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General properties of ternary semigroups and groups are considered. The bi-element
representation theory in which every representation matrix corresponds to a pair of
elements is built up. Connections with the standard theory are considered and several
concrete examples are constructed. For the sake of clarity and completeness the
shortened versions of classical Gluskin-Hosszú and Post theorems are also presented.
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1. INTRODUCTION

Ternary and n-ary generalizations of algebraic structures are the most natural
ways for further development and deeper understanding of their fundamental
properties. Firstly, ternary algebraic operations were introduced already in the
nineteenth century by A. Cayley. As the development of Cayley’s ideas it were
considered n-ary generalization of matrices and their determinants (Kapranov
et al., 1994; Sokolov, 1972) and general theory of n-ary algebras (Carlsson,
1976; Lawrence, 1992; Pojidaev, 2003), n-group rings (Zeković and Artamonov,
1992, 1999, 2002), and ternary rings (Benz and Ghalieh, 1998; Lister, 1971). For
some physical applications in Nambu mechanics, supersymmetry, the Yang–Baxter
equation, etc., see e.g., Kerner (2000) and Vainerman and Kerner (1996). From
another side, Hopf algebras (Abe, 1980), and their generalizations (Li and Duplij,
2002; Nikshych and Vainerman, 2002) play a basic role in the quantum group
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theory (see e.g., Demidov, 1998; Kassel, 1995; Shnider and Sternberg, 1993). The
statement here is something different and related to our previous preliminary report
(Borowiec et al., 2001), where ternary algebras and ternary Hopf algebras were
considered.

The notion of an n-ary group was introduced in 1928 by Dörnte (1929)
(inspired by E. Nöther) and is a natural generalization of the notion of a group and
a ternary group considered by Certaine (1943) and Kasner (1904).

The (binary) group theory representations were introduced as a matrix reali-
zation of group elements and abstract group action by usual matrix multiplication,
when one element was described by one matrix. In this article we propose a new
bi-element approach to the representation theory of ternary groups, when one
matrix parametrizes two elements of a ternary group. Our approach is motivated
by theory of modules over ternary algebras (Carlsson, 1976). In this framework, we
can preserve many standard notions known from representation theory of binary
groups, e.g., irreducibility, unitarity, regular representations, Schur Lemma.

An alternative approach to ternary group representations was made in
Wanke-Jakubowska and Wanke-Jerie (1984), where they proposed—instead of
our operator-valued functions of two variables—functions of one variable taking
value in a pair of operators (matrices), viz. �wan � G → ��wan

1 �x���wan
2 �x�� ∈

GL�V�×GL�V� with another analog of homomorphism. Unfortunately, in Wanke-
Jakubowska and Wanke-Jerie (1984) there were given no concrete examples
connections with the derived case. This explores an idea presented in the seminal
article (Post, 1940).

Here, using our method, we present several concrete examples and consider
connection with binary case by means of the classical Gluskin-Hosszú and Post
theorems.

2. TERNARY SEMIGROUPS

In the first two chapters, which have preliminary character, we review some
basic definitions and properties related to ternary groups and semigroups (cf. also
Belousov, 1972; Rusakov, 1998).

Definition 1. A nonempty set G with one ternary operation � � � G×G×G → G
is called a ternary groupoid and is denoted by �G� � ��.

If on G there is a binary operation � such that

�xyz� = �x� y�� z (1)

for all x� y� z ∈ G, then we say that � � is derived from � and denote this fact by
�G� � �� = der�G���. If

�xyz� = ��x� y�� z�� b

holds for all x� y� z ∈ G and some fixed b ∈ G, then a groupoid �G� � � is b-derived
from �G���. In this case we write �G� � �� = derb�G��� (cf. Dudek and Michalski,
1982, 1984).
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We say that �G� � � is a ternary semigroup if the operation � � is associative,
i.e., if

��xyz�uv� = �x�yzu�v� = �xy�zuv�� (2)

holds for all x� y� z� u� v ∈ G.
Obviously, a ternary operation derived from a binary associative operation

is also associative in the above sense, but a ternary operation which is b-derived
from an associative operation � can be associative in the above sense only in
some cases—for example, in the case when b will be in the center of �G���.
But this condition is just sufficient. For instance, let A be a nilpotent associative
algebra of index 7 (the product of any 7 elements is zero), then for any b ∈ A
(not necessarily in the center), the ternary operation �xyz� = ��xy�z�b is trivially
associative since ��xyz�uv� = �x�yzu�v� = �xy�zuv�� = 0 for any x� y� z� u� v ∈ A, as the
products involve the multiplication in A of 7 elements, including two b’s.

Fixing one element in a ternary operation we obtain a binary operation.

Definition 2. A binary groupoid �G���, where x� y = �xay� for some fixed a ∈ G
is called a retract of �G� � �� and is denoted by reta�G� � ��.

In some special cases, described in Dudek and Michalski (1982, 1984), we have
�G��� = reta�derb�G���� and �G��� = retc�derd�G����, but in general �G���
and reta�derb�G���� are only isomorphic (Dudek and Michalski, 1984).

Lemma 3. If in the ternary semigroup �G� � �� there exists an element e such that for
all y ∈ G we have �eye� = y, then this semigroup is derived from the binary semigroup
rete�G� � ��, i.e. �G� � �� = der�rete�G� � ���.

Proof. Indeed, if we put x� y= �xey�, then �x� y�� z= ��xey�ez�= �x�eye�z�= �xyz�
and x � �y � z� = �xe�yez�� = �x�eye�z� = �xyz�, which completes the proof. �

The same ternary semigroup �G� � �� can be derived from two different (but
isomorphic) semigroups �G��� and �G���. Indeed, if in G there exists a �= e such
that �aya� = y for all y ∈ G, then by the same argumentation we obtain �xyz� =
x � y � z for x � y = �xay�. In this case for ��x� = x � e = �xae� we have

��x � y� = ��xey�ae� = ��x�aea�y�ae� = ��xae�a�yae�� = ��x� � ��y�	

Thus � is a binary homomorphism such that ��e� = a. Moreover, for 
�x� = �eax�
we have


���x�� = �ea�xae�� = �e�axa�e� = x�

��
�x�� = ��eax�ae� = �e�axa�e� = x

and


�x � y� = �ea�xay�� = �ea�x�eae�y�� = ��eax�e�aey�� = 
�x�� 
�y�	

Hence semigroups �G��� and �G��� are isomorphic.
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Definition 4. An element e ∈ G is called a middle identity or a middle neutral
element of �G� � ��, if for all x ∈ G we have

�exe� = x (3)

An element e ∈ G satisfying the identity

�eex� = x (4)

is called a left identity or a left neutral element of �G� � ��. Similarly, we define a right
identity. An element which is a left, middle, and right identity is called a ternary
identity (or simply identity).

There are ternary semigroups without left (middle, right) neutral elements, but
there are also ternary semigroups in which all elements are identities.

Example 1. In a ternary semigroup derived from the symmetric group S3, all
elements of order 2 are left and right (but no middle) identities.

Example 2. In a ternary semigroup derived from the Boolean group, all elements
are ternary identities, but a ternary semigroup 1-derived from the additive group �4

has no left (right, middle) identities.

Lemma 5. For any ternary semigroup �G� � �� with a left (right) identity, there exists
a binary semigroup �G��� and its endomorphism � such that

�xyz� = x� ��y�� z

for all x� y� z ∈ G.

Proof. Let e be a left identity of �G� � ��. It is not difficult to see that the operation
x� y = �xey� is associative. Moreover, for ��x� = �exe�, we have

��x�� ��y� = ��exe�e�eye�� = ��exe��eey�e� = �e�xey�e� = ��x� y�

and

�xyz� = �x�eey��eez�� = ��xe�eye��ez� = x� ��y�� z	

In the case of right identity the proof is analogous. �

Definition 6. A ternary groupoid �G� � �� is called �-commutative, if

�x1x2x3� = �x��1�x��2�x��3�� (5)

holds for all x1� x2� x3 ∈ G and all � ∈ S3. If (5) holds for all � ∈ S3, then �G� � �� is a
commutative groupoid. If (5) holds only for � = �13�, i.e., if �x1x2x3� = �x3x2x1�, then
�G� � �� is called semicommutative.
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The group S3 is generated by two transpositions: �1 2� and �2 3�. This
means that �G� � �� is commutative if and only if �xyz� = �yxz� = �xzy� holds for all
x� y� z ∈ G.

Proposition 7. If in a ternary semigroup �G� � �� satisfying the identity �xyz� = �yxz�
there are a� b such that �axb� = x for all x ∈ G, then �G� � �� is commutative.

Proof. According to the above remark, it is sufficient to prove that �xyz� = �xzy�.
We have

�xyz� = �a�xyz�b� = �ax�yzb�� = �ax�zyb�� = �a�xzy�b� = �xzy�	 �

A groupoid �G��� is called medial if it satisfies the identity

�x� y�� �z� u� = �x� z�� �y � u�	 (6)

This can be presented as a matrix A�2� = (
x y
z u

)
, read from left by rows and from

top by columns as
( ⇓ ⇓

⇒ x y
⇒ z u

)
(see Belousov, 1972). For binary groups the mediality

coincides with the commutativity.
In the ternary case, instead of A�2� we have 3× 3 matrix A�3�, which should be

read similarly.

Definition 8. A ternary groupoid �G� � �� is medial if it satisfies the identity

��x11x12x13��x21x22x23��x31x32x33�� = ��x11x21x31��x12x22x32��x13x23x33��	

It is not difficult to see that a semicommutative ternary semigroup is medial.
Note by the way, that the definition of a medial ternary groupoid is the same as
a notion of an Abelian operation in the sense of Kurosh (1974). Hence in some
articles, for example in Głazek and Gleichgewicht (1977), medial ternary groupoids
are called Abelian.

An element x such that �xxx� = x is called an idempotent. A groupoid in which
all elements are idempotents is called an idempotent groupoid. A left (right, middle)
identity is an idempotent.

3. TERNARY GROUPS

Definition 9. A ternary semigroup �G� � �� is a ternary group if for all a� b� c ∈ G,
there are x� y� z ∈ G such that

�xab� = �ayb� = �abz� = c	 (7)

One can prove (Post, 1940) that elements x� y� z are uniquely determined.
Moreover, according to the suggestion of Post (1940) one can prove (cf. Dudek
et al., 1977) that in the above definition, under the assumption of the associativity,
it suffices only to postulate the existence of a solution of �ayb� = c, or equivalently,
of �xab� = �abz� = c.
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In a ternary group, the equation �xxz� = x has a unique solution which
is denoted by z = x̄ and called the skew element to x (cf. Dörnte, 1929). As a
consequence of results obtained in Dörnte (1929) we have the following theorem.

Theorem 10. In any ternary group �G� � �� for all x� y� z ∈ G, the following identities
take place:

�x x x̄� = �x x̄ x� = �x̄ x x� = x�

�y x x̄� = �y x̄ x� = �x x̄ y� = � x̄ x y� = y�

�x y z� = �z̄ ȳ x̄��

¯̄x = x	

Other properties of skew elements are described in Dudek (1993) and Dudek
and Dudek (1981). Since in an idempotent ternary group x̄ = x for all x, an
idempotent ternary group is semicommutative. From the results obtained in Dudek
et al. (1977) (see also Dudek, 1980) for n = 3 we have the following theorem.

Theorem 11. A ternary semigroup �G� � �� is a ternary group with x̄ being the skew
element of x for any x ∈ G, if and only if it satisfies the identities

�yx x̄ � = �x x̄ y� = y	

Corollary 12. A ternary semigroup �G� � �� is an idempotent ternary group if and only
if it satisfies the identities

�yxx� = �xxy� = y	

Remark 1. The set S3\A3 of all odd permutations with the ternary operation � �
defined as a composition of three permutations is an example of a noncommutative
ternary group which is not derived from any group (all groups with three elements
are commutative and isomorphic to �3).

From results proven in Dudek (1980) follows the following theorem.

Theorem 13. A ternary group �G� � �� satisfying the identity

�xyx̄� = y or �x̄yx� = y

is commutative.

The subsequent two theorems play a very important role in theory of ternary
groups and shall be used later on. They interrelate ternary and binary groups, and
provide constructive methods for theory of ternary groups. These theorems are also
valid for arbitrary n-ary groups, but the original proofs are rather complicated
(cf. Post, 1940). Here, for the sake of completeness, we present much shorter and
more elegant proofs which are modifications of proofs presented already in Dudek
and Michalski (1982) and Sokolov (1976) for a more general case.
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Theorem 14 (Gluskin-Hosszú). For a ternary group �G� � �� and a fixed element
a ∈ G, there exist a binary group �G��� = reta�G� � �� and its automorphism � such
that ��b� = b, �2�x�� b = b � x and

�xyz� = x � ��y�� �2�z�� b� (8)

where b = � ā ā ā �.

Proof. Let a ∈ G be fixed. Then the binary operation x � y = �x a y� is associative,
because

�x � y�� z = ��xay�az� = �xa�yaz�� = x � �y � z�	

In �G��� an element ā is the identity, �ā x̄ ā� inverse of x. ��x� = �ā x a� is an
automorphism of �G���. The easy calculation proves that the above formula holds
for b = �ā ā ā�. �

One can prove that the group �G��� is unique up to isomorphism (Dudek
and Michalski, 1982). This means that a ternary groupoid b-derived from a binary
group �G��� is a ternary group if and only if b lies in the center of �G���.

From the proof of Theorem 3 in Głazek and Gleichgewicht (1977), it follows
that any medial ternary group satisfies the identity

�xyz� = �x̄ ȳ z̄��

which together with our previous results shows that in such groups we have

�x̄ ȳ z̄� = �z̄ ȳ x̄�	

But ¯̄x = x. Hence, any medial ternary group is semicommutative, thus any retract of
such group is a commutative group. Moreover, for � from the proof of Theorem 14,
we have ��b� = b for b = �ā ā ā� and

����x�� = �ā�āxa�a� = �āa�xāa�� = x	

Thus, as a consequence of Theorem 14, we obtain the following corollary.

Corollary 15. Any medial ternary group �G� � �� has the form

�x y z� = x� ��y�� z� b�

where �G��� is a commutative group, � its automorphism such that �2 = id and b ∈ G
is fixed.

Corollary 16. A ternary group is medial, if and only if it is semicommutative.

Corollary 17. A ternary group is semicommutative (medial), if and only if there exists
a ∈ G such that �x a y� = �y a x� holds for all x� y ∈ G.



1658 BOROWIEC ET AL.

Corollary 18. A commutative ternary group is b-derived from some commutative
group.

Indeed, ��x� = �ā x a� = �x a ā� = x.

Theorem 19 (Post, 1940). For any ternary group �G� � �� there exists a binary group
�G∗��� and its normal subgroup G0 	G∗, such that G∗�G0 
 �2 and

�x y z� = x � y � z

for all x� y� z ∈ G.

Proof. Let c be a fixed element in G and let G∗ = G× �2. In G∗, we define the
binary operation � putting

�x� 1�� �y� 1� = ��x y c̄�� 0�

�x� 1�� �y� 0� = ��x y c�� 1�

�x� 0�� �y� 1� = ��x c y�� 1�

�x� 0�� �y� 0� = ��x c y�� 0�	

It is not difficult to see that this operation is associative and �c̄� 0� is its neutral
element. The inverse element (in G∗) has the form

�x� 1�−1 = �x̄� 1�� �x� 0�−1 = ��c̄ x̄ c̄�� 0�

Thus G∗ is a group such that G0 = 
�x� 0� � x ∈ G� � G∗. Obviously the set G can
be identified with G1 = G× 
1� and

x � y � z = ��x� 1�� �y� 1��� �z� 1� = ��x y c̄�� 0�� �z� 1�

= ���x y c̄�c z�� 1� = ��x y�c̄ c z��� 1� = ��x y z�� 1� = �x y z��

which completes the proof. �

The group G∗ is called covering for the ternary group �G� � ��. In this way
�G� � �� becomes a ternary subgroup in der�G∗���.

The original proof of this theorem uses equivalence relation on sequences of
elements from G (see Post, 1940 and below) and is given for n-ary group �n ≥ 3).
Our proof is a new and useful modification of some general method presented in
Michalski (1979). Our construction gives in the explicit form a free covering group
in the sense of universal algebras and is more applicable to concrete calculations
(see Section 6). Moreover, this construction gives the gradiation of G∗� i.e.,
Gi �Gj ⊆ G�j+j�mod 2, and will be used in our future work on the construction of a
covering algebra for the ternary algebra.

From results obtained in Dudek and Michalski (1984) one has the following
proposition.
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Proposition 20. All retracts of a ternary group �G� � �� are isomorphic to the normal
subgroup G0 of G

∗ from the previous theorem, i.e.,

reta�G� � �� 
 G0 � G∗	

From the binary point of view, one has the exact sequence of groups

1 → G0 → G∗ → �2 → 1	

This implies that covering group G∗ of a ternary (n-ary) group �G� � �� is, in fact,
an extension of the cyclic group �2 (�n−1) by the retract retc�G� � �� 
 G0.

But the correspondence (up to isomorphism) between ternary groups, their
retracts and covering groups is not one-to-one, e.g., the group G∗ cannot be
obtained, in general, from G0 and �2. For example, on the set G = 
0� 1� 2� we
can define two non-isomorphic ternary groups: �G� � �� = der��3�+� and �G� 
 ��,
where 
xyz� = �x − y + z�mod 3. Both groups (the first is commutative, the second
one “only” semicommutative) have the same retract �3. But the covering group of
the first is �6, while of the second one is S3. Of course, �6��3 
 S3��3 
 �2. More
generally, one has the following corollary.

Corollary 21. Let �G� � �� = der�G��� be a ternary group derived from a binary
group �G���. Thus G∗ is isomorphic to the direct product of �G��� with �2. The
converse statement is also true.

4. REPRESENTATIONS OF TERNARY GROUPS

For a given ternary group �G� � �� denote by �G×G� ∗� a semigroup with the
binary multiplication

�x� y� ∗ �u� v� = ��x y u�� v�	 (9)

Obviously, for all x� u� v ∈ G we have �x� x̄� ∗ �u� v� = �x̄� x� ∗ �u� v� = �u� v�, which
means that �x� x̄� and �x̄� x� are left (but not right) unities in �G×G� ∗�. Generally,
�x� x̄� �= �x̄� x�. But for all x� y ∈ G we have also �x� y� ∗ �ȳ� y� = �ȳ� y� ∗ �x� y� =
�x� y�, i.e., each element �x� y� has a “private” unit. Moreover, any element �u� ū�,
u ∈ G is a left unit.

The semigroup �G×G� ∗� is left (but not right) cancellative, i.e., �a� b� ∗
�x� y� = �a� b� ∗ �c� d� implies �x� y� = �c� d�. Moreover, �G×G� ∗� is also a right
quasigroup, i.e., for every �a� b�� �c� d� ∈ G×G there exists only one �x� y� ∈ G×G
such that �a� b� ∗ �x� y� = �c� d�. Similarly, it is not difficult to see that for each a, b,
c, d ∈ G there are uniquely determined x� y ∈ G such that �x� a� ∗ �b� c� = �a� y� ∗
�b� c� = �d� c�.

Let V be a complex vector space and End V denote a set of �-linear
endomorphisms of V .

Definition 22. A left representation of a ternary group �G� � �� in a vector space V
is a map �L � G×G → End V such that

�L�x1� x2� ��L�x3� x4� = �L��x1x2x3�� x4�� ∀x1� x2� x3� x4 ∈ G� (10)

�L�x� x̄� = idV � ∀x ∈ G (11)
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Replacing in (11) x by x̄ we obtain �L�x̄� x� = idV , which means that
in fact (11) has the form �L�x̄� x� = �L�x� x̄� = idV �∀x ∈ G. Note that the
axioms considered in the above definition are the natural ones satisfied by left
multiplications x �→ �a b x�.

Lemma 23. For all x1� x2� x3� x4 ∈ G we have

�L��x1x2x3�� x4� = �L�x1� �x2x3x4��	

Proof. Indeed, we have

�L��x1x2x3�� x4� = �L��x1x2x3�� x4� ��L�x� x̄�

= �L���x1x2x3�x4 x�� x̄� = �L��x1�x2x3x4�x�� x̄�

= �L�x1� �x2x3x4�� ��L�x� x̄� = �L�x1� �x2x3x4��	 �

Note also that for all x� y� z ∈ G, we have

�L�x� y� = �L��x z z̄�� y� = �L�x� z� ��L�z̄� y� (12)

and

�L�x� z� ��L�z̄� x̄� = �L�z̄� x̄� ��L�x� z� = idV � (13)

i.e., every �L�x� z� is invertible and ��L�x� z��−1 = �L�z̄� x̄�. This means that any left
representation gives a representation of a ternary group by a binary group.

Moreover, if a ternary group �G� � �� is medial, then

�L�x1� x2� ��L�x3� x4� = �L�x3� x4� ��L�x1� x2��

i.e., the so obtained group is commutative. Indeed, by Corollary 17, we have

�L�x1� x2� ��L�x3� x4� = �L�x1� x2� ��L�x3� x4� ��L�x� x̄�

= �L���x1x2x3�x4 x�� x̄� = �L���x3x4x1�x2 x�� x̄�

= �L�x3� x4� ��L�x1� x2� ��L�x� x̄�

= �L�x3� x4� ��L�x1� x2�	

If �G� � �� is commutative, then also �L�x� y� = �L�y� x�, because

�L�x� y� = �L�x� y� ��L�x� x̄� = �L��x y x�� x̄�

= �L��y x x�� x̄� = �L�y� x� ��L�x� x̄� = �L�y� x�	

Thus in the case of commutative and idempotent ternary groups any left
representation is idempotent and, consequently, ��L�x� y��−1 = �L�x� y�. This means
that commutative and idempotent ternary groups are represented by Boolean
groups.
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Proposition 24. Let �G� � �� = der�G��� be a ternary group derived from a binary
group �G���. There is one-to-one correspondence between representations of �G���
and left representations of �G� � ��.

Proof. Because �G� � �� = der�G���, then x� y = �xey� and ē = e, where e is unity
of the binary group �G���. If � ∈ Rep�G���, then (as it is not difficult to see)
�L�x� y� = ��x� � ��y� is a left representation of �G� � ��. Conversely, if �L is a
left representation of �G� � ��, then ��x� = �L�x� e� is a representation of �G���.
Moreover, in this case �L�x� y� = ��x� � ��y�. Indeed, by Lemma 23, we have

�L�x� y� = �L�x� �eye�� = �L��xey�� e� = �L�x� e� ��L�y� e� = ��x� � ��y�
for all x� y ∈ G. �

In a similar manner, we can introduce right representations. Let �G� � �� be a
ternary group. On G×G we define the following binary operation

�x� y� � �u� v� = �u� �v x y��	

Then �G×G��� is a binary semigroup which is isomorphic to �G×G� ∗�. This
isomorphism has the form ���x� y�� = �ȳ� x̄�. Indeed,

���x� y� � �u� v�� = ���u� �vxy��� = ��vxy�� ū�

= ��ȳ� x̄� v̄�� ū� = �ȳ� x̄� ∗ �v̄� ū� = ���x� y�� ∗ ���u� v��	
Based on this construction we can define the following.

Definition 25. A right representation of a ternary group �G� � �� in V is a map
�R � G×G → End V such that

�R�x3� x4� ��R�x1� x2� = �R�x1� �x2x3x4��� ∀x1� x2� x3� x4 ∈ G� (14)

�R�x� x̄� = idV � ∀x ∈ G	 (15)

From (14)–(15) it follows that

�R�x� y� = �R�x� �z z̄ y�� = �R�z̄� y� ��R�x� z� ∀ x� y� z ∈ G	 (16)

It is easy to check that �R�x� y� = �L�ȳ� x̄� = ��L�x� y��−1. So it is enough to
consider only left representations (as in binary case).

Example 3. Let G be a ternary group and �G denote a vector space spanned
by G. It means that any element u of �G can be uniquely presented in the form
u = ∑n

i=1 kiyi, with ki ∈ �� yi ∈ G, n ∈ N (we do not assume that G has finite
rank). Moreover, �G is a ternary (group) algebra. Then left and right regular
representations can be immediately defined by means of structure

�L
reg�x1� x2�u =

n∑
i=1

ki�x1x2yi�� (17)

�R
reg�x1� x2�u =

n∑
i=1

ki�yix1x2�	 (18)
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We would like to point out that the most general n-ary group rings have been
systematically investigated in Zeković and Artamonov (1992, 1999, 2002). It can be
easy checked that both regular representations do commute

�L
reg�x1� y1� ��R

reg�x2� y2� = �R
reg�x2� y2� ��L

reg�x1� y1�	

Proposition 26. For a finite (or countable) ternary group �G� � �� left and right,
regular representations are unitary.

Proof. Take unitary scalar product 
 � � in �G which makes G an orthonormal
basis, i.e., 
g� h� = �g�h. Then the unitarity follows from the uniqueness of solutions
to the group equations �xyg� = h (see (7)). �

5. MIDDLE REPRESENTATIONS

Now we define another type of representations. For a given ternary group
�G� � ��, we define on G×Gop� where Gop is a ternary group having opposite
multiplication, the following ternary operation 
 � putting


�x1� y1�� �x2� y2�� �x3� y3�� = ��x1x2x3�� �y3y2y1�� (19)

for all x1� x2� x3� y1� y2� y3 ∈ G. It is not difficult to see that �G×G� 
 �� is a ternary
group as a direct product of ternary groups. This group is commutative (medial,
idempotent), if and only if �G� � �� is commutative (respectively, medial, idempotent).
It is clear that


�x� y�� �x̄� ȳ�� �a� b�� = 
�a� b�� �x� y�� �x̄� ȳ�� = �a� b��


�x̄� ȳ�� �x� y�� �a� b�� = 
�a� b�� �x̄� ȳ�� �x� y�� = �a� b�

for all x� y� a� b ∈ G. This means that in the group �G×G� 
 ��, the element skew
to �x� y� has the form �x̄� ȳ�, where x̄ is skew to x in �G� � ��.

Using (19) we construct the middle representations as follows.

Definition 27. A middle representation of a ternary group �G� � �� in V is a map
�M � G×G → End V such that

�M�x3� y3� ��M�x2� y2� ��M�x1� y1�

= �M��x3x2x1�� �y1y2y3��� ∀x1� x2� x3� y1� y2� y3 ∈ G� (20)

�M�x� y� ��M�x̄� ȳ� = �M�x̄� ȳ� ��M�x� y� = idV ∀ x� y ∈ G	 (21)

It is seen that a middle representation is a ternary group homomorphism �M �
G×Gop → der�End V�. Note that instead of (21) one can use �M�x� ȳ� ��M�x̄� y� =
idV after changing x to x̄ and taking into account that x = ¯̄x.

Remark 2. In the case of the idempotent elements x and y, we have �M�x� y� �
�M�x� y� = idV , which means that the matrices �M are Boolean. Thus all middle
representation matrices of idempotent ternary groups are Boolean.
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In general, the composition �M�x1� y1� ��M�x2� y2� is not a middle
representation, but the following proposition holds.

Proposition 28. Let �M be a middle representation of a ternary group �G� � ��, then
for any fixed z ∈ G the following holds true:

1. �L
z �x� y� = �M�x� z� ��M�y� z̄� is a left representation of �G� � ��;

2. �R
z �x� y� = �M�z� y� ��M�z̄� x� is a right representation of �G� � ��.

Proof. The proof is a verification of the corresponding axioms. �

Corollary 29. If a middle representation �M of a ternary group �G� � �� satisfies the
condition �M�x� x̄� = idV for all x ∈ G, then �M is at the same time a left (and right)
representation. Moreover, �M�x� y� = �M�y� x� for all x� y ∈ G.

Proof. We consider the case of left representation only. First we notice

�M�x� y� = �M��xyȳ�� �yz̄z��

= �M�x� z� ��M�y� z̄� ��M�ȳ� y� = �M�x� z� ��M�y� z̄�	

Thus

�M�x� y� ��M�u� v� = �M�x� z� ��M�y� z̄� ��M�u� z� ��M�v� z̄�

= �M��xyu�� z� ��M�v� z̄� = �M��xyu�� v�	

Finally,

�M�x� y� = �M� �xyȳ�� �yxx̄� � = �M�x� x̄� ��M�y� x� ��M�ȳ� y� = �M�y� x��

which completes the proof. �

Observe, however, that �M
reg�x� x̄� �= id in general, where

�M
reg�x1� x2�u =

n∑
i=1

ki�x1yix2� 	

6. RELATIONS BETWEEN REPRESENTATIONS

Let �G� � �� be a ternary group and let �G×G� 
 �� denote a ternary group
applied to the construction of middle representation. In �G×G� 
 ��� we can define
the relation

�a� b� ∼ �c� d� ⇐⇒ �azb� = �czd�

for all z ∈ G. It is not difficult to see that this relation is a congruence in a ternary
group �G×G� 
 ��. Thus middle regular representation takes constant values on the
corresponding equivalence classes, i.e.,

�a� b� ∼ �c� d� ⇒ �M
reg�a� b� = �M

reg�c� d�	
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Let us then define another relation

�a� b� � �c� d� ⇐⇒
{
c = �xax̄� and d = �ybȳ�

for some �x� y� ∈ G×G	

It turns out to be an equivalence relation on G×G too. (Notice that the first
line defines an equivalence relation in G.) Moreover, if �G� � �� is medial, then this
relation is also a congruence in �G×G� 
 ��. Unfortunately, it is a weak relation. In
a ternary group �3, where �xyz� = �x − y + z��mod 3� we have only one class, i.e.,
all elements are equivalent. In �4 with the operation �xyz� = �x + y + z+ 1��mod 4�
we have a � a′ ⇐⇒ a = a′. Nevertheless, the following lemma holds.

Lemma 30. If �a� b� � �c� d�, then for any middle representation �M one has

tr�M�a� b� = tr�M�c� d�	

Proof. Indeed,

tr�M�a� b� = tr�M��xcx̄�� �ydȳ�� = tr ��M�x� ȳ� ��M�c� d� ��M�x̄� y��

= tr��M�x� ȳ� ��M�x̄� y� ��M�c� d�� = tr�M�c� d�	 �

Let �G� � �� and �G×G� 
 �� be as above. In what follows, we shall
denote by ��G×G�∗��� the corresponding covering group and �G×G��� =
ret�a�b��G×G� 
 ��. For �M being a middle representation of �G� � ��, we can
introduce

��x� y� = �M�x� y� ��M�a� b�	

Thus � turns out to be representation of the retract �G×G��� induced by �a� b�.
Indeed, �ā� b̄� is the identity of this retract and ��ā� b̄� = �M�ā� b̄� ��M�a� b� = idV .
Similarly,

���x� y� � �z� u�� = ��
�x� y�� �a� b�� �z� u��� = ���xaz�� �uby��

= �M��xaz�� �uby��� ��M�a� b�

= �M�x� y� ��M�a� b� ��M�z� u� ��M�a� b�

= ��x� y� � ��z� u�	

Observe that � automatically extends to the representation � of the entire covering
group ��G×G�∗��� by

��x� y� 0� = ��x� y� and ��x� y� 1� = �M�x� y�	

Similarly, � defined by ��x� 0� = �M�x� x̄� ��M�a� ā� and ��x� 1� = �M�x� x̄�
is a representation of the covering group G∗ for �G� � �� (see Post’s Theorem). On the
other hand, ��x� = �M�x� x̄� ��M�a� ā� is a representation of the retract �G� · � =
reta�G� � ��. Thus � can induce some middle representation of �G� � �� (by the
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Gluskin-Hosszú Theorem). One has � = � � �, where ��x� = �x� x̄� is an embedding
of �G� � �� into �G×G� 
 ��.

Note that in a ternary group of the quaternions ��� � �� (with norm 1�,
where �xyz� = xyz�−1� = −xyz and xy is a multiplication of quaternions (−1 is
a central element) we have 1̄ = −1, −1 = 1 and x̄ = x for others. In �K × K�


 �� we have �a� b� ∼ �−a�−b� and �a�−b� ∼ �−a� b�, which gives 32 two-
elements equivalence classes. The embedding ��x� = �x� x̄� suggest that �M�i� i� =
��i� �= ��−i� = �M�−i�−i�. Generally �M�a� b� �= �M�−a�−b� and �M�a�−b� �=
�M�−a� b�.

In the so-called derived case the connection between binary and ternary group
representations is instead established by the following proposition.

Proposition 31. Let �G� � �� = der�G���. There is one-to-one correspondence
between a pairwise commuting binary group representations and a middle ternary
representation of derived group.

Proof. Let �� � ∈ Rep�G��� such that ��x� � ��y� = ��y� � ��x�. Thus �M�x� y� =
��x� � ��y−1�. Conversely, for given �M ∈ Rep�G� � �� one defines ��x� = �M�x� e�

and ��x� = �M�e� x̄�. All necessary properties can be directly checked out by means
of (20). �

In the case of left ternary representations, to which we switch on now, we
obtain the following theorem.

Theorem 32. There is one-to-one correspondence between left ternary
representations of �G� � �� and binary representations of the retract reta�G� � ��.

Proof. Let �L�x� y� be given, then ��x� = �L�x� a� is a representation of the
retract reta�G� � ��, which can be directly shown. Conversely, assume that ��x�

is a representation of the retract �G��� = reta�G� � ��. Define �L�x� y� = ��x� �
��ȳ�−1, then �L�x� y� ��L�z� u� = ��x� � ��ȳ�−1 � ��z� � ��ū�−1 = ��x � �ȳ�−1 � z� �
��ū�−1 = ����x a �ā y ā�� a z�� � ��ū�−1 = ���x y x�� � ��ū�−1 = �L��x y z�� u�� which
completes the proof. �

Remark 3. One can see that Proposition 24 is a direct consequence of this
theorem.

Let �G� � �� be a ternary group and �G×G� ∗� be a semigroup used to the
construction of left representations. According to Post (1940) one says that two
pairs �a� b�, �c� d� of elements of G are equivalent, i.e., �a� b� � �c� d�, if there exists
an element x ∈ G such that �abx� = �cdx�. Using a covering group we can see that if
this equation holds for some x ∈ G, then it holds also for all x ∈ G. The importance
of this relation is due to the fact that for any left representation �L of �G� � �� one
has

�L�a� b� = �L�c� d� ⇐⇒ �a� b� � �c� d�	
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Indeed, if �abx� = �cdx� holds for some x ∈ G, then

�L�a� b� = �L�a� b� ��L�x� x̄� = �L��abx�� x̄�

= �L��cdx�� x̄� = �L�c� d� ��L�x� x̄� = �L�c� d�	

The converse is obvious. In fact, this relation is a congruence on �G×G� ∗� and
the corresponding quotient semigroup is isomorphic to the group G0. Thus any
left representation takes constant values on equivalence classes �a� b��. Moreover,
this classes are uniquely labelled by elements from G0. This gives deeper insight
into construction of left ternary representation of �G� � �� from a given (binary)
representation of G0.

As an application of the above formalism one can also get the following
proposition.

Proposition 33. Every left representation of a commutative group �G� � �� is a middle
representation.

Proof. For regular representations the statement is trivial. In general case one has
to check

�L�x� y� ��L�x̄� ȳ� = �L��x y x̄�� ȳ� = �L��x x̄ y�� ȳ� = �L�y� ȳ� = idV

and

�L�x1� x2� ��L�x3� x4� ��L�x5� x6� = �L���x1x2x3�x4x5�� x6�

= �L���x1x3x2�x4x5�� x6�

= �L��x1x3�x2x4x5��� x6�

= �L��x1x3�x5x4x2��� x6�

= �L��x1x3x5�� �x4x2x6��

= �L��x1x3x5�� �x6x4x2��	 �

Note that the converse holds only for middle representations such that
�M�x� x̄� = idV (cf. Corollary 29).

7. MATRIX REPRESENTATIONS

As an illustrative example we shall consider few matrix representations for
concrete ternary groups. Let us observe before that many classical notions known
from the representation theory can be extended in a natural way to the ternary
case. This includes direct sum and tensor product of representations, characters,
irreducibility (Schur lemma), equivalence of representations etc.
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Example 4. Let G = �3 � 
0� 1� 2� and the ternary multiplication is �xyz� =
x − y + z. Then �xyz� = �zyx� and 0̄ = 0, 1̄ = 1, 2̄ = 2, therefore �G� � �� is an
idempotent medial ternary group. Thus �L�x� y� = �R�y� x� and

�L�a� b� = �L�c� d� ⇐⇒ �a− b� = �c − d�mod 3	 (22)

Straightforward calculations give the left regular representation in the manifest
matrix form

�L
reg�0� 0� = �L

reg�2� 2� = �L
reg�1� 1� =



1 0 0
0 1 0
0 0 1


 �

�L
reg�2� 0� = �L

reg�1� 2� = �L
reg�0� 1� =


0 1 0
0 0 1
1 0 0


 �

�L
reg�2� 1� = �L

reg�1� 0� = �L
reg�0� 2� =



0 0 1
1 0 0
0 1 0


 	

As we already mentioned, in this case G∗ = S3 and G0 = �3. Therefore �
L
reg, as being

at the same time representation of the commutative group �3, decomposes into one-
dimensional irreducible pieces, namely

�L
reg = �0 ⊕ �1 ⊕ �2�

where for any n ∈ �3 one has �k�n� = �kn; k ∈ 
0� 1� 2�. Here n ≡ �0� n�� and
� = exp 2�

3 is primitive third order root of the unit.

Example 5. For the same ternary group as above one can also calculate matrices
of middle regular representation to be

�M
reg�0� 0� = �M

reg�1� 2� = �M
reg�2� 1� =



1 0 0
0 0 1
0 1 0


 = �1�⊕

[−1 0
0 1

]
�

�M
reg�0� 1� = �M

reg�1� 0� = �M
reg�2� 2� =



0 1 0
1 0 0
0 0 1


 = �1�⊕




1
2

−
√
3
2

−
√
3
2

−1
2


�

�M
reg�0� 2� = �M

reg�2� 0� = �M
reg�1� 1� =



0 0 1
0 1 0
1 0 0


 = �1�⊕




1
2

√
3
2√

3
2

−1
2


 	
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This representation �M
reg is equivalent to the orthogonal direct sum of two

irreducible representations, i.e., one-dimensional trivial and two-dimensional.

Remark 4. In this example for all x we have �M�x� x̄� = �M�x� x� �= idV , but
�M�x� y� ��M�x� y� = idV , and so matrices �M are of the second degree.

We can “algebralize” both regular representations from the Examples 3, 4
in the following way. From (10) we have for the left representation �L

reg�i� j� �
�L

reg�k� l� = �L
reg��ijk�� l�, where �ijk� = i− j + kl, i� j� k� l ∈ �3. Denote �Li =

�L
reg�0� i�, i ∈ �3, then we obtain the algebra with the relations �Li �

L
j = �Li+j .

Conversely, any matrix representation of �i�j = �i+j leads to the left representation
by �L�i� j� = �j−i. In the case of the middle regular representation we introduce
�Mk+l = �M

reg�k� l�, k� l ∈ �3, then we obtain

�Mi �
M
j �

M
k = �M�ijk�� i� j� k ∈ �3	 (23)

In some sense (23) can be treated as a ternary analog of Clifford algebra. As
before, any matrix representation of (23) gives rise to the middle representation
�M�k� l� = �k+l.

Example 6. As a final example let us consider G = �4 � 
0� 1� 2� 3� with ternary
multiplication �xyz� = �x + y + z+ 1�mod 4. Of course, it is commutative and non-
idempotent. Thus it is sufficient to consider the left representation only. Since
ret3�G� � �� = ��4�+�, from the proof of Theorem 32 it follows that ��x� = �L�x� 3�
is a representation of the group ��4�+�� if only �L�x� y� is a left representation of
�G� � ��. Moreover, for left representations of this ternary group we have

�L�a� b� = �L�c� d� ⇐⇒ �a+ b� = �c + d�mod 4	

So

�L
reg�0� 0� = �L

reg�1� 3� = �L
reg�2� 2� = �L

reg�3� 1� = ��1��

�L
reg�0� 1� = �L

reg�1� 0� = �L
reg�2� 3� = �L

reg�3� 2� = ��2��

�L
reg�0� 2� = �L

reg�1� 1� = �L
reg�2� 0� = �L

reg�3� 3� = ��3��

�L
reg�0� 3� = �L

reg�1� 2� = �L
reg�2� 1� = �L

reg�3� 0� = ��0�	

The representation � of �4 decomposes into sum � = �0 ⊕ �1 ⊕ �2 ⊕ �3, where
�k�n� = ikn, and i = √−1.
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