution fl= Set B that gives the 
conventional projective transformation matrix (see Refs. 16, 
24,28) 

M, = 

having 

Ber M, = dm + @S - 2yS/,/&%. (4.34) 
The corresponding fractional linear transformation on C I,’ 
reads as’4*28 

2=-+e Yz+s l./m, az + b 
cz + d (cz + d)* 

a= yz+6+eddetA-yS 
cz + d cz+d ’ 

(4.35) 

Ber taking the form 

Ber (g/Z) = F +8 SetB . (4.36) 
(cz + d)* 

This clears the meaning of Set B: that is 6et B which controls 
8 dependence of Ber, while Jw is responsible for its 
body. 

The second equation from (4.32) can be solved in two 
ways: (a) e = P-Set B and (b) e = kyS. For the case (a) 
using (4.29) and (4.22) we obtain 

a 
Al:“= c 

( 

b $y+ (B/2cd) perA 
d /I 

1 
, (4.37) 

y S p*Set B 
where 

det A = yS (4.38) 
and 

B det A = 0, (4.39) 
which means that PC Ann [ det A] (see Sec. IV A). The 
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proper ansatz to solve (4.38) is a = a0 yS and b = b, yS, 
wherea,d - b,c = l.Theconstraint (4.39) requires/3 tobe 
proportional to y, S, or yS or to vanish. Taking this into 
account we find the soul transformation 

i= a,z + 6, 
cz + d 

a= yz+s+ep*SetB 
cz+d -’ cz + d 

for which (4.16) yields 

J soul 
SCP = 5 (P + -$) * 

(4.40) 

(4.41) 

While comparing (4.36) with (4.41) we conclude that for 
the soul transformations Set B plays the part analogous to 
that of Jm for Tbody . 

If another solution [(b) case] of (4.32b) is taken, then 
we obtain 

a b (P/2cd) per A 
&f(b) = 2 

( 

c d P 

Y 6 kys ) 

, (4.42) 

where (4.38) and (4.39) hold valid. 
The third equation in (4.32) can be solved by e = &. It 

follows from (4.24b) and (4.24d) that det A = ~*6et B 
= yS which yields 

a 

( 

b (B/2cd) per A 
M3=c d P (4.43) 

Y 6 - (@/2cd) 7rer B 1. 

Using the ansatz analogous to that of (4.40) we find another 
type of the soul transformation on 6’,’ 

z= a,z f b, 
cz -I- d Y& 1 -t em, 

a= yz+s - + @*set B. cz - d 
cz + d (cz + d)* 

, 

having (4.16) in the form 

(4.44) 

J “s”c”: = - Set B 
(cz + d)* 

Wcz - d) + I% (4.45) 

which also confirm the above remark after (4.41) . 

C. Superdistance 

A superdistance between two points on Cl*’ is usually 
defined as (Refs. 8 and 14) IZ,, 1, where 
Z,, = z, - z2 - B,8, is a covariant quantity under the pro- 
jective (body) transformations (4.35). At first sight the con- 
ventional relation” 

2.12 = JscrG )JscfG, PG2 (4.46) 

could be extended for all T,,, including both body and soul 
transformations by means of (4.6). But let us dwell on this 
point in detail. Using (2.1) we can present the lhs of (4.46) 
in such a way 
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%, =f(z, 1 -f(z* 1 - f&z, bjQ* 1 

+ (f%g(z, 1 + @*a* )WCZl 

- 4 @*g(z, k(z2 1. 

For one thing we notice that any 

1 - $(z* )I 
(4.47) 

fractional linear 
f(z) = (az + b)/(cz + d) and $(z) = (yz + S)/(cz -I- d) 
being responsible for the first two columns of (4.22) obey 
the relations 

f(z,) -f(z,) =R-detA-(z, -z2), (4.48a) 

t&z, ) - r&z, ) = R-Set B+(z, - z2 ), (4.48b) 

t&z, lfG72 1 - 7,&z, )fCz, 1 = R&t C+(z, - z2 1, (4.48~) 

I&Z, )-7Hz2 ) = RyKz, - ~2 ), (4.48d) 

where R -’ = (cz, + d) (cz2 + d) [see also (4.28) and 
(4.31)]. Then for (4.47) we have 

g12 =R (detA- yS)(z, -zZ) 

+ (Q(z, 1 + 6,g(z2 ))R+et B-e, - 2,) 

- 0, e,g(z, k(z2 1, (4.49) 

and so g(z) distinguishes between further particular cases, 
e.g., for the body transformations (4.35) we choose 
g(z) = dw/(cz + d). Turning to the soul transfor- 
mations we first observe that (4.38) implies the vanishing of 
e-independent terms in (4.49)) while the nilpotency of g( z) 
gives linearity of Z,, on the odd coordinates. Furthermore, 
for the first type of the projective soul transformations 
(4.40) g(z) is proportional to Set B and for the others 
g(z) C Ann [Set B] . Therefore, for the projective soul trans- 
formations we obtain 

Lit,* = 0, (4.50) 

which can be viewed as the definition of them: The superdis- 
tance between any soul-transformed points vanishes. In- 
stead we see the relation 

aet(Z=R.SetC.(z, -z2), (4.51) 

where 

P=(f; ;;j, 

hold for all projective soul transformations. Moreover, for 
the transformation (4.40) the differences of the transformed 
even and odd coordinates for the same points are proportion- 
al 

Z, -2, = R*det A*Zy2, 
8, - 8, = R-Set B*Z’;,, 

where 

(4.52) 

Zt = z, - z, + c-Set Q*p + (0, - 0, ),ud, (4.53) 
contains three types of distances appearing in the ihs of 
(4.5 1) and (4.52). The analogous relations can be derived 
for the transformation (4.44) as follows 

Z, -5, = R*det A-Z?*, 
8, - a2 = R-Set 3*Zf2, (4.54) 

where 
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Zfi = z, - ~2 -I- (0, (cz, - d) (~22 + d) 
- 0, (cz2 - d) (cz, + d))@/2cd). (4.55) 

Thus we conclude that the introduced odd analogs of 
permanent and determinant [see (4.27) and (4.28) ] for- 
mally play the parity-dual part for some soul-transformed 
quantities. Meanwhile, the “semimatrix” (4.26) in itself can 
represent the following “parity-twisting” linear mappings: 
a= 2*o-G’*’ with reversed parity and Coq2 -+G’%’ with usual one. 

V. TPt TRANSFORMATIONS 

A TPt transformation is also determined by two func- 
tions on C’*’ from the odd sector while the others can be 
found from the TPt condition (3.8) written as 

f’(z) = Y(z)qw =f6”‘(z), (5.1) 
f(z) = g”(.dlc”(Z) - g(z)V(z) (5.2) 

[cf. (4.1) and (4.14) 1. First we note that all TPt transfor- 
mations are noninvertible and become degenerated after the 
body mapping just as Tsou, (4.13 ) . Their classification can 
also beprovidedin termsofg(z). Ifc[g(z)] #O, thenBerisa 
well defined although pure soul, which gives the transforma- 
tion of type II [see (3.6) 1, while e[g(z) ] = 0 defines that of 
type III. The special case of the latter is g(z) = $‘(z)@(z) 
which turns the rhs of (5.2) to zero and yields 

f =L,,, (2) + Oa, 

6 = tw + etww9 (5.3) 
[cf. (4.17) 1. The fractional linear variant of (5.3) is 

Z=Sy/c(cz+d) +k+8a, 
8 = (yz + S)/(cz + d) + 6’ [ yS/(c.z + d)*]. (5.4) 
As was already pointed out TPt transformations do not 

form a semigroup since the composition law for U,,, (3.17) 
is not closed in general 

f-%R %t = ( 
D*ea D”im 
OS& > D8Bi)fhBG ) (5.5) 

where&is given by (3.17) but forz+2 transition. It should 
be noted that the additional condition D %CAnn[&] can 
determine a TPt semigroup. But in the case 08C Ann [ a ] 
we obtain the SCf matrix (3.10). This allows us to conclude 
that properly restricted TPt transformations could be inter- 
preted as the non-SCf “square root” of the soul SCf transfor- 
mations. Indeed, if we relate a TPt transformation to t [g&l, 
then 

tw1 @ tk>Jtl = QF!!+ e.Tyfl’ -I- X~%?wf &w-l, 
(5.6) 

while the extra conditions are 

A,Ef - $ofgof - W f I’$) = 0, 
axof - ?w‘iPf - W f )“3) (5.7) 

- g(sf 1 hwf+ 2/y&‘of 1 = 0. 
In the projective superspace 8=p ‘J the TPt condition 

(3.8) formally gives the relations for M entries [see (4.21) 
and (4.22) ] 
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det A = yS, 
6et D = ye, 

(5.8) 

(5.9) 
where 

(5.10) 

[cf. (4.38) 1. Lend attention to the facts that now there are 
two equations for M entries in contrast with the SCf case 
(4.24) and (5.8) coincides with the SCf condition (4.38), 
which underlines their similarity proving (5.6) value. 

Now the superdistance between two points on O1 is the 
TPt image of the odd distance 

z,* =R (SetE-e&(8, -&), (5.11) 

where 

E=; d 
( 8> 

(5.12) 

Here, we assume that the parameters are chosen to vanish 8- 
squared term in (4.47). 

In searching for the analogies with the supersymmetri- 
zation of the upper half-plane and the Poincare metric14’30 
we take M entries to be real and (5.11) to be infinitesimal, 
which yields 

d2=SetE-e6de 
Icz+dl’ 

(5.13) 

[cf. (3.16) 1. Further, from (5.11) it follows that 

Imjj+L~~=SetE-esIme 
2 Icz + d I2 

(5.14) 

and hence the key relation takes place (obviously we cannot 
use division) 

ldL?l Im8= IdO1 (Im.?+@&, (5.15) 

which leads to the following TPt analog of the Poincare met- 
ric ds satisfying simultaneously 

IdsI Im 19 = IdO 1 (5.16) 

and 
IdsI (ImZ+@8) = ld.?5I. (5.17) 

Very likely the relations (5.13)-(5.15) could be viewed as 
the definition of the “TPt invariance” of the introduced 
“metric.” 

VI. CONCLUSION 
In this paper we have introduced and studied the semi- 

group unifying both invertible (body) and noninvertible 
(soul) transformations on C ‘sl which satisfy the same SCf 
condition. The body transformations form the disjoint sub- 
group of the semigroup, while the soul transformations are 
in the maximal ideal of it which also contains a set of nilpo- 
tent transformations differing from zero. The soul transfor- 
mations are partial ones having degenerated second projec- 
tion and nonvanishing defect after the body mapping. So 
they are not “body preserving”31 and do not admit an infini- 
tesimal form, therefore superderivation algebras32 cannot be 
defined for them. Furthermore, the soul transformations de- 
scribe transitions from pure body into pure soul superdo- 

mains and hence could be interpreted as a “one-way bridge” 
between the body and soul worlds. In this respect, using the 
procedure similar to the usual gluing of superdomains when 
constructing an SRS locally’4Y20 one could try to build a sug- 
gesting itself analogous object by means of body and soul 
transformations, which may be worthwhile due to, e.g., 
Crane and Rabin’s “a general SRS need not have a body at 
a11.“‘4 

We have also brought in the transformations twisting 
the parity of a tangent space. Those can be viewed as a non- 
SCf square root of the soul SCf transformations. Some analo- 
gies with the Poincare metric and conformal invariance have 
been outlined for them. 

Almost all results obtained can be extended on N> 1. 
Some steps in this direction have already been done.33 Final- 
ly, it should be concluded that a further thorough study is 
desirable to understand the role of semigroups in supersym- 
metric theories. 
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