Stability of interpolation and CASL (sub)logics

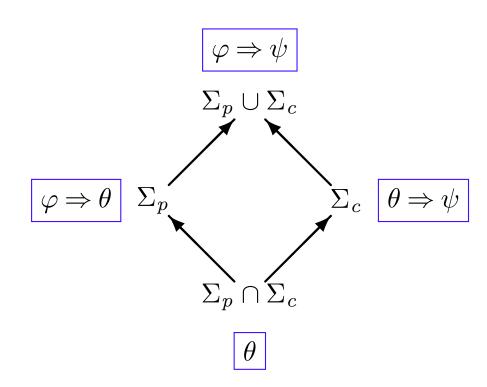
Andrzej Tarlecki

Institute of Informatics, University of Warsaw

Classical Craig's interpolation

In first-order logic:

Fact: Any sentences $\varphi \in \mathbf{Sen}(\Sigma_p)$ and $\psi \in \mathbf{Sen}(\Sigma_c)$ such that $\varphi \Rightarrow \psi$, have an interpolant $\theta \in \mathbf{Sen}(\Sigma_p \cap \Sigma_c)$ such that $\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$.



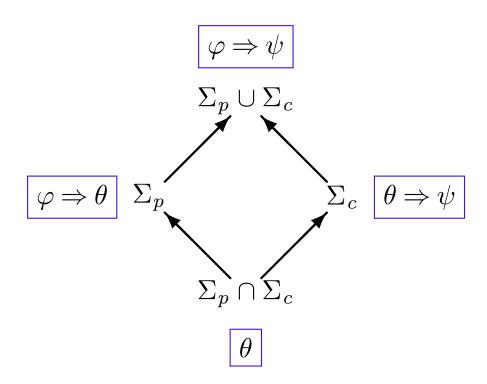
Numerous applications in specification & development theory:

- Maibaum, Sadler, Veloso, Dimitrakos '84-...
- Bergstra, Heering, Klint '90
- Cengarle '94, Borzyszkowski '02
- . . .

Classical Craig's interpolation

In first-order logic:

Fact: Any sentences $\varphi \in \mathbf{Sen}(\Sigma_p)$ and $\psi \in \mathbf{Sen}(\Sigma_c)$ such that $\varphi \Rightarrow \psi$, have an interpolant $\theta \in \mathbf{Sen}(\Sigma_p \cap \Sigma_c)$ such that $\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$.



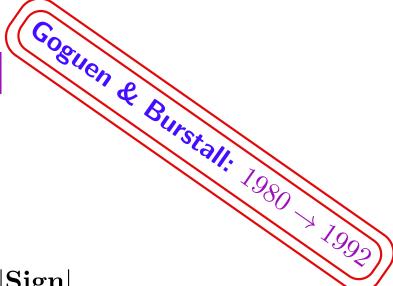
Key related properties:

- Robinson's consistency theorem
- Beth's definability theorem

Meta-facts:

- ullet \mathcal{CI} and \mathcal{RC} are equivalent
- CI implies BD (not vice versa)

"IN ESSENCE"



- a category **Sign** of *signatures*
- ullet a functor $\mathbf{Sen}\colon\mathbf{Sign}\to\mathbf{Set}$
 - Sen(Σ) is the set of Σ -sentences, for $\Sigma \in |\mathbf{Sign}|$
- ullet a functor $\mathbf{Mod} \colon \mathbf{Sign}^{op} o \mathbf{Class}$
 - $-\operatorname{\mathbf{Mod}}\Sigma$ is the category of Σ -models, for $\Sigma \in |\mathbf{Sign}|$
- for each $\Sigma \in |\mathbf{Sign}|$, Σ -satisfaction relation $\models_{\Sigma} \subseteq \mathbf{Mod}(\Sigma) \times \mathbf{Sen}(\Sigma)$

subject to the satisfaction condition:

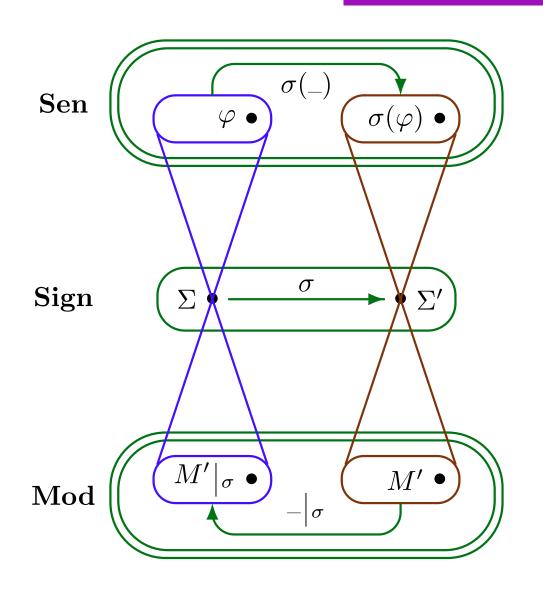
$$M'|_{\sigma} \models_{\Sigma} \varphi \iff M' \models_{\Sigma'} \sigma(\varphi)$$

where $\sigma \colon \Sigma \to \Sigma'$ in \mathbf{Sign} , $M' \in \mathbf{Mod}(\Sigma')$, $\varphi \in \mathbf{Sen}(\Sigma)$, and then $M'|_{\sigma}$ stands for $\mathbf{Mod}(\sigma)(M')$, and $\sigma(\varphi)$ for $\mathbf{Sen}(\sigma)(\varphi)$.

Andrzej Tarlecki: WG 2.2, July 2024, Tallin

- 5 -

Institution: key insight



Truth is invariant under change of notation and independent of additional symbols around

The satisfaction condition:

$$M' \models_{\Sigma'} \sigma(\varphi) \text{ iff } M' \mid_{\sigma} \models_{\Sigma} \varphi$$

It follows:

$$\Phi \models_{\Sigma} \varphi \text{ implies } \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

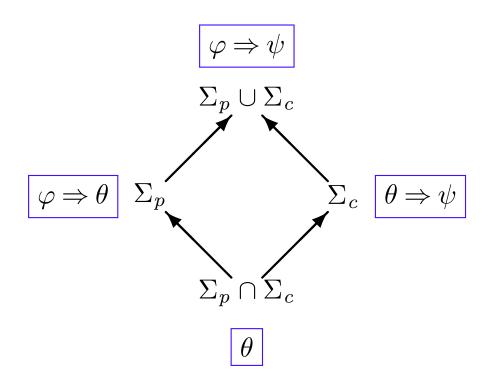
If $_{-}|_{\sigma} \colon \mathbf{Mod}(\Sigma') \to \mathbf{Mod}(\Sigma)$ is onto:

$$\Phi \models_{\Sigma} \varphi \text{ iff } \sigma(\Phi) \models_{\Sigma'} \sigma(\varphi)$$

Craig's interpolation

In $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$:

Recall:



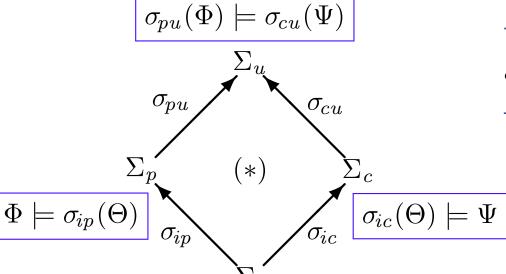
Some things don't work in **INS**:

- implication?
 - → entailment
- individual sentences?
 - \rightarrow sets of sentences
- union/intersection square?

Craig's interpolation

In $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$:

Definition: An interpolant for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ is $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ such that $\Phi \models \sigma_{ip}(\Theta)$ and $\sigma_{ic}(\Theta) \models \Psi$.



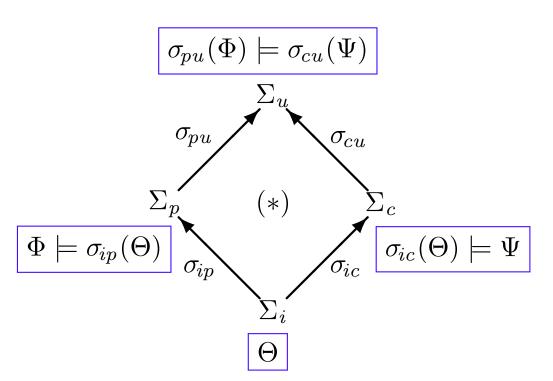
The square (*) admits interpolation if all $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ have an interpolant.

Tarlecki '86, Diaconescu *et al.* '00-... (Roșu, Popescu, Șerbănuță, Găină)

Craig's interpolation

In $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$:

Definition: An interpolant for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$ such that $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$ is $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ such that $\Phi \models \sigma_{ip}(\Theta)$ and $\sigma_{ic}(\Theta) \models \Psi$.



- In **PL** (propositional logic): all signature pushouts admit interpolation.
- In **FO** (many-sorted first-order logic): all signature pushouts with σ_{ip} or σ_{ic} injective on sorts admit interpolation.
- In **EQ** (many-sorted equational logic): all signature pushouts with injective σ_{ic} admit interpolation.

Warning: nonempty carrier sets

Interpolation in CASL sublogics

A pushout (*) admits interpolation in:

empty carriers permitted!

- \mathbf{EQ} : σ_{ic} injective on sorts and does not force any old sort to be non-empty
- **FO**: σ_{ip} or σ_{ic} injective on sorts and *no other conditions* BUT: *proofs to be redone!*
- FO plus partiality: as for FO
- FO plus subsorting: as for FO and each new subsorting is introduced either by σ_{ip} or by σ_{ic} (but not both)
- FO plus partiality and subsorting: as above
- **FO** plus reachability constraints (with or without partiality and subsorting): one of σ_{ip} or σ_{ic} is an isomorphism (trivial cases)

Two separate problems

When building and using heterogeneous logical environments — a number of institutions linked by institution (co)morphisms or similar maps — two problems arise:

- Can interpolation properties be preserved when moving from one institution to another?
 - → how can we "borrow" interpolation along institution (co)morphisms?
- Can interpolation properties be spoiled when moving from one institution to another?
 - → how can we "spoil" interpolation along institution (co)morphisms?

In this work: we address the latter!

Simple institution extensions

Let $\mathbf{INS} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$

- Extending INS by a new "abstract" Σ -model M with $Th(M) \subseteq \mathbf{Sen}(\Sigma)$, $\Sigma \in |\mathbf{Sign}|$, results in $\mathbf{INS}^+ = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}^+, \langle \models_{\Sigma'}^+ \rangle_{\Sigma' \in |\mathbf{Sign}|} \rangle$:
 - $\mathbf{Mod}^{+}(\Sigma') = \mathbf{Mod}(\Sigma') \cup \{ \lceil M |_{\tau} \rceil \mid \tau \colon \Sigma' \to \Sigma \}$

M added as M_{id}

- $-\lceil M \mid_{\tau} \rceil \models_{\Sigma'}^{+} \varphi' \text{ iff } \tau(\varphi') \in Th(M), \text{ for } \tau \colon \Sigma' \to \Sigma, \ \varphi' \in \mathbf{Sen}(\Sigma')$
- Extending INS by a new "abstract" Σ -sentence φ with $Mod(\varphi) \subseteq \mathbf{Mod}(\Sigma)$, $\Sigma \in |\mathbf{Sign}|$, results in $\mathbf{INS}^+ = \langle \mathbf{Sign}, \mathbf{Sen}^+, \mathbf{Mod}, \langle \models_{\Sigma'}^+ \rangle_{\Sigma' \in |\mathbf{Sign}|} \rangle$:
 - $\mathbf{Sen}^{+}(\Sigma') = \mathbf{Sen}(\Sigma') \cup \{ \lceil \tau(\varphi) \rceil \mid \tau \colon \Sigma \to \Sigma' \}$

 $\Big(arphi$ added as $\lceil id(arphi)
ceil$

 $-M' \models_{\Sigma'}^+ \lceil \tau(\varphi) \rceil$ iff $M' \mid_{\tau} \in Mod(\varphi)$, for $\tau \colon \Sigma \to \Sigma'$, $M' \in \mathbf{Mod}(\Sigma')$

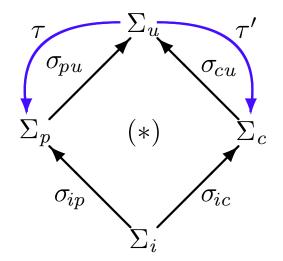
Similarly for multiple models and sentences, respectively

Spoiling an interpolant by new models – easy?

Consider an interpolant $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$. Apparently: any interpolant should be always easy to spoil:

- add a new Σ_p -model M such that $\Phi \subseteq Th(M)$ but $\sigma_{ip}(\Theta) \not\subseteq Th(M)$, then $\Phi \not\models \sigma_{in}(\Theta)$; or
- add a new Σ_c -model N such that $\Psi \not\subseteq Th(N)$ but $\sigma_{ic}(\Theta) \subseteq Th(N)$, then $\sigma_{ic}(\Theta) \not\models \Psi$.

BUT:



- $\lceil M |_{\tau} \rceil \in \mathbf{Mod}^+(\Sigma_u)$ for $\tau \colon \Sigma_u \to \Sigma_p$ $\lceil N |_{\tau'} \rceil \in \mathbf{Mod}^+(\Sigma_u)$ for $\tau' \colon \Sigma_u \to \Sigma_c$

may spoil $\sigma_{nu}(\Phi) \models \sigma_{cu}(\Psi) \dots$

Spoiling an interpolant by new models

Fact: An interpolant $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$, may be spoiled by extending **INS** by new models if

- there is $\Phi^{\bullet} \subseteq \mathbf{Sen}(\Sigma_p)$ such that:
 - $-\Phi\subseteq\Phi^{ullet}$, $\sigma_{ip}(\Theta)\not\subseteq\Phi^{ullet}$ and
 - for all $\tau \colon \Sigma_u \to \Sigma_p$, if $\tau(\sigma_{pu}(\Phi)) \subseteq \Phi^{\bullet}$ then $\tau(\sigma_{cu}(\Psi)) \subseteq \Phi^{\bullet}$

or

- there is $\Psi^{\circ} \subseteq \mathbf{Sen}(\Sigma_c)$ such that:
 - $-\sigma_{ic}(\Theta)\subseteq\Psi^{\circ}$, $\Psi\not\subseteq\Psi^{\circ}$ and
 - for all $\tau' \colon \Sigma_u \to \Sigma_c$, if $\tau'(\sigma_{pu}(\Phi)) \subseteq \Psi^{\circ}$ then $\tau'(\sigma_{cu}(\Psi)) \subseteq \Psi^{\circ}$

Spoiling an interpolant by new models

Syntactic separation

- $\Phi^{\bullet} \subseteq \mathbf{Sen}(\Sigma)$ never separates $\Phi' \subseteq \mathbf{Sen}(\Sigma')$ from $\Psi' \subseteq \mathbf{Sen}(\Sigma')$ when for all $\tau \colon \Sigma' \to \Sigma$, if $\tau(\Phi') \subseteq \Phi^{\bullet}$ then $\tau(\Psi') \subseteq \Phi^{\bullet}$.
- for $\Phi \subseteq \mathbf{Sen}(\Sigma)$ and $\Phi', \Psi' \subseteq \mathbf{Sen}(\Sigma')$, let

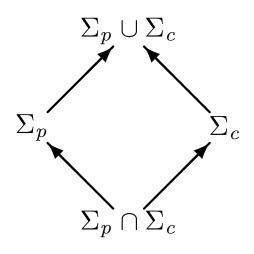
$$[\Phi' \overset{\Sigma'}{\underset{\Sigma}{\longleftrightarrow}} \Psi'](\Phi)$$

be the least set of Σ -sentences that contains Φ and never separates Φ' from Ψ' .

Fact: An interpolant $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$ for $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$, may be spoiled by extending **INS** by new models **iff**

- $\sigma_{ip}(\Theta) \not\subseteq [\sigma_{pu}(\Phi) \overset{\Sigma_u}{\underset{\Sigma_p}{\longleftrightarrow}} \sigma_{cu}(\Psi)](\Phi)$ or
- $\Psi \not\subseteq [\sigma_{pu}(\Phi) \overset{\Sigma_u}{\underset{\Sigma_c}{\leadsto}} \sigma_{cu}(\Psi)](\sigma_{ic}(\Theta))$

In propositional logic: examples



Put:

$$- \Sigma_p = \{p, r\}, \ \varphi = \boxed{r \wedge p}$$

$$- \Sigma_c = \{p, q\}, \ \psi = \boxed{q \vee p}$$

Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:

$$p, p \lor p, p \land p, (p \lor p) \land (p \lor \neg p), \dots$$

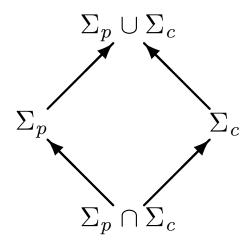
Fact: No interpolant for φ and ψ is stable under extensions of \mathbf{PL} by new models.

This follows since:

$$\bullet \ [r \wedge p \overset{\Sigma_p \cup \Sigma_c}{\underset{\Sigma_p}{\leadsto}} q \vee p](r \wedge p) = \{r \wedge p, r \vee p, p \vee p\}, \text{ and }$$

•
$$[r \land p \overset{\sum_{p} \cup \sum_{c}}{\leadsto} q \lor p](p \lor p) = \{p \lor p\}$$

Examples in propositional logic



Put:

$$-\Sigma_p = \{p, r\}, \ \varphi = (p \lor r) \land (p \lor \neg r)$$

$$- \Sigma_c = \{p,q\}, \ \psi = (p \lor q) \land (p \lor \neg q)$$

Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:

$$p, p \lor p, p \land p, (p \lor p) \land (p \lor \neg p), \dots$$

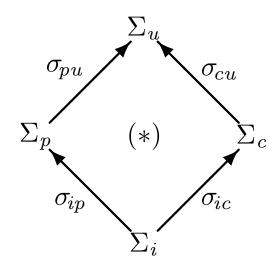
Fact: The interpolant $(p \lor p) \land (p \lor \neg p)$ is stable under extensions of **PL** by new models.

This follows since:

$$\bullet \ (p \vee p) \wedge (p \vee \neg p) \in [\varphi \overset{\sum_p \cup \sum_c}{\leadsto} \psi]((p \vee r) \wedge (p \vee \neg r)), \text{ and }$$

•
$$(p \lor q) \land (p \lor \neg q) \in [\varphi \overset{\Sigma_p \cup \Sigma_c}{\underset{\Sigma_c}{\longleftrightarrow}} \psi]((p \lor p) \land (p \lor \neg p))$$

Spoiling interpolation by new models



Consider $\Phi \subseteq \mathbf{Sen}(\Sigma_p)$ and $\Psi \subseteq \mathbf{Sen}(\Sigma_c)$, $\sigma_{pu}(\Phi) \models \sigma_{cu}(\Psi)$.

Can all interpolants for Φ and Ψ be spoiled by new models?

Fact: Φ and Ψ have no interpolant in some extension of INS by new models if $\Psi \not\subseteq \sigma_{ic}(\sigma_{ip}^{-1}([\sigma_{pu}(\Phi) \overset{\Sigma_u}{\leadsto} \sigma_{cu}(\Psi)](\Phi)))$.

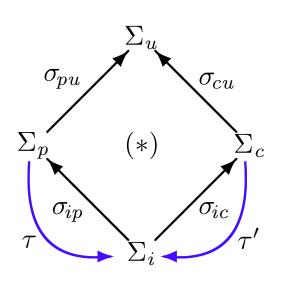
Define:

$$\Theta^* = \sigma_{ip}^{-1} \left([\sigma_{pu}(\Phi) \overset{\Sigma_u}{\underset{\Sigma_p}{\sim}} \sigma_{cu}(\Psi)](\Phi) \cap Th(\Phi) \right) \subseteq \mathbf{Sen}(\Sigma_i)$$

Fact: Φ and Ψ have an interpolant in every extension of **INS** by new models **iff**

$$\Psi \subseteq [\sigma_{pu}(\Phi) \overset{\Sigma_u}{\underset{\Sigma_c}{\leadsto}} \sigma_{cu}(\Psi)](\sigma_{ic}(\Theta^*))$$
 and $\sigma_{ic}(\Theta^*) \models \Psi$

Spoiling interpolation by new sentences



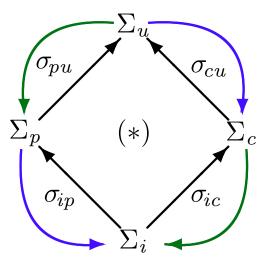
Fact: (*) admits interpolation in every extension of INS by new sentences iff for all classes $\mathcal{M} \subseteq \mathbf{Mod}(\Sigma_p)$ and $\mathcal{N}\subseteq \mathbf{Mod}(\Sigma_c)$ such that $\mathcal{M}|_{\sigma_{pu}}^{-1}\subseteq \mathcal{N}|_{\sigma_{cu}}^{-1}$ there is a class $\sum_{c} \mathcal{K} \subseteq \mathbf{Mod}(\Sigma_i)$ such that $\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K}$ and $\mathcal{K}|_{\sigma_{ic}}^{-1} \subseteq \mathcal{N}$, i.e.

$$\mathcal{M}|_{\sigma_{ip}} \subseteq \mathcal{K} \subseteq (\mathbf{Mod}(\Sigma_i) \setminus (\mathbf{Mod}(\Sigma_c) \setminus \mathcal{N})|_{\sigma_{ic}})$$
that is definable in **INS** from $\{\langle \Sigma_p, \mathcal{M} \rangle, \langle \Sigma_c, \mathcal{N} \rangle\}.$

 $\mathcal{K} \subseteq \mathbf{Mod}(\Sigma_i)$ is definable in **INS** from $\{\langle \Sigma_p, \mathcal{M} \rangle, \langle \Sigma_c, \mathcal{N} \rangle\}$ if there are $\Theta \subseteq \mathbf{Sen}(\Sigma_i)$, $\tau_j \colon \Sigma_p \to \Sigma_i$, $j \in \mathcal{J}_p$, and $\tau_j' \colon \Sigma_c \to \Sigma_i$, $j \in \mathcal{J}_c$ such that

$$\mathcal{K} = \bigcap_{j \in \mathcal{J}_p} \mathcal{M}|_{\tau_j}^{-1} \cap \bigcap_{j \in \mathcal{J}_c} \mathcal{N}|_{\tau_j'}^{-1} \cap Mod(\Theta)$$

Spoiling interpolation by new models and sentences



Fact: (*) admits interpolation in INS if

- $\sigma_{ip} : \mathbf{Sen}(\Sigma_i) \to \mathbf{Sen}(\Sigma_p)$ is surjective and $\sigma_{cu} : \Sigma_c \to \Sigma_u$ is conservative $(-|\sigma_{cu} : \mathbf{Mod}(\Sigma_u) \to \mathbf{Mod}(\Sigma_c)$ is surjective), or
- $\sigma_{ic} : \mathbf{Sen}(\Sigma_i) \to \mathbf{Sen}(\Sigma_c)$ is surjective and $\sigma_{pu} : \Sigma_p \to \Sigma_u$ is conservative $(-|\sigma_{pu} : \mathbf{Mod}(\Sigma_u) \to \mathbf{Mod}(\Sigma_p)$ is surjective).

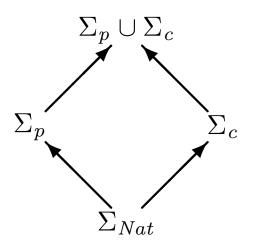
Fact: (*) admits interpolation in **INS** and in all its extensions by new models and sentences **iff**

- $\sigma_{ip}: \Sigma_i \to \Sigma_p$ is a retraction and $\sigma_{cu}: \Sigma_c \to \Sigma_u$ is a coretraction, or
- $\sigma_{ic}: \Sigma_i \to \Sigma_c$ is a retraction and $\sigma_{pu}: \Sigma_p \to \Sigma_u$ is a coretraction.

Conclusion

Interpolation is fragile – almost always!

Example in first-order logic



$$-\Sigma_{Nat} =$$
 sort Nat opns $0: Nat, s: Nat \rightarrow Nat$

$$-\Sigma_p = \Sigma_{Nat}$$
 then $bop: Nat \times Nat \rightarrow Nat$

• add a new Σ_p -sentence φ ("data constraint") with

$$Mod(\varphi) = \mathcal{M} = \{ A \in \mathbf{Mod}(\Sigma_p) \mid A|_{\Sigma_{Nat}} = \mathbb{N} \}$$

$$-\Sigma_c = \Sigma_{Nat}$$
 then $-+-: Nat \times Nat \rightarrow Nat$

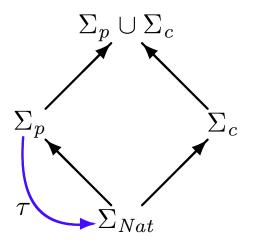
• $\mathcal{N} = Mod(\psi)$, where $\psi \equiv (\forall x, y : Nat. \ x+0 = x \land x + s(y) = s(x+y)) \Rightarrow \\ \forall x, y : Nat. \ x+y = y+x$

Clearly: $\varphi \models_{\Sigma_p \cup \Sigma_c} \psi$.

But: there is no interpolant for φ and ψ !

(since there is no morphism from Σ_p to Σ_{Nat} and $Th(\mathbb{N}) \not\models \psi$)

Example in first-order logic



- $-\Sigma_{Nat} =$ sort Nat opns $0: Nat, s: Nat \rightarrow Nat$
- $-\Sigma_p = \Sigma_{Nat}$ then $uop: Nat \rightarrow Nat$
- add a new Σ_p -sentence φ ("data constraint") with

$$Mod(\varphi) = \mathcal{M} = \{ A \in \mathbf{Mod}(\Sigma_p) \mid A|_{\Sigma_{Nat}} = \mathbb{N} \}$$

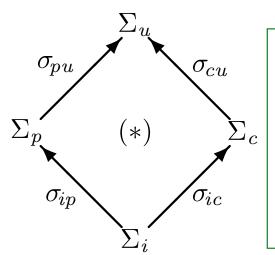
- $-\Sigma_c = \Sigma_{Nat}$ then -+: $Nat \times Nat \rightarrow Nat$
- $\mathcal{N} = Mod(\psi)$, where $\psi \equiv (\forall x, y : Nat. \ x+0 = x \land x + s(y) = s(x+y)) \Rightarrow \\ \forall x, y : Nat. \ x+y = y+x$

Clearly: $\varphi \models_{\Sigma_p \cup \Sigma_c} \psi$.

Now: we have $\tau \colon \Sigma_p \to \Sigma_{Nat}$, and $\tau(\varphi)$ is an interpolant for φ and ψ !

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation

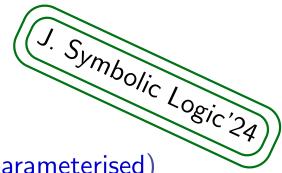


- (*) admits weak amalgamation when for all $M \in \mathbf{Mod}(\Sigma_p)$, $N \in \mathbf{Mod}(\Sigma_c)$ with $M|_{\sigma_{ip}} = N|_{\sigma_{ic}}$ there is $K \in \mathbf{Mod}(\Sigma_u)$ such that $K|_{\sigma_{pu}} = M$ and $K|_{\sigma_{cu}} = N$.
 - In FO, EQ, PL, and many other standard institutions: all signature pushouts admit amalgamation.

Fact: If (*) admits weak amalgamation and all classes of Σ_i -models are definable then (*) admits interpolation (in **INS** and in every its extension by new sentences).

Fact: If (*) does not admit weak amalgamation then (*) does not admit interpolation in an extension of **INS** by new sentences, and in any further its extension by new sentences.

Further work



- Repeat similar characterisations for Craig-Robinson (or parameterised) interpolation:
 - concepts and techniques carry over, results can be adjusted easily.
- Apply the results in the context of special commutative squares of signature morphisms used in particular applications.