
LTL Reactive Synthesis

with a Few Hints

Mrudula Balachander, Emmanuel Filiot, and Jean-François Raskin

Université libre de Bruxelles

IFIP Working group 2.2 meeting

Tallinn - July 2024

Synthesis

LTL Reactive Synthesis

Env ? ⊧ φ
• Sys is constructed by an algorithm

• Sys is correct by construction

• Underlying theory: 2 player zero-sum games played on graphs

• Env is adversarial (worst-case assumption)

• Correct Sys = Winning strategy

• Main argument of Synthesis: What versus How

||

LTL Reactive Synthesis

• Problem: given a LTL formula over , decide if there exists a strategy
 such that for all sequences of inputs (=env. is adversarial) :  

 
  
 
and if so, construct such a strategy.

φ AP = I ⊎ O
σ : I* ⋅ I → O Ī = i0i1…in… ∈ Iω

i0 ⋅ σ(i0) ⋅ i1 ⋅ σ(i0i1) ⋅ … ⋅ in ⋅ σ(i0i1…in) ⋅ … ⊧ φ

SysĪ = i0i1…in… ∈ Iω Ō = o0o1…on… ∈ Oω

i0o0i1o1…inon… ⊧ φ

∀
synchronous responseenvironment

LTL Reactive Synthesis
An example - Mutual exclusion

• Input AP:

• Output AP:

• CORE Spec:

•  
 
 
CORE Spec = properties that you would check on any
solution to mutual exclusion (e.g. Peterson, Dedecker,
etc.) - Remember “What vs. How”

r0, r1

g0, g1

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

Mealy Machine that Realizes Spec

• A Mealy machine is an input-complete deterministic automaton with outputs that encodes a strategy

• realizes if , noted M φ ∀ Ī ∈ Iω : M(Ī) ⊧ φ𝖢𝖮𝖱𝖤 M ⊧ φ𝖢𝖮𝖱𝖤

MĪ = i0i1…in… ∈ Iω Ō = o0o1…on… ∈ Oω

i0o0i1o1…inon… ⊧ φ𝖢𝖮𝖱𝖤

∀

⊧ φ𝖢𝖮𝖱𝖤

LTL Reactive Synthesis
An example - Mutual exclusion

Solution=Winning Strategy=Mealy Machine

• Input AP:

• Output AP:

• CORE Spec:

•  
 
 

r0, r1

g0, g1

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

Synthesis

algorithm

?

LTL Reactive Synthesis

• LTL reactive synthesis is 2ExpTime-C

• Nevertheless, “efficient” implementations exist  
(medium size spec - one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)

• Demo: Mutual exclusion (STRIX)

≈

LTL Reactive Synthesis

• LTL reactive synthesis is 2ExpTime-C

• Nevertheless, “efficient” implementations exist 
(medium size spec - one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)

• Demo: Mutual exclusion (STRIX)

≈

LTL Reactive Synthesis

• LTL reactive synthesis is 2ExpTime-C

• Nevertheless, “efficient” implementations exist 
(medium size spec - one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)

• Demo: Mutual exclusion (STRIX)

≈

LTL Reactive Synthesis

Quality of solution ?

Small is beautiful ?

is “What only” sufficient ?

• LTL reactive synthesis is 2ExpTime-C

• Nevertheless, “efficient” implementations exist 
(medium size spec - one page) - e.g. Acacia (ULB-U Antwerpen) - STRIX (TUM)

• Demo: Mutual exclusion (STRIX)

≈

Space of solutions of φ𝖢𝖮𝖱𝖤
How to drive the synthesis procedure to good solutions?

Mealy Machines

Mealy machines that realizes φ𝖢𝖮𝖱𝖤

“Good”solutions

…
…

Quality of solutions
• The “What only” may

lead to solutions that
are not of practical
interest  
(e.g. unsolicited grants)

• Remedy ? Give a
“complete”
specification

• Example: Mutual
exclusion without
unsolicited grants

Quality of solutions
• The “What only” may

lead to solutions that
are not of practical
interest  
(e.g. unsolicited grants)

• Remedy ? Give a
“complete”
specification

• Example: Mutual
exclusion without
unsolicited grants

Quality of solutions
• The “What only” may

lead to solutions that
are not of practical
interest  
(e.g. unsolicited grants)

• Remedy ? Give a
“complete”
specification

• Example: Mutual
exclusion without
unsolicited grants

• The “What only” may
lead to solutions that
are not of practical
interest  
(e.g. unsolicited grants)

• Remedy ? Give a
“complete”
specification

• Example: Mutual
exclusion without
unsolicited grants

Quality of solutions

BUT

Specifying low level requirements in LTL may be difficult/cumbersome

It is not clear that it is the Mealy machine that we are looking for

Specifying lower level requirements clear goes against the very idea of synthesis!

Our proposal:

Add scenarios (examples)

to φ𝖢𝖮𝖱𝖤

{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

Requirement engineering and scenarios
Formal spec and scenarios are complementary

• Scenarios are accepted in RE as an adequate tool to elicit requirements

• Scenarios are easy to produce: the designer controls both the inputs and
the outputs

• … avoiding the main difficulty of reactive system design: having to cope
with all possible environment inputs

Scenarios (=examples=hints) as an alternative to guide the search for “good”
solutions: the synthesis algorithm must now produce solutions compatible
with the examples

Requirement engineering and scenarios
Formal spec and scenarios are complementary

• Scenarios are accepted in RE as an adequate tool to elicit requirements

• Scenarios are easy to produce: the designer controls both the inputs and
the outputs

• … avoiding the main difficulty of reactive system design: having to cope
with all possible environment inputs

• Scenarios (=examples=hints) as an alternative to guide the search for
“good” solutions: the synthesis algorithm must now produce solutions
compatible with the examples

Another (more appealing) approach
LTL spec + Hints (scenarios)

•

• + a few Hints:

•

•  
 

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {g0,!g1}#{!r0,!r1} . {!g0, g1}

•

• + a few Hints:

•

•  
 

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {g0,!g1}#{!r0,!r1} . {!g0, g1}

Another (more appealing) approach
LTL spec + Hints (scenarios)

Learning+Synthesis

• If you want a solution where comes before
in case of concurrent request:  
change the scenario !

• Hints:

•

•  

g1 g0

{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {!g0, g1}#{!r0,!r1} . {g0,!g1}

Another (more appealing) approach
LTL spec + Hints (scenarios)

{r0 , r1 } . {!g
0 , g

1 }

• If you want a solution where comes before
in case of concurrent request:  
change the scenario !

• Hints:

•

•  

g1 g0

{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {!g0, g1}#{!r0,!r1} . {g0,!g1}

Another (more appealing) approach
LTL spec + Hints (scenarios)

{r0 , r1 } . {!g
0 , g

1 }

If the solution M is not the one that User has in mind (M’)

then add an example that differentiates M and the target machine M’

(φ𝖢𝖮𝖱𝖤, E0) M0

(φ𝖢𝖮𝖱𝖤, E0) M0

If designer not happy

(φ𝖢𝖮𝖱𝖤, E0 ∪ {e1, e2, …, en}) M1

(φ𝖢𝖮𝖱𝖤, E0) M0

If designer not happy

(φ𝖢𝖮𝖱𝖤, E0 ∪ {e1, e2, …, en}) M1

If designer not happy

(φ𝖢𝖮𝖱𝖤, E1 ∪ {e′￼1, e′￼2, …, e′￼m}) M2

Until designer is happy

…

LTL Reactive Synthesis with a Few Hints
The problem definition

• Given a (i) LTL formula and (ii) a prefix-closed set of examples
(scenarios) , construct a Mealy Machine that is:

• compatible with and

• such that for all

φ
E ⊆ (I ⋅ O)* M

E

∀ Ī = i0i1…in… ∈ Iω : M(Ī) ⊧ φ

• Given a (i) LTL formula and (ii) a prefix-closed set of examples
(scenarios) , construct a Mealy Machine that is:

• compatible with and

• such that for all

φ
E ⊆ (I ⋅ O)* M

E

∀ Ī = i0i1…in… ∈ Iω : M(Ī) ⊧ φ

LTL Reactive Synthesis with a Few Hints

+ informal requirement: generalize E

The problem definition

Our solution - two-phase algorithm
Mix formal methods and learning

• Phase 1: learn a pre-Mealy machine that generalizes the examples in E
and which maintains realizability (checked using game-based
synthesis) of

intermediary output: a pre-Mealy machine (usually not input-complete)

• Phase 2: complete (using game-based synthesis) the pre-Mealy
machine into a complete Mealy machine that realizes while
maintaining compatibility with the examples in E

φ𝖢𝖮𝖱𝖤

φ𝖢𝖮𝖱𝖤

Phase 1 - Generalization
Learning automata from examples constrained by Spec realizability

• RPNI style learning:  
Start with PTA(E)=prefix tree automaton of
the examples in E

• Merge states when possible in order to
generalize from the examples

• Mergeable?(m_1,m_2,E,)

• Yes, if the resulting pre-Mealy Machine
is compatible with E and can be
completed into a (full) Mealy Machine
that realizes

φ𝖢𝖮𝖱𝖤

φ𝖢𝖮𝖱𝖤

Mergeable(m_1,m_2,E,Spec) ?

Yes ———>

Mergeable(m_1,m_2,E,Spec) ?

Yes ———>

Mergeable?(m_1,m_2,E,Spec)

Phase 2 - Completion
From pre-Mealy Machine to a (full) Mealy Machine that realizes Spec

• Given a pre Mealy machine M that generalizes the set of examples E and
that can be completed into a Mealy machine M’ that realizes φ

• Complete holes in the machine.

• Heuristics: try to avoid creating new
states and reuse existing red ones  
(idea: generalize examples).

How to maintain efficiency
Exploit the most general strategy

• Difficulty: 
 
Theorem (Mergeable complexity): (Even) for a regular specification Spec given as

a deterministic Büchi automaton, deciding is ExpTime-C. 
(a subset construction is needed)

… in the two-phase algorithm, we need to use multiple

times, and in the worst-case the parity automaton associated to the LTL spec is

already doubly exponential in .

Can we avoid this complexity problem ? YES.

φ𝖢𝖮𝖱𝖤
𝖬𝖾𝗋𝗀𝖾𝖺𝖻𝗅𝖾(M, m, m′￼, φ𝖢𝖮𝖱𝖤, E)

𝖬𝖾𝗋𝗀𝖾𝖺𝖻𝗅𝖾(M, m, m′￼, φ𝖢𝖮𝖱𝖤, E)
Aφ φ

|φ |

How to maintain efficiency
Exploit the most general strategy

• Difficulty: 
 
Theorem (Mergeable complexity): (Even) for a regular specification Spec given as a
deterministic Büchi automaton, deciding is ExpTime-C. 
(a subset construction is needed)

• … in the two-phase algorithm, we need to use multiple

times, and in the worst-case the parity automaton associated to the LTL spec is

already doubly exponential in .

• Can we avoid this complexity problem ? YES

𝖬𝖾𝗋𝗀𝖾𝖺𝖻𝗅𝖾(M, m, m′￼, φ𝖢𝖮𝖱𝖤, E)

𝖬𝖾𝗋𝗀𝖾𝖺𝖻𝗅𝖾(M, m, m′￼, φ𝖢𝖮𝖱𝖤, E)
Aφ φ

|φ |

• Theorem Given , returns a Mealy machine such that
and if it exists, in worst-case doubly exponential time in and polynomial

in . Otherwise it returns UNREAL.  

• More precisely, our algorithm is

• polynomial in the size of and

• polynomial in a well-chosen symbolic representation the of set of Mealy machines that
realize which is computed by Acacia-Bonzai for solving plain LTL synthesis for .

• So, generalizing from comes at an additional polynomial cost.

(φ, E) 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗋𝗇(φ, E) M E ⊆ L(M)
Lω(M) ⊆ [[φ]] |φ |

|E |

E

φ φ
E

How to maintain efficiency
Exploit the most general strategy

Illustration

Specification:

Examples :

•

•

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

E
{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {g0,!g1}#{!r0,!r1} . {!g0, g1}

Phase 1: generalization of E

This preMealy machine cannot be made  
complete and realize φ𝖢𝖮𝖱𝖤

Specification:

Examples :

•

•

φ𝖢𝖮𝖱𝖤 ≡ □ (¬g0 ∨ ¬g1) ∧ □ (r0 → ◊g0) ∧ □ (r1 → ◊g1)

E
{!r0,!r1} . {!g0,!g1}#{r0,!r1} . {g0,!g1}#{!r0, r1} . {!g0, g1}

{r0, r1} . {g0,!g1}#{!r0,!r1} . {!g0, g1}

Phase 2:  
complete the preMealy machine

PreMealy machine obtained from the learning phase

(generalization of the examples)

filling holes

Heuristic: try to reuse as much as possible states that were introduced by the learning phase

(try to imitate decisions that are illustrated by the examples)

Heuristic: try to reuse as much as possible states that were introduced by the learning phase

(try to imitate decisions that are illustrated by the examples)

Final (complete) Mealy machine  
that enforces

φ𝖢𝖮𝖱𝖤

A few theorems

• Theorem 1 (Termination and correctness): For all , terminates
and returns a Mealy machine such that (i) and (ii) is compatible with E, if it
exists, and return UNREAL otherwise. 

• Theorem 2 (Mealy completeness): For all specifications , for all Mealy machines
such that , there is a set of examples of size polynomial in and such that

. 

• Theorem 3 (Polynomial additional cost): our algorithm is polynomial in the size of and
in a symbolic representation the of set of Mealy machines that realize (which is
computed by Acacia-Bonzai for solving plain LTL synthesis for .)

(φ, E) 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗋𝗇(φ, E)
M M ⊧ φ

φ M
M ⊧ φ EM M

𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗋𝗇(φ, EM) = M

E
φ

φ

Further works
Easy and more ambitious

• Negative examples:

• Infinite examples given as deterministic i/o regular expressions, e.g.

• Symbolic examples and symbolic Mealy machines:
 

• How to learn programs manipulating variables, queues, or stacks that
realize a spec with a similar approach ?

𝗁𝗂𝗌𝗍 ⋅ i/ ¬o

ω−
({!r1,!r2} . {!g1,!g2}#{r1,!r2} . {g1,!g2}#{!r1, r2} . {!g1, g2})ω

ψ i
0 ⋅ ψo

0♯ψ i
1 ⋅ ψo

1♯…♯ψ i
n/o

φ𝖢𝖮𝖱𝖤

