
Concurrent ∀∃-Hyperproperties

Ernst-Rüdiger Olderog

joint work with Bernd Finkbeiner

July 2024

Hyperproperties Clarkson and Schneider [CS10]

Aim: analyze executions of systems

I trace properties = sets of execution traces

... express properties of individual executions,

e.g. safety:

∀π.2(outπ 6= bad)

I hyperproperties = sets of sets of traces [CS10]

... express properties of sets of traces
by relating different executions,

e.g. observational determinism:

∀π.∀π ′.2(inπ ↔ inπ ′)→2(outπ ↔ outπ ′)

2/25 Concurrent ∀∃-Hyperproperties

Information-flow Security Policies

Hyperproperties refer to traces,
which represent concurrency by an interleaving semantics.

We model systems by Petri nets , which represent concurrency using
partial orders.

Nco : p11 p12

p21 p22

l1 l2

Nint : q0

q11 q21

q12 q22

l1 l2

l2 l1

This brings us to concurrent hyperproperties .

3/25 Concurrent ∀∃-Hyperproperties

Concurrent Traces = Pomsets

Let Σ be a set of labels. A Σ-labeled partially ordered set is a triple (X ,<,`)
where < is a partial order on X and ` : X → Σ is a labeling function.

A partially ordered multiset (pomset) over Σ is an isomorphy class of
Σ-labeled partial ordered sets, denoted as [(X ,<,`)] [Pra85].

A totally ordered multiset (tomset) is a pomset where < is a total order.

Terminology:
I traces = tomsets over Σ

I trace property = set of traces

I hyperproperty = set of sets of traces

I concurrent traces = pomsets over Σ

I concurrent trace property = set of concurrent traces

I concurrent hyperproperty = set of sets of concurrent traces

T(Σ) = set of all concurrent traces over Σ.

4/25 Concurrent ∀∃-Hyperproperties

Information Flow Property

Every pair of concurrent traces agrees on the
occurrence of the low-security events, independent on any other event.

Let Σlow = set of low-security events.

The requirement is formalized as the concurrent hyperproperty

H1 = { T ⊆ T(Σ) | ∀ [(X ,<,`)], [(X ′,<′, `′)] ∈ T .

∃ bijection f : Xlow → X ′low .

∀x ∈ Xlow . `
′(f (x)) = `(x)}

where
Xlow = {x ∈ X | `(x) ∈ Σlow}

X ′low = {x ∈ X ′ | `′(x) ∈ Σlow}

5/25 Concurrent ∀∃-Hyperproperties

Noninference McLean [McL94]

The behavior observable by a low-security observer must not change
when all high-security inputs are removed.

Let Σ = Σlow ∪Σhigh.

This requirement is formalized with quantifier alternation :

H2 = { T ⊆ T(Σ) | ∀ [(X ,<,`)] ∈ T . ∃ [(X ′,<′, `′)] ∈ T .

∃ bijection f : Xlow → X ′low .

(∀x ∈ Xlow . `
′(f (x)) = `(x)

∧∀x ,y ∈ Xlow . f (x) <′ f (y)⇔ x < y)

∧∀x ∈ X ′. `′(x) 6∈ Σhigh },

where Xlow and X ′low are as before.

6/25 Concurrent ∀∃-Hyperproperties

Example for Noninference

Consider low-security actions l1 and l2, and high-security action h in

N0 :
p0

p11

p21 p22

p31 p32

h

l1 l1

l2 l2

Low-security behavior must not change when all high-security actions are removed.

7/25 Concurrent ∀∃-Hyperproperties

Testing of Petri Nets

Idea: testing of processes due to De Nicola and Hennessy [DH84]:
interaction of a nondet. process with a user (test) ,
may and must testing.

Here, a test is a Petri net, extended by a set of successful places.
Graphically, we mark these places by X .

To perform a test Ton a given Petri net N,
we consider the parallel composition N‖T.

A run ρ = (NR , f) of N‖T is deadlock free if it is infinite;

it terminates successfully if it is finite and
all places of T inside the parallel composition without causal successor
are marked with X .

8/25 Concurrent ∀∃-Hyperproperties

May and Must

A net Nmay pass a test T if there exists a maximal run of N‖Twhich is
deadlock free or terminates successfully.

A net Nmust pass a test T if all maximal runs of N‖Tare
deadlock free or terminate successfully.

Example. Tests can distinguish runs of concurrent and interleaved systems:

Nco :

l1 l2

Nint :

l1 l2

l2 l1

T:

X X

τ τ

l1 l2

l2 l1

The run of Nco must pass T and the runs of Nint may pass T.

Related: causal testing of event structures by Goltz and Wehrheim [GW96].

9/25 Concurrent ∀∃-Hyperproperties

Checking Hyperproperties

To check a hyperproperty relating two concurrent traces of a system N0 ,
we investigate maximal runs ρ = (N, f) and ρ ′ = (N ′, f ′) of N0 ,
where N and N ′ are causal nets of N0 ,
but in N ′ every action u of N0 is relabled into a primed copy u ′ .

To represent the hyperproperty (with two quantifiers), we test

Qρ.Q′ρ ′. N ‖N′m pass T,

where Q,Q′ ∈ {∃,∀} and m ∈ {may, must}.

10/25 Concurrent ∀∃-Hyperproperties

For H1 consider net NC

NC :

p0

p11 p12 p13

p21 p22

p23 p24

p31 p32

h1 h2

l1 l2 l1 l2

l2 l1

11/25 Concurrent ∀∃-Hyperproperties

Net NC has three maximal runs

NC :

p0

p11 p12 p13

p21 p22

p23 p24

p31 p32

h1 h2

l1 l2 l1 l2

l2 l1

Three maximal runs:

ρ1 : ρ2 : ρ3 :

p11 p12

p13 p13

p21 p22

p23 p24

p31 p32

h1 h2 h2

l1 l2 l1 l2

l2 l1

Corresponding traces π1,π2,π3

ignore the places.

12/25 Concurrent ∀∃-Hyperproperties

Testing Concurrent Hyperproperty H1

Now we check the concurrent hyperproperty H1:

every pair of concurrent traces π and π ′

agrees on occurrence of low-security events l1 and l2.

To this end, we use the concurrent test Tcon :

s1

l1

X

s01

X

s02

l2

s2

l ′1 l ′2

13/25 Concurrent ∀∃-Hyperproperties

Outcome of Concurrent Test Tcon

The outcome of testing ρ1 and ρ3 of NC :

ρ1 : ρ ′3 :

p11 p12

Tcon :

X

s02

X s02

X

s01

X s01

p13

p21

p22 p24

p32

h1 h′2

l1

l2 l ′2

l ′1

We conclude that ρ1 ‖ρ3 must pass Tcon . In general, we have

∀ρ,ρ ′ .N‖N′ must pass Tcon .

This shows that the system NC satisfies H1 .

14/25 Concurrent ∀∃-Hyperproperties

Testing Noninference H2

Consider low-security actions l1 and l2, and high-security action h.

N0 :
p0

p11

p21 p22

p31 p32

h

l1 l1

l2 l2

Tni : s0 X

h

s2 l ′1

s1 X

l ′2 s3

l1 l2

s4

h′ h′ h′ h′

The low-security behavior must not change when all high-security actions are
removed. This is tested as follows:

∀ρ. ∃ρ ′.N‖N′ must pass Tni .

15/25 Concurrent ∀∃-Hyperproperties

Decidability Results

... on model checking finite Petri nets against concurrent hyperproperties:

Property class Model checking problem

∀ must decidable [FO23]
∃ may decidable (Theorem 1)
∀ may undecidable [FO23]
∃ must undecidable (Theorem 2)
∀∃/∃∀ must/may undecidable (Corollary 1)

16/25 Concurrent ∀∃-Hyperproperties

Decidability

Theorem 1. Existential may testing is decidable .

Proof. This testing of a finite, safe net N0 is of the form

(∗) ∃ρ1, · · · ,∃ρk .N1 ‖ · · · ‖Nk may pass T.

We can equivalently refer to copies N0,1 , . . . ,N0,k of N0 , and check

N= N0,1 ‖ · · · ‖N0,k ‖T,

for the following properties:

(1) the unfolding of N is infinite

or (2) ∃M ∈ reach(N). ∀p ∈ PlT∩M.

p ∈X∧ ¬∃ t ∈−→ . pre(t)⊆M.

Both properties are decidable.

17/25 Concurrent ∀∃-Hyperproperties

Undecidability

Theorem 2. Existential must testing is undecidable .

Proof. We reduce the infinite Post Correspondence Problem (ω-PCP)
to existential must testing.

Illustration for ω-PCP over alphabet {a,b}. As input I, consider the lists
(u1,u2,u3) and (v1,v2,v3), where

u1 = b, u2 = b, u3 = aba and v1 = ba, v2 = aba, v3 = b.

The ω-PCP with this input is solvable by the infinite (ω-regular) correspondence
1 · (3 ·2)ω because

u1 u3 u2 u3 u2 · · · = b |ab a |b |ab a |b · · ·
v1 v3 v2 v3 v2 · · · = b a |b |ab a |b |ab a · · ·

The input I has no solution as a normal, finite PCP.

18/25 Concurrent ∀∃-Hyperproperties

Simulating the Input I

Petri net NI simulating the input I of the ω-PCP:

τ τ

u 1

b a b

a 3 b 2

v 1
b

b a

3 a 2

b a

19/25 Concurrent ∀∃-Hyperproperties

Test Tω

... for checking whether two runs of NI

simulate a correspondence of the ω-PCP:

v ′

u

τ τ

1

a′

1

b′

1a b a

1′

a

2′

a1 2

a 3

3′

20/25 Concurrent ∀∃-Hyperproperties

Quantifier Alternation

Corollary 1.
For a single quantifier alternation we can extend the above results:

1 ∀∃ may testing and ∃∀ may testing are undecidable .

2 ∀∃ must testing and ∃∀ must testing are undecidable .

Theorem 3.
Consider ∀∃ may testing of a finite net N0 of the form

(∗) ∀ρ.∃ρ
′.N‖N′ may pass T,

where N and N′ are the nets belonging to the runs ρ and ρ ′ of N0 and
where α(T) = α(N)∪α(N′).

Suppose the parallel composition N′ ‖Tyields a deterministic net.

Then it is decidable whether (∗) holds.

21/25 Concurrent ∀∃-Hyperproperties

Example for Theorem 3

Consider N0 and test Tni for noninference.
Let N′ be the net of the run to the right of N0 .

Then N′ ‖Tni is deterministic:

X p0 ‖s0

X

p0 ‖s1 p22 ‖s2

X

p22 ‖s1 p32 ‖s3

X

p32 ‖s1

h l ′1 l1 l ′2 l2

22/25 Concurrent ∀∃-Hyperproperties

Conclusion

Summary:

Model checking is undecidable for concurrent hyperproperties
that combine existential and universal quantification.

This result is in contrast to standard (non-concurrent) hyperproperties,
for example specified by HyperLTL [CFK+14].

For HyperLTL model checking remains decidable for arbitrary
quantifier alternations, but with nonelementary complexity [FRS15].

Future work:

Generalize Theorem 3 to some nondeterministic testers.

23/25 Concurrent ∀∃-Hyperproperties

References I

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.

Temporal logics for hyperproperties.
In Martín Abadi and Steve Kremer, editors, Principles of Security and Trust – Third Intern. Conf., POST 2014, Held as Part of
ETAPS 2014, Proc., volume 8414 of LNCS, pages 265–284. Springer, 2014.

Michael R. Clarkson and Fred B. Schneider.
Hyperproperties.
J. Comput. Secur., 18(6):1157–1210, 2010.

R. De Nicola and M. Hennessy.

Testing equivalences for processes.
TCS, 34:83–134, 1984.

Bernd Finkbeiner and Ernst-Rüdiger Olderog.

Concurrent hyperproperties.
In Jonathan P. Bowen, Qin Li, and Qiwen Xu, editors, Theories of Programming and Formal Methods - Essays Dedicated to
Jifeng He on the Occasion of His 80th Birthday, volume 14080 of LNCS, pages 211–231. Springer, 2023.
Open access.

Bernd Finkbeiner, Markus N. Rabe, and César Sánchez.

Algorithms for model checking HyperLTL and HyperCTL∗ .
In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification – 27th Intern. Conf., CAV 2015, Proc., Part
I, volume 9206 of LNCS, pages 30–48. Springer, 2015.

Ursula Goltz and Heike Wehrheim.

Causal testing.
In Wojciech Penczek and Andrzej Szalas, editors, Mathematical Foundations of Computer Science 1996, 21st Intern. Symp.,
Proc., volume 1113 of LNCS, pages 394–406. Springer, 1996.

24/25 Concurrent ∀∃-Hyperproperties

References II

John McLean.

A general theory of composition for trace sets closed under selective interleaving functions.
In 1994 IEEE Computer Society Symposium on Research in Security and Privacy, pages 79–93. IEEE Computer Society,
1994.

Vaughan R. Pratt.

The pomset model of parallel processes: Unifying the temporal and the spatial.
In Stephen D. Brookes, A. W. Roscoe, and Glynn Winskel, editors, Seminar on Concurrency, Carnegie-Mellon University,
volume 197 of LNCS, pages 180–196. Springer, 1985.

25/25 Concurrent ∀∃-Hyperproperties

	

