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Hyperproperties Clarkson and Schneider [CS10]

Aim: analyze executions of systems

I trace properties = sets of execution traces

... express properties of individual executions,

e.g. safety:

∀π.2(outπ 6= bad)

I hyperproperties = sets of sets of traces [CS10]

... express properties of sets of traces
by relating different executions,

e.g. observational determinism:

∀π.∀π ′.2(inπ ↔ inπ ′)→2(outπ ↔ outπ ′)
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Information-flow Security Policies

Hyperproperties refer to traces,
which represent concurrency by an interleaving semantics.

We model systems by Petri nets , which represent concurrency using
partial orders.

Nco : p11 p12

p21 p22

l1 l2

Nint : q0

q11 q21

q12 q22

l1 l2

l2 l1

This brings us to concurrent hyperproperties .
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Concurrent Traces = Pomsets

Let Σ be a set of labels. A Σ-labeled partially ordered set is a triple (X ,<,`)
where < is a partial order on X and ` : X → Σ is a labeling function.

A partially ordered multiset (pomset) over Σ is an isomorphy class of
Σ-labeled partial ordered sets, denoted as [(X ,<,`)] [Pra85].

A totally ordered multiset (tomset) is a pomset where < is a total order.

Terminology:
I traces = tomsets over Σ

I trace property = set of traces

I hyperproperty = set of sets of traces

I concurrent traces = pomsets over Σ

I concurrent trace property = set of concurrent traces

I concurrent hyperproperty = set of sets of concurrent traces

T(Σ) = set of all concurrent traces over Σ.
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Information Flow Property

Every pair of concurrent traces agrees on the
occurrence of the low-security events, independent on any other event.

Let Σlow = set of low-security events.

The requirement is formalized as the concurrent hyperproperty

H1 = { T ⊆ T(Σ) | ∀ [(X ,<,`)], [(X ′,<′, `′)] ∈ T .

∃ bijection f : Xlow → X ′low .

∀x ∈ Xlow . `
′(f (x)) = `(x)}

where
Xlow = {x ∈ X | `(x) ∈ Σlow}

X ′low = {x ∈ X ′ | `′(x) ∈ Σlow}
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Noninference McLean [McL94]

The behavior observable by a low-security observer must not change
when all high-security inputs are removed.

Let Σ = Σlow ∪Σhigh.

This requirement is formalized with quantifier alternation :

H2 = { T ⊆ T(Σ) | ∀ [(X ,<,`)] ∈ T . ∃ [(X ′,<′, `′)] ∈ T .

∃ bijection f : Xlow → X ′low .

( ∀x ∈ Xlow . `
′(f (x)) = `(x)

∧∀x ,y ∈ Xlow . f (x) <′ f (y)⇔ x < y )

∧∀x ∈ X ′. `′(x) 6∈ Σhigh },

where Xlow and X ′low are as before.
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Example for Noninference

Consider low-security actions l1 and l2, and high-security action h in

N0 :
p0

p11

p21 p22

p31 p32

h

l1 l1

l2 l2

Low-security behavior must not change when all high-security actions are removed.
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Testing of Petri Nets

Idea: testing of processes due to De Nicola and Hennessy [DH84]:
interaction of a nondet. process with a user (test) ,
may and must testing.

Here, a test is a Petri net, extended by a set of successful places.
Graphically, we mark these places by X .

To perform a test Ton a given Petri net N,
we consider the parallel composition N‖T.

A run ρ = (NR , f ) of N‖T is deadlock free if it is infinite;

it terminates successfully if it is finite and
all places of T inside the parallel composition without causal successor
are marked with X .
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May and Must

A net Nmay pass a test T if there exists a maximal run of N‖Twhich is
deadlock free or terminates successfully.

A net Nmust pass a test T if all maximal runs of N‖Tare
deadlock free or terminate successfully.

Example. Tests can distinguish runs of concurrent and interleaved systems:

Nco :

l1 l2

Nint :

l1 l2

l2 l1

T:

X X

τ τ

l1 l2

l2 l1

The run of Nco must pass T and the runs of Nint may pass T.

Related: causal testing of event structures by Goltz and Wehrheim [GW96].
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Checking Hyperproperties

To check a hyperproperty relating two concurrent traces of a system N0 ,
we investigate maximal runs ρ = (N, f ) and ρ ′ = (N ′, f ′) of N0 ,
where N and N ′ are causal nets of N0 ,
but in N ′ every action u of N0 is relabled into a primed copy u ′ .

To represent the hyperproperty (with two quantifiers), we test

Qρ.Q′ρ ′. N ‖N′m pass T,

where Q,Q′ ∈ {∃,∀} and m ∈ {may, must}.

10/25 Concurrent ∀∃-Hyperproperties



For H1 consider net NC

NC :

p0

p11 p12 p13

p21 p22

p23 p24

p31 p32

h1 h2

l1 l2 l1 l2

l2 l1
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Net NC has three maximal runs

NC :

p0

p11 p12 p13

p21 p22

p23 p24

p31 p32

h1 h2

l1 l2 l1 l2

l2 l1

Three maximal runs:

ρ1 : ρ2 : ρ3 :

p11 p12

p13 p13

p21 p22

p23 p24

p31 p32

h1 h2 h2

l1 l2 l1 l2

l2 l1

Corresponding traces π1,π2,π3

ignore the places.
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Testing Concurrent Hyperproperty H1

Now we check the concurrent hyperproperty H1:

every pair of concurrent traces π and π ′

agrees on occurrence of low-security events l1 and l2.

To this end, we use the concurrent test Tcon :

s1

l1

X

s01

X

s02

l2

s2

l ′1 l ′2
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Outcome of Concurrent Test Tcon

The outcome of testing ρ1 and ρ3 of NC :

ρ1 : ρ ′3 :

p11 p12

Tcon :

X

s02

X s02

X

s01

X s01

p13

p21

p22 p24

p32

h1 h′2

l1

l2 l ′2

l ′1

We conclude that ρ1 ‖ρ3 must pass Tcon . In general, we have

∀ρ,ρ ′ .N‖N′ must pass Tcon .

This shows that the system NC satisfies H1 .
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Testing Noninference H2

Consider low-security actions l1 and l2, and high-security action h.

N0 :
p0

p11

p21 p22

p31 p32

h

l1 l1

l2 l2

Tni : s0 X

h

s2 l ′1

s1 X

l ′2 s3

l1 l2

s4

h′ h′ h′ h′

The low-security behavior must not change when all high-security actions are
removed. This is tested as follows:

∀ρ. ∃ρ ′.N‖N′ must pass Tni .
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Decidability Results

... on model checking finite Petri nets against concurrent hyperproperties:

Property class Model checking problem

∀ must decidable [FO23]
∃ may decidable (Theorem 1)
∀ may undecidable [FO23]
∃ must undecidable (Theorem 2)
∀∃/∃∀ must/may undecidable (Corollary 1)
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Decidability

Theorem 1. Existential may testing is decidable .

Proof. This testing of a finite, safe net N0 is of the form

(∗) ∃ρ1, · · · ,∃ρk .N1 ‖ · · · ‖Nk may pass T.

We can equivalently refer to copies N0,1 , . . . ,N0,k of N0 , and check

N= N0,1 ‖ · · · ‖N0,k ‖T,

for the following properties:

(1) the unfolding of N is infinite

or (2) ∃M ∈ reach(N). ∀p ∈ PlT∩M.

p ∈X∧ ¬∃ t ∈−→ . pre(t)⊆M.

Both properties are decidable.
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Undecidability

Theorem 2. Existential must testing is undecidable .

Proof. We reduce the infinite Post Correspondence Problem (ω-PCP)
to existential must testing.

Illustration for ω-PCP over alphabet {a,b}. As input I, consider the lists
(u1,u2,u3) and (v1,v2,v3), where

u1 = b, u2 = b, u3 = aba and v1 = ba, v2 = aba, v3 = b.

The ω-PCP with this input is solvable by the infinite (ω-regular) correspondence
1 · (3 ·2)ω because

u1 u3 u2 u3 u2 · · · = b |ab a |b |ab a |b · · ·
v1 v3 v2 v3 v2 · · · = b a |b |ab a |b |ab a · · ·

The input I has no solution as a normal, finite PCP.
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Simulating the Input I

Petri net NI simulating the input I of the ω-PCP:

τ τ

u 1

b a b

a 3 b 2

v 1
b

b a

3 a 2

b a
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Test Tω

... for checking whether two runs of NI

simulate a correspondence of the ω-PCP:

v ′

u

τ τ

1

a′

1

b′

1a b a

1′

a

2′

a1 2

a 3

3′
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Quantifier Alternation

Corollary 1.
For a single quantifier alternation we can extend the above results:

1 ∀∃ may testing and ∃∀ may testing are undecidable .

2 ∀∃ must testing and ∃∀ must testing are undecidable .

Theorem 3.
Consider ∀∃ may testing of a finite net N0 of the form

(∗) ∀ρ.∃ρ
′.N‖N′ may pass T,

where N and N′ are the nets belonging to the runs ρ and ρ ′ of N0 and
where α(T) = α(N)∪α(N′).

Suppose the parallel composition N′ ‖Tyields a deterministic net.

Then it is decidable whether (∗) holds.
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Example for Theorem 3

Consider N0 and test Tni for noninference.
Let N′ be the net of the run to the right of N0 .

Then N′ ‖Tni is deterministic:

X p0 ‖s0

X

p0 ‖s1 p22 ‖s2

X

p22 ‖s1 p32 ‖s3

X

p32 ‖s1

h l ′1 l1 l ′2 l2
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Conclusion

Summary:

Model checking is undecidable for concurrent hyperproperties
that combine existential and universal quantification.

This result is in contrast to standard (non-concurrent) hyperproperties,
for example specified by HyperLTL [CFK+14].

For HyperLTL model checking remains decidable for arbitrary
quantifier alternations, but with nonelementary complexity [FRS15].

Future work:

Generalize Theorem 3 to some nondeterministic testers.
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