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LetI' - My, My : tbe HOSC terms and X € {HOSC, FOSC, HOS, FOS}.

We define I' + M; <x My to hold, when for all X contexts C| 7]
such that + C[M;],C[M3] : " for some 7/, if (C[M;],0) || then

(C[M2],0) .

The terms I' F M1, M : T are called contextually equivalent (wrt
X contexts), written I' + Mj ~x My, when I’ + M; <x Mj and
I' - My <x M.
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e 2 is a finite alphabet of tags.
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e P is an infinite alphabet of data values.
e Automata accept data words from (X X D)*.

(t1,d1)(t2,d2) - - - (ty, dy)

Class memory automata [Bjorklund & Schwentick, FCT 2007 ] main-
tain finite state as well as class memory (a map from a finite subset

of D to a finite set of memories).

(t1,d1)(t2,d2) - - - (tk, di) (41, d2)
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e Lack of recursion means terms do not grow unboundedly
and there are finitely many "skeletons".

e But terms also contain function names (introduced by the
environment) as well as location names!

e It is not immediate to accommodate y as class memory.
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e Fortunately, traces of FOSC satisty a visibility condition:
function and location names are always introduced in the
current scope (P-view).

e P-views for recursion-free FOSC terms are bounded, so we
can enumerate the names and refer to their position in the
P-view.

e This makes it possible to represent y as a class memory
function!
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e However, location names must also be updated. For this we
need access to whole "scope" (P-view).

e Idea: use a tree-shaped set 9 and allow the automaton to ac-
cess memory not only for one data value but for its ancestors
too.

e To achieve this, we use nested data and class memory au-
tomata over nested data [Cotton-Barratt, M. & Ong, LATA
2015].
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