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Synthesis



LTL Reactive Synthesis

Env ? ⊧ φ
• Sys is constructed by an algorithm

• Sys is correct by construction

• Underlying theory: 2 player zero-sum games played on graphs

• Env is adversarial (worst-case assumption)

• Correct Sys = Winning strategy

• Main argument of Synthesis: What versus How

||



LTL Reactive Synthesis

• Problem: given a LTL formula  over , decide if there exists a strategy 
 such that for all sequences of inputs (=env. is adversarial) :  

 
                       
 
and if so, construct such a strategy.

φ AP = I ⊎ O
σ : I* ⋅ I → O Ī = i0i1…in… ∈ Iω

i0 ⋅ σ(i0) ⋅ i1 ⋅ σ(i0i1) ⋅ … ⋅ in ⋅ σ(i0i1…in) ⋅ … ⊧ φ

SysĪ = i0i1…in… ∈ Iω Ō = o0o1…on… ∈ Oω

i0o0i1o1…inon… ⊧ φ

∀
synchronous responseenvironment



LTL Reactive Synthesis
An example - Mutual exclusion

• Input AP: 


• Output AP: 


• CORE Spec:


•  
 
 
CORE Spec = properties that you would check on any 
solution to mutual exclusion (e.g. Peterson, Dedecker, 
etc.) - Remember “What vs. How”

r0, r1

g0, g1

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)



Mealy Machine that Realizes Spec

• A Mealy machine is an input-complete deterministic automaton with outputs that encodes a strategy

•  realizes  if , noted M φ ∀ Ī ∈ Iω : M(Ī) ⊧ φ𝖢𝖮𝖱𝖤 M ⊧ φ𝖢𝖮𝖱𝖤

MĪ = i0i1…in… ∈ Iω Ō = o0o1…on… ∈ Oω

i0o0i1o1…inon… ⊧ φ𝖢𝖮𝖱𝖤

∀

⊧ φ𝖢𝖮𝖱𝖤



LTL Reactive Synthesis
An example - Mutual exclusion

Solution=Winning Strategy=Mealy Machine

• Input AP: 


• Output AP: 


• CORE Spec:


•  
 
 

r0, r1

g0, g1

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

Synthesis

algorithm 

?



LTL Reactive Synthesis

• LTL reactive synthesis is 2ExpTime-C


• Nevertheless, “efficient” implementations exist  
(medium size spec -  one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)


• Demo: Mutual exclusion (STRIX)

≈
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LTL Reactive Synthesis

Quality of solution ?

Small is beautiful ?


is “What only” sufficient ?

• LTL reactive synthesis is 2ExpTime-C


• Nevertheless, “efficient” implementations exist 
(medium size spec -  one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)


• Demo: Mutual exclusion (STRIX)

≈



Space of solutions of φ𝖢𝖮𝖱𝖤
How to drive the synthesis procedure to good solutions?

Mealy Machines

Mealy machines that realizes φ𝖢𝖮𝖱𝖤

“Good”solutions

…
…



Quality of solutions
• The “What only” may 

lead to solutions that 
are not of practical 
interest  
(e.g. unsolicited grants)


• Remedy ? Give a 
“complete” 
specification


• Example: Mutual 
exclusion without 
unsolicited grants
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• The “What only” may 
lead to solutions that 
are not of practical 
interest  
(e.g. unsolicited grants)


• Remedy ? Give a 
“complete” 
specification


• Example: Mutual 
exclusion without 
unsolicited grants

Quality of solutions

BUT


Specifying low level requirements in LTL may be difficult/cumbersome


It is not clear that it is the Mealy machine that we are looking for


Specifying lower level requirements clear goes against the very idea of synthesis!




Our proposal:

Add scenarios (examples)


to φ𝖢𝖮𝖱𝖤

{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}



Requirement engineering and scenarios
Formal spec and scenarios are complementary

• Scenarios are accepted in RE as an adequate tool to elicit requirements


• Scenarios are easy to produce: the designer controls both the inputs and 
the outputs


• … avoiding the main difficulty of reactive system design: having to cope 
with all possible environment inputs


Scenarios (=examples=hints) as an alternative to guide the search for “good” 
solutions: the synthesis algorithm must now produce solutions compatible 
with the examples
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Another (more appealing) approach
LTL spec + Hints (scenarios)

• 


• + a few Hints:

• 


•  
 

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)
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• + a few Hints:
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•  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Another (more appealing) approach
LTL spec + Hints (scenarios)

Learning+Synthesis



• If you want a solution where comes before  
in case of concurrent request:  
change the scenario !


• Hints:


• 


•  

g1 g0

{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {!g0, g1}#{!r0,!r1} . {g0,!g1}

Another (more appealing) approach
LTL spec + Hints (scenarios)

{r0 , r1 } . {!g
0 , g

1 }
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If the solution M is not the one that User has in mind (M’) 


then add an example that differentiates M and the target machine M’




(φ𝖢𝖮𝖱𝖤, E0) M0



(φ𝖢𝖮𝖱𝖤, E0) M0

If designer not happy

(φ𝖢𝖮𝖱𝖤, E0 ∪ {e1, e2, …, en}) M1



(φ𝖢𝖮𝖱𝖤, E0) M0

If designer not happy

(φ𝖢𝖮𝖱𝖤, E0 ∪ {e1, e2, …, en}) M1

If designer not happy

(φ𝖢𝖮𝖱𝖤, E1 ∪ {e′￼1, e′￼2, …, e′￼m}) M2

Until designer is happy

…



LTL Reactive Synthesis with a Few Hints
The problem definition

• Given a (i) LTL formula  and (ii) a prefix-closed set of examples 
(scenarios) , construct a Mealy Machine  that is:


• compatible with  and 


• such that for all 

φ
E ⊆ (I ⋅ O)* M

E

∀ Ī = i0i1…in… ∈ Iω : M(Ī) ⊧ φ



• Given a (i) LTL formula  and (ii) a prefix-closed set of examples 
(scenarios) , construct a Mealy Machine  that is:


• compatible with  and 


• such that for all 

φ
E ⊆ (I ⋅ O)* M

E

∀ Ī = i0i1…in… ∈ Iω : M(Ī) ⊧ φ

LTL Reactive Synthesis with a Few Hints

+ informal requirement: generalize    E

The problem definition



Our solution - two-phase algorithm
Mix formal methods and learning

• Phase 1: learn a pre-Mealy machine that generalizes the examples in E 
and which maintains realizability (checked using game-based 
synthesis) of 


intermediary output: a pre-Mealy machine (usually not input-complete)


• Phase 2: complete (using game-based synthesis) the pre-Mealy 
machine into a complete Mealy machine that realizes while 
maintaining compatibility with the examples in E

φ𝖢𝖮𝖱𝖤

φ𝖢𝖮𝖱𝖤



Phase 1 - Generalization
Learning automata from examples constrained by Spec realizability

• RPNI style learning:  
Start with PTA(E)=prefix tree automaton of 
the examples in E


• Merge states when possible in order to 
generalize from the examples


• Mergeable?(m_1,m_2,E, )


• Yes, if the resulting pre-Mealy Machine 
is compatible with E and can be 
completed into a (full) Mealy Machine 
that realizes 

φ𝖢𝖮𝖱𝖤

φ𝖢𝖮𝖱𝖤

Mergeable(m_1,m_2,E,Spec) ?


Yes ———>

Mergeable(m_1,m_2,E,Spec) ?


Yes ———>



Mergeable?(m_1,m_2,E,Spec)



Phase 2 - Completion
From pre-Mealy Machine to a (full) Mealy Machine that realizes Spec

• Given a pre Mealy machine M that generalizes the set of examples E and 
that can be completed into a Mealy machine M’ that realizes φ

• Complete holes in the machine.


• Heuristics: try to avoid creating new 
states and reuse existing red ones  
(idea: generalize examples).



How to maintain efficiency
Exploit the most general strategy

• Difficulty: 
 
Theorem (Mergeable complexity): (Even) for a regular specification Spec  given as 

a deterministic Büchi automaton, deciding  is ExpTime-C. 
(a subset construction is needed)


… in the two-phase algorithm, we need to use  multiple 

times, and in the worst-case the parity automaton  associated to the LTL spec  is 

already doubly exponential in .


Can we avoid this complexity problem ? YES.

φ𝖢𝖮𝖱𝖤
𝖬𝖾𝗋𝗀𝖾𝖺𝖻𝗅𝖾(M, m, m′￼, φ𝖢𝖮𝖱𝖤, E)

𝖬𝖾𝗋𝗀𝖾𝖺𝖻𝗅𝖾(M, m, m′￼, φ𝖢𝖮𝖱𝖤, E)
Aφ φ

|φ |
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• Theorem Given ,  returns a Mealy machine  such that  
and  if it exists, in worst-case doubly exponential time in  and polynomial 

in . Otherwise it returns UNREAL.  

• More precisely, our algorithm is 


• polynomial in the size of  and 


• polynomial in a well-chosen symbolic representation the of set of Mealy machines that 
realize   which is computed by Acacia-Bonzai for solving plain LTL synthesis for . 


• So, generalizing from  comes at an additional polynomial cost.

(φ, E) 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗋𝗇(φ, E) M E ⊆ L(M)
Lω(M) ⊆ [[φ]] |φ |

|E |

E

φ φ
E

How to maintain efficiency
Exploit the most general strategy



Illustration



Specification: 





Examples :


• 


•

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

E
{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {g0,!g1}#{!r0,!r1} . {!g0, g1}

Phase 1: generalization of E



This preMealy machine  cannot be made  
complete and realize φ𝖢𝖮𝖱𝖤





Specification: 





Examples :


• 


•

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

E
{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {g0,!g1}#{!r0,!r1} . {!g0, g1}

Phase 2:  
complete the preMealy machine

PreMealy machine obtained from the learning phase

(generalization of the examples)



filling holes



Heuristic: try to reuse as much as possible states that were introduced by the learning phase

(try to imitate decisions that are illustrated by the examples)



Heuristic: try to reuse as much as possible states that were introduced by the learning phase

(try to imitate decisions that are illustrated by the examples)



Final  (complete) Mealy machine  
that enforces


φ𝖢𝖮𝖱𝖤



A few theorems

• Theorem 1 (Termination and correctness): For all ,  terminates 
and returns a Mealy machine  such that (i)  and (ii) is compatible with E, if it 
exists, and return UNREAL otherwise. 

• Theorem 2 (Mealy completeness): For all specifications , for all Mealy machines  
such that , there is a set of examples  of size polynomial in  and such that 

. 

• Theorem 3 (Polynomial additional cost): our algorithm is polynomial in the size of  and 
in a symbolic representation the of set of Mealy machines that realize  (which is 
computed by Acacia-Bonzai for solving plain LTL synthesis for . )

(φ, E) 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗋𝗇(φ, E)
M M ⊧ φ

φ M
M ⊧ φ EM M

𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗋𝗇(φ, EM) = M

E
φ

φ



Further works
Easy and more ambitious

• Negative examples: 


• Infinite examples given as deterministic i/o regular expressions, e.g. 



• Symbolic examples and symbolic Mealy machines: 
 

• How to learn programs manipulating variables, queues, or stacks that 
realize a spec  with a similar approach ?

𝗁𝗂𝗌𝗍 ⋅ i/ ¬o

ω−
({!r1,!r2} . {!g1,!g2}#{r1,!r2} . {g1,!g2}#{!r1, r2} . {!g1, g2})ω

ψ i
0 ⋅ ψo

0♯ψ i
1 ⋅ ψo

1♯…♯ψ i
n/o

φ𝖢𝖮𝖱𝖤


