LTL Reactive Synthesis with a <u>Few Hints</u>

Mrudula Balachander, Emmanuel Filiot, and Jean-François Raskin Université libre de Bruxelles

IFIP Working group 2.2 meeting Tallinn - July 2024

Synthesis

- Sys is constructed by an algorithm
- Sys is correct by construction
- Underlying theory: 2 player zero-sum **games** played on graphs
- Env is adversarial (worst-case assumption)
- Correct Sys = Winning strategy Main argument of Synthesis: What versus How

 $i_0 \cdot \sigma(i_0) \cdot i_1 \cdot \sigma(i_0 i_1) \cdot \ldots \cdot i_n \cdot \sigma(i_0 i_1 \ldots i_n) \cdot \ldots \models \varphi$

and if so, construct such a strategy.

 $i_0 O_0 i_1 O_1 \dots i_n O_n \dots \models \varphi$

• <u>Problem</u>: given a LTL formula φ over $AP = I \uplus O$, decide if there exists a strategy $\sigma: I^* \cdot I \to O$ such that for **all** sequences of inputs (=env. is adversarial) $\overline{I} = i_0 i_1 \dots i_n \dots \in I^{\omega}$:

LTL Reactive Synthesis An example - Mutual exclusion

- Input AP: *r*₀, *r*₁
- **Output AP**: g_0, g_1
- CORE Spec:
 - $\varphi_{\text{CORE}} \equiv \Box (\neg g_0 \lor \neg g_1) \land \Box (r_0 \to \Diamond g_0) \land \Box$

CORE Spec = properties that you would check on any solution to mutual exclusion (e.g. Peterson, Dedecker, etc.) - Remember "What vs. How"

$$(r_1 \rightarrow \diamondsuit g_1)$$

Mealy Machine that Realizes Spec

- A Mealy machine is an **input-complete** deterministic automaton with **outputs** that encodes a **strategy**
- *M* realizes φ if $\forall \overline{I} \in I^{\omega} : M(\overline{I}) \models \varphi_{\text{CORF}}$, noted $M \models \varphi_{\text{CORE}}$

$\longrightarrow \bar{O} = o_0 o_1 \dots o_n \dots \in O^{\omega}$

LTL Reactive Synthesis An example - Mutual exclusion

- Input AP: r_0, r_1
- **Output AP**: g_0, g_1
- CORE Spec:
 - $\varphi_{\text{CORE}} \equiv \Box (\neg g_0 \lor \neg g_1) \land \Box (r_0 \to \Diamond g_0) \land \Box (r_1 \to \Diamond g_1)$

Solution=Winning Strategy=**Mealy Machine**

- LTL reactive synthesis is **2ExpTime-C**
- Nevertheless, "efficient" implementations exist
- Demo: Mutual exclusion (STRIX)

(medium size spec - \approx one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)

- LTL reactive synthesis is **2ExpTime-C**
- Nevertheless, "efficient" implementations exist
- Demo: Mutual exclusion (STRIX)

Assumptions:	
1 true	
Guarantees:	
<pre>1 G (!grant_0 !grant_1) 2 G (request_0 -> F grant_0) 3 G (request_1 -> F grant_1)</pre>	
Input propositions:	
<pre>request_0, request_1</pre>	
Output propositions:	
<pre>grant_0, grant_1</pre>	

(medium size spec - \approx one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)

- LTL reactive synthesis is **2ExpTime-C**
- Nevertheless, "efficient" implementations exist (medium size spec - \approx one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)
- Demo: Mutual exclusion (STRIX)

Assumptions:	
1 true	
Guarantees:	
<pre>1 G (!grant_0 !grant_1) 2 G (request_0 -> F grant_0) 3 G (request_1 -> F grant_1)</pre>	
Input propositions:	
<pre>request_0, request_1</pre>	
Output propositions:	
<pre>grant_0, grant_1</pre>	

Synthesize! (Timelimit: 20 sec)

- LTL reactive synthesis is **2ExpTime-C**
- Nevertheless, "efficient" implementations exist
- Demo: Mutual exclusion (STRIX)

Assumptions:	
1 true	
Guarantees:	
<pre>1 G (!grant_0 !grant_1) 2 G (request_0 -> F grant_0) 3 G (request_1 -> F grant_1)</pre>	
Input propositions:	
<pre>request_0, request_1</pre>	
Output propositions:	
<pre>grant_0, grant_1</pre>	

(medium size spec - \approx one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)

Synthesize! (Timelimit: 20 sec)

Quality of solution ? Small is beautiful? is "What only" sufficient ?

Space of solutions of $\varphi_{\rm CORE}$ How to drive the synthesis procedure to good solutions?

	Mealy Machines
realizes φ_{CORE}	
[0] grant_0 & !grant_1 [1] !grant_0 & grant_1 [1]	
•••	

- The "What only" may lead to solutions that are not of practical interest (e.g. unsolicited grants)
- Remedy ? Give a *"complete"* specification
- Example: Mutual exclusion without
 unsolicited grants

- The "What only" may lead to solutions that are not of practical interest (e.g. unsolicited grants)
- Remedy ? Give a "complete" specification
- Example: Mutual exclusion without **unsolicited grants**

Assumptions:

1 true

Guarantees:

Input propositions:

```
1 G ((grant_0 & G !request_0) -> (F !grant_0))
 2 G ((grant_1 & G !request_1) -> (F !grant_1))
 3 G ((grant_0 & X (!request_0 & !grant_0)) -> X (request_0 R !grant_0))
 4 G ((grant_1 & X (!request_1 & !grant_1)) -> X (request_1 R !grant_1))
 5 G (!grant_0 | !grant_1)
 6 request_0 R !grant_0
 7 request_1 R !grant_1
 8 G (request_0 -> F grant_0)
 9 G (request_1 -> F grant_1)
request_0, request_1
Output propositions:
grant_0, grant_1
```


- The "What only" may lead to solutions that are not of practical interest (e.g. unsolicited grants)
- Remedy ? Give a "complete" specification
- Example: Mutual exclusion without unsolicited grants

Assumptions:

1 true

Guarantees:

Input propositions:

```
1 G ((grant_0 & G !request_0) -> (F !grant_0))
 2 G ((grant_1 & G !request_1) -> (F !grant_1))
3 G ((grant_0 & X (!request_0 & !grant_0)) -> X (request_0 R !grant_0))
 4 G ((grant_1 & X (!request_1 & !grant_1)) -> X (request_1 R !grant_1))
 5 G (!grant_0 | !grant_1)
 6 request_0 R !grant_0
 7 request_1 R !grant_1
 8 G (request_0 -> F grant_0)
 9 G (request_1 -> F grant_1)
request_0, request_1
Output propositions:
grant_0, grant_1
```


 The "What only" may lead to solutions that are not of practical

interest

Assumptions:

1 true

Guaran

Specifying low level requirements in LTL may be difficult/cumbersome It is not clear that it is the Mealy machine that we are looking for Specifying lower level requirements clear goes against the very idea of synthesis! grant 0 & grant 1 & request 0 & rec grant_0 & grant_1 & request_0 grant_0 & !grant_1 & request_0 & request_1

rant_0 & !grant_1 & request_0 & !request_1 grant_0 & !grant_1 & reques **(**[1]) grant_0 & !grant_1 & request_0 & !request_1 grant_0 & !grant_1 & request_0 & !request_1 grant_0 & !grant_1 & !request_0 & !request_1 grant_0 & !grant_1 & !request_0 & request_1) | (grant_0 & !grant_1 & request_0 & r !grant_0 & !grant_1 & !request_0 !grant_0 & grant_1 & !request_0 & !request grant_0 & !grant_1 & request_0 & !request_1 grant_0 & !grant_1 & !request_0 grant_0 & !grant_1 & !request_0 & request_1 !grant_0 & grant_1 & request_0 grant_0 & !grant_1 & request_0 & request_ (!grant_0 & !grant_1 & request_0 & !request_1) | (!grant_0 & grant_1 & request_0 & request_1) !grant_0 & !grant_1 & !request_0 & !request_1

 $\{ !r_0, !r_1 \} . \{ !g_0, !g_1 \} \#\{ r_0, !r_1 \} . \{ g_0, !g_1 \} \#\{ !r_0, r_1 \} . \{ !g_0, g_1 \}$

Our proposal: Add scenarios (examples) to $\varphi_{\rm CORE}$

Requirement engineering and scenarios Formal spec and scenarios are complementary

- Scenarios are accepted in RE as an adequate tool to elicit requirements
- Scenarios are easy to produce: the designer controls both the inputs and the outputs
- ... avoiding the main difficulty of reactive system design: having to cope with **all** possible environment inputs

Requirement engineering and scenarios Formal spec and scenarios are complementary

- Scenarios are accepted in RE as an adequate tool to elicit requirements
- Scenarios are easy to produce: the designer controls both the inputs and the outputs
- ... avoiding the main difficulty of reactive system design: having to cope with **all** possible environment inputs

 Scenarios (=examples=hints) as an alternative to guide the search for "good" solutions: the synthesis algorithm must now produce solutions compatible with the examples

- $\varphi_{\text{CORF}} \equiv \Box (\neg g_0 \lor \neg g_1) \land \Box (r_0 \to \Diamond g_0) \land \Box (r_1 \to \Diamond g_1)$
- + a few **Hints**:
 - $\{!r_0,!r_1\}$, $\{!g_0,!g_1\}$ # $\{r_0,!r_1\}$, $\{g_0,!g_1\}$ # $\{!r_0,r_1\}$, $\{!g_0,g_1\}$ •
 - $\{r_0, r_1\}$. $\{g_0, !g_1\}$ # $\{!r_0, !r_1\}$. $\{!g_0, g_1\}$

- $\varphi_{\text{CORE}} \equiv \Box (\neg g_0 \lor \neg g_1) \land \Box (r_0 \to \Diamond g_0) \land$
- + a few **Hints**:
 - $\{ !r_0, !r_1 \} . \{ !g_0, !g_1 \} \# \{ r_0, !r_1 \} . \{ g_0, !g_1 \} \# \{ !r_0, r_1 \} . \{ !g_0, g_1 \}$ \bullet
 - $\{r_0, r_1\} \cdot \{g_0, !g_1\} \#\{ !r_0, !r_1\} \cdot \{ !g_0, g_1\}$ ullet

$$\Box (r_1 \to \bigotimes g_1)$$

- If you want a solution where g_1 comes before g_0 in case of concurrent request: change the scenario !
- Hints:
 - $\{!r_0, !r_1\}$. $\{!g_0, !g_1\}\#\{r_0, !r_1\}$. $\{g_0, !g_1\}\#\{!r_0, r_1\}$. $\{!g_0, g_1\}$
 - $\{r_0, r_1\}$. $\{!g_0, g_1\}$ # $\{!r_0, !r_1\}$. $\{g_0, !g_1\}$

- If you want a solution where g_1 comes before g_0 in case of concurrent request: change the scenario !
- Hints:
 - { $!r_0, !r_1$ } . { $!g_0, !g_1$ } # { $r_0, !r_1$ } . { $g_0, !g_1$ }
 - $\{r_0, r_1\}$. $\{!g_0, !$

$(\varphi_{\text{CORE}}, E_0)$

 $(\varphi_{\text{CORE}}, E_0)$

If designer not happy

 $(\varphi_{\text{CORE}}, E_0 \cup \{e_1, e_2, ..., e_n\})$

 $(\varphi_{\text{CORE}}, E_0)$

If designer not happy

 $(\varphi_{\text{CORE}}, E_0 \cup \{e_1, e_2, ..., e_n\})$

If designer not happy

 $(\varphi_{\text{CORE}}, E_1 \cup \{e'_1, e'_2, \dots, e'_m\})$

Until designer is happy

LTL Reactive Synthesis with a Few Hints The problem definition

- Given a (i) LTL formula φ and (ii) a prefix-closed set of examples (scenarios) $E \subseteq (I \cdot O)^*$, construct a Mealy Machine M that is:
 - compatible with E and
 - such that for all $\forall \overline{I} = i_0 i_1 \dots$

$$i_n \ldots \in I^{\omega} : M(\bar{I}) \models \varphi$$

LTL Reactive Synthesis with a Few Hints The problem definition

- Given a (i) LTL formula φ and (ii) a prefix-closed set of examples (scenarios) $E \subseteq (I \cdot O)^*$, construct a Mealy Machine M that is:
 - compatible with E and
 - such that for all $\forall \overline{I} = i_0 i_1 \dots$

+ informal requirement: generalize E

$$i_n \ldots \in I^{\omega} : M(\bar{I}) \models \varphi$$

Our solution - two-phase algorithm Mix formal methods and learning

• <u>Phase 1</u>: learn a pre-Mealy machine that generalizes the examples in E and which maintains realizability (checked using game-based synthesis) of φ_{CORF}

• <u>Phase 2</u>: **complete** (using game-based synthesis) the pre-Mealy machine into a complete Mealy machine that realizes φ_{CORF} while maintaining compatibility with the examples in E

intermediary output: a **pre**-Mealy machine (usually not input-complete)

Phase 1 - Generalization Learning automata from examples constrained by Spec realizability

- **RPNI** style learning: Start with PTA(E)=prefix tree automaton of the examples in **E**
- Merge states when **possible** in order to generalize from the examples
- Mergeable?(m_1,m_2, E,φ_{CORE})
 - Yes, if the resulting pre-Mealy Machine is compatible with **E** and can be completed into a (full) Mealy Machine that realizes φ_{CORE}

/lergeable(m 1,m 2,E,Spec)

Mergeable?(m_1,m_2,E,Spec)

Phase 2 - Completion From pre-Mealy Machine to a (full) Mealy Machine that realizes Spec

that can be completed into a Mealy machine **M'** that realizes φ

Given a pre Mealy machine M that generalizes the set of examples E and

- Complete **holes** in the machine.
- Heuristics: try to avoid creating new states and **reuse** existing red ones (idea: generalize examples).

How to maintain efficiency Exploit the most general strategy

• Difficulty:

Theorem (**Mergeable complexity**): (Even) for a regular specification Spec φ_{CORE} given as a deterministic Büchi automaton, deciding Mergeable($M, m, m', \varphi_{\text{CORE}}, E$) is **ExpTime-C**. (a subset construction is needed)

How to maintain efficiency Exploit the most general strategy

Difficulty:

Theorem (Mergeable complexity): (Even) for a regular specification Spec given as a deterministic Büchi automaton, deciding Mergeable $(M, m, m', \varphi_{CORF}, E)$ is **ExpTime-C**. (a subset construction is needed) • ... in the two-phase algorithm, we need to use Mergeable $(M, m, m', \varphi_{CORF}, E)$ multiple

- already doubly exponential in $|\varphi|$.
- Can we avoid this complexity problem ? **YES**

times, and in the worst-case the parity automaton A_{arphi} associated to the LTL spec arphi is

How to maintain efficiency Exploit the most general strategy

- in |E|. Otherwise it returns UNREAL.
- More precisely, our algorithm is
 - polynomial in the size of E and
- So, generalizing from *E* comes at an additional **polynomial cost**.

• **Theorem** Given (φ, E) , SynthLearn (φ, E) returns a Mealy machine M such that $E \subseteq L(M)$ and $L_{\omega}(M) \subseteq [\![\varphi]\!]$ if it exists, in worst-case doubly exponential time in $|\varphi|$ and polynomial

 polynomial in a well-chosen symbolic representation the of set of Mealy machines that realize φ which is computed by Acacia-Bonzai for solving plain LTL synthesis for φ .

Ilustration

Phase 1: generalization of E

Specification:

 $\varphi_{\text{CORE}} \equiv \Box (\neg g_0 \lor \neg g_1) \land \Box (r_0 \to \Diamond g_0) \land \Box (r_1 \to \Diamond g_1)$ Examples *E*:

- $\{!r_0,!r_1\}$, $\{!g_0,!g_1\}$ # $\{r_0,!r_1\}$, $\{g_0,!g_1\}$ # $\{!r_0,r_1\}$, $\{!g_0,g_1\}$ ullet
- $\{r_0, r_1\} \cdot \{g_0, !g_1\} \#\{ !r_0, !r_1\} \cdot \{ !g_0, g_1\}$ •

Phase 2: complete the preMealy machine

Specification:

 $\varphi_{\text{CORE}} \equiv \Box (\neg g_0 \lor \neg g_1) \land \Box (r_0 \to \Diamond g_0) \land \Box (r_1 \to \Diamond g_1)$ Examples *E*:

- $\{!r_0,!r_1\}$, $\{!g_0,!g_1\}$ # $\{r_0,!r_1\}$, $\{g_0,!g_1\}$ # $\{!r_0,r_1\}$, $\{!g_0,g_1\}$ \bullet
- $\{r_0, r_1\}$. $\{g_0, !g_1\}$ # $\{!r_0, !r_1\}$. $\{!g_0, g_1\}$ •

PreMealy machine obtained from the learning phase (generalization of the examples)

Heuristic: try to reuse as much as possible states that were introduced by the learning phase (try to imitate decisions that are illustrated by the examples)

Heuristic: try to reuse as much as possible states that were introduced by the learning phase (try to imitate decisions that are illustrated by the examples)

Final (complete) Mealy machine that enforces $\varphi_{\rm CORE}$

A few theorems

- <u>Theorem 1</u> (**Termination** and **correctness**): For all (φ, E) , SynthLearn (φ, E) terminates and returns a Mealy machine M such that (i) $M \models \varphi$ and (ii) is compatible with E, if it exists, and return **UNREAL** otherwise.
- <u>Theorem 2</u> (Mealy **completeness**): For all specifications φ , for all Mealy machines M such that $M \models \varphi$, there is a set of examples E_M of size **polynomial** in M and such that SynthLearn(φ, E_M) = M.
- <u>Theorem 3</u> (**Polynomial** additional cost): our algorithm is polynomial in the size of E and in a symbolic representation the of set of Mealy machines that realize φ (which is computed by Acacia-Bonzai for solving plain LTL synthesis for φ .)

Further works Easy and more ambitious

- Negative examples: hist $\cdot i / \neg o$
- Infinite examples given as deterministic i/o ω -regular expressions, e.g. $(\{!r_1,!r_2\}, \{!g_1,!g_2\}\#\{r_1,!r_2\}, \{g_1,!g_2\}\#\{!r_1,r_2\}, \{!g_1,g_2\})^{\omega}$
- Symbolic examples and symbolic Mealy machines: $\psi_0^i \cdot \psi_0^o \sharp \psi_1^i \cdot \psi_1^o \sharp \dots \sharp \psi_n^i / o$
- How to learn ${\bf programs}$ manipulating variables, queues, or stacks that realize a spec $\varphi_{\rm CORE}$ with a similar approach ?