Noninvertible N=1 superanalog of complex structure
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We consider an alternative tangent space reductioN#nl superspace, which
leads to some odil=1 superanalog of complex structuitbe even one is widely
used in two-dimensional superconformal theories and in the fermionic string theory
calculations via super Riemann surfacééew N=1 superconformal-like transfor-
mations are similar to the antiholomorphic ones of the complex function theory.
They are dual to the ordinary superconformal transformations subject to the Berez-
inian addition formula presented, noninvertible, highly degenerated and twist parity
of the tangent space in the standard basis, and they also lead to some “mixed
cocycle condition.” A new parametrization for the superconformal group is pre-
sented which allows us to extend it to a semigroup and to unify the description of
old and new transformations. @997 American Institute of Physics.
[S0022-248807)02902-3

The idea of superconformal symmetry is exceptionally important in the theory of super Rie-
mann surfacésand in two-dimensional superconformal field theofi$ie main and fundamental
ingredient of the idea is a special class of reduced mappings of two-dimensighalddmplex
superspace, namely, superconformal transformafidnsthe local approach to super Riemann
surfaces represented as collections of open superdomains, the superconformal transformations are
used as gluing transition functio$.From another side they appear as a result of the special
reduction of the structure supergrotplere, we consider an alternative tangent space reduction,
which leads to new transformatiofisee also Refs. 6 and.7

We use the functional approach to superspadgich admits existence of nontrivial topology
in odd direction$ and can be suitable for physical applicatidfigilso we exploit the coordinate
language which is more physically transparent and adequate in constructing objects having new
features.

Locally (1|1)-dimensional superspacs{él‘1 is described byZ=(z,6), wherez is an even
coordinate and is an odd one. The most intriguing peculiarity of the functional definition of

superspaceis the existence of soul parts in the even coordinatezy, oyt Zsous Zpody= €(2),
def
Zsoul = Z— Zpogy, Wheree is a body mapvanishing all nilpotent generators. The body map acts on

the coordinates as follows(z) =2zp.qy, €(6)=0. This allows one to consider nontrivial soul
topology in even directions on a par with odd ofes. superanalytic(SA) transformation
TSA:Clll—)C”l iS

z=1(2)+0-x(2), 6=y(2)+06-9(2), (1)

where four component functiorf§z), g(z): C1°— C® and ¥(z), x(z):C1°— C° satisfy some
supersmooth conditions generalizi@f,® and simultaneously they can be noninvertibleere,

and in the following, we denote even functions and variables by Latin letters and odd ones by
Greek letters, point is a product in Grassmann algefiize set of invertible and noninvertible SA
transformationg1) form a semigroup of superanalytic transformatiofis, .® The invertible trans-
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formations are in its subgroup, while the noninvertible ones are in an (gealRefs. 6 and 11 for
detailg. The invertibility of the superanalytic transformatidf) is determined first of all by
invertibility of the even functiond(z) and g(z), because odd functions are noninvertible by
definition. In casee(g(z)) # 0 for SA transformationgl) the superanalog of a Jacobian, the
Bereziniant? can be determined

Ben(Z/z)=

f'(2) x@y'(2) (X(Z))’ @

9(2) 9%(2) 9(2)

where prime is a differentiation by argumefatr by z). Therefore, we can classify the transfor-
mations(1) in the following way:

(1) The Berezinian exists and invertible(g(z)) # 0, e(f(z)) # 0).
(2) The Berezinian exists and noninvertiblg(§(z)) # 0, (f(z)) =0).
(3) The Berezinian does not exist(g(z))=0, (f(z))=0).

The first type of SA transformations form a subgroup of the superanalytic semigroup, while
the second two types are in an ideal of the semigfoup.

The tangent superspace @' is defined by the standard bagig,D}, whereD =4d,+ 67,
dg=0dld6, d=dldz. The dual cotangent space is spanned by 1-fofdZ,d6}, where
dZ=dz+ 6 dé (the signs as in Ref.)3 In these notations the supersymmetry relations are
D2=9, dZ?=dz The semigroup of SA transformations acts in the tangent and cotangent super-

spaces by means of the tangent space m&gxas @)ZPA(g) and (dE,dE)z(dZ,dH) Pa,
where

Pa= : (©)

In case of invertible SA transformations the matfix defines structure of a supermanifold for
which these transformations play the part of transition functions, andB&) & Ber P, . There-
fore different reductions of the matriR, give us various additional supermanifold structutés.
was shown in Ref. 7 that there exist two nontrivial reductions of any superniridndeed, if
€(D#) # 0 we observe that

JZ—30-0 . (DZ-D6-0)d6

Ber Py= = 4
Y (D6)?
Then using the Berezinian addition theorfewe obtain the formula
Ber Py,=Ber Pg+Ber Py, (5)
where
def| 9Z — 8’5 ’5 (75
Ch ~ - (6)
0 D¢
def 0 a9
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Denote sets of the matricé6) and (7) by P and Py, respectively. Then their intersection
Pp=PsN Py is a set of the degenerated matriégs of the form

def O a6
Pp= , t)

0 Do

which depend on the odd coordinaddransformation only. The degenerated matrix of the shape
(8) can be obtained by projection froR and Pt matrices using the following equations:

def —
Q=dz—96-6=0, (9)

def —_
A=Dz-D6-0=0, (10

correspondingly. It means that, if the transformation of the odd sgstaond line in1)] is given,
i.e., the functions/(z) andg(z) are fixed, the condition&) and(10) determine behavior of the
even sectoffunctionsf(z) and y(z)]. In this case, since the degenerated ma®ixdepends on
the odd sector transformation only, we obtain

Pp=Pgg=0=Prla=o- (11

An opposite situation occurs if we apply the conditid®% and (10) to the matricedPs and
P+ in a reverse order. Then we derive

def
Pscr=Psla-o. (12

def
Prp= PT|Q:O' 13

The conditionA=0 (10) gives us superconformébCf) transformationsT s and the re-
duced matrixPgq; (12) is a result of the standard reduction of structure supergr@ughe
invertible cas®. Another conditiom =0 (9) leads to the degenerated transformatibps twist-
ing parity of the standard tangent spadét).® The alternative reductidrof the tangent space
supermatrixP, gives us the supermatriR;p(13). The dual role of SCf and TPt transformations
is clearly seen from the Berezinian addition theoré@n(see Ref. Yand the projection§l?2) and
(13). Since SCf transformations give us a superanalog of complex strdéttfree can treat TPt
transformations as another otlid=1 superanalog of complex structure in a certain extent.

It is more natural to call TPt transformations anti-SCf transformations due to the following
analogy with the nonsupersymmetric case. For an ordinar@ 2natrix P= (3 3) we obviously
have the following identity deP= det § 3)+detC §)= detPpjag+ detPanigiag: Which can be
called a “determinant addition formula.” In the complex function theory the first matrix describes
the tangent space matrix of holomorphic mappings and the second one—of antiholomorphic
mappings. In supersymmetric case the supermatRgemnd P play the role similar to one of the
nonsupersymmetric diagonal and antidiagonal matrices in ordinary theory as it is seefbfrom
Therefore, ifPgcs generalizes the tangent space matrix of holomorphic mappings, supermatrices
P+p: could be considered as respective generalization for antiholomorphic mappings.

Using (12) and (13) with the obvious relation BeP,=0 we can project the Berezinian
addition equality(5) to Tgcs and T1p; as follows:
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Ber PSCf! AZO,
Ber P,= 14
A7 | Ber Prp, Q=0. (14

A general relation betwee® andA is
Q-DA=(D9)% (15)
After corresponding projections we have

Qls—o=(D6)2  (SCh, (16)

Algoo=A80=3,2— 400, (TPY). 17
It is remarkable to notice the similarity ¢9) and(17). Using (16) one obtain3

(D)2 90
Pscr= — - (18

0 D?
If e(D@) # O then BerPgc;can be determined and it is
Ber Pgc=Dé. (19

In cases(D’é) =0 the Berezinian cannot be defined, but we can addeptas a definition of
the Jacobian of noninvertible SCf transformatigaee Refs. 6 and 15
From (17) we derive

0 90
Pree=| = - (20
(902_ (900 0 D0

[cf. (6)]. If s(DE) # 0 the Berezinian oPp can be determined as
Ber Prp= —— (21)
TPt (D .

From (17) it follows thatDAgy= —(D’@)2 and, thereforegAg=—2- Do 55, which gives

IAg-Ag

Ber Prp=———=—.
TPt 2(D9)°

(22

SinceAg is odd and so nilpotent, Bé?p, is also nilpotent and pure soul. The Berezin{a#) can
be also presented as

Dz

Ber PTPt: D (23)

which should be remarkably compared wiit®).
The most intriguing peculiarity of TPt transformations is twisting the parity of tangent and
cotangent spaces in the standard basis, viz.
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—(D?)-D 9=36-D,
sct{ P=(P9)-D, TPt ~ (24)
dZ=(D#)?-dz, dZ=A,-dé.

The reduction condition§9) and (10) fix 2 of 4 component functions forr(l) in each case.
Usually2 SCf transformationd s¢; are parametrized b){l,][, while other functions are found from
(9) and (10). However, the latter can be done for invertible transformations only. To avoid this
difficulty we introduce an alternative parametrization by the p%jr Which allows us to consider
SCf and TPt transformations in a unified way and include noninvertibility. Indeed, fiimgand
#(z) we find for other component functions ¢f) the equations

1+n
fr(2)=y¢'(2)p(2)+ ng(Z),

Xn(2)=9"(2)¥(2) +ng(2) ¢’ (2),

(29

where

+1, Scf,
o1, Tt

can be treated as a projection of some “reduction spin” switching the type of transformation. So
the reduced transformation of the even coordifaez(1)] should contain this additional index,
i.e., z—Z, [at this point some additional t5) analogy with complex structure is transpailent
Since f”,(2)=¢'(2) #(2) is nilpotent, TPt transformations are always noninvertible and high
degenerated after the body mapping. The unified multiplication law is

(h) (g) (g’hofm+Xm'¢‘h,°fm+Xm‘(P,°fm
* = , (26)

@/ n ¥ m eofmt+i-hofpy,

where* is transformation composition ande() is function composition. For “reduction spin”
projections we have only two definite products 1)*(+1)=(+1) and (+1)*(—1)=(—-1).
The first formula is a consequence Bf- PsC Ps [see(6)], which is simple manifestation of the
fact that SCf transformationscs form a substructurg,i.e., a subsemigrougsc; of SA semi-
group.7sa (in the invertible case—a subgrolipFromPs- PsC Ps it also follows the standardor

component functions tgaocycle conditiof

Tsct Tser Tser (27)

[having identical arrows, i.€SCf) actiong on triple overlapsJNUN J, whereU, U, U are open
superdomains an@:U—U, T:U—U, T:U—U. In the invertible SCf case the cocycle condition
leads to the definition of a super Riemann surface as a holomorpHi§-fimensional supermani-
fold equipped with an additional one-dimensional subbufdf€,which grounds on the cocycle
relation

D#=D6-DP (28)
and the formulg19). Unfortunately, TPt transformatiorn&;p; form a subsemigroup only provid-
ing additional conditions on component functiéhslowever, they have also another important

abstract meaning: Using the unrestricted relafignPsC Py we obtain a “mixed cocycle condi-
tion”
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Tsct Tre= T et (29

(having different arrowss Then we derive the “mixed cocycle relation”

e

96=36-D, (30)
which should be compared with the standard cocycle reld8hon super Riemann surfaces.

It is remarkable that under the degeneratPeg) transformations defined b§il) the both
cocycle relations hold valid simultaneously. Also, Deg transformations form a subsemigroup
T begin 7 sa, because oPy- P CPp . Moreover,7 pegis an ideal in7ga, .7 scr, and.77p; Since
Pp-PACPp, Py-PsCPp, andPp-PrCPy. The degenerated transformations are characterized
by one odd functionj(z) only and by the absence of thedependence of the transformation
Z—Z [see(17)], so that

Zoe=f(2),  Opeg=(2), (31)

wheref’(z2) =y’ (2) #(z). The multiplication in7peq coincides with the second row ¢26).

We conclude that thorough consideration of invertibility, while supergeneralizing standard
constructions of string theory, leads to some nontrivial consequences and further possibilities of
building some new objects analogous super Riemann surfaces, which could give additional con-
tributions to fermionic string amplitude. It would be also interesting to work out sequences of
noninvertible functions, corresponding bundles and their generalizations.
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