
Andrzej Murawski
UNIVERSITY OF OXFORD

CONTEXTUAL EQUIVALENCE
FOR STATE AND CONTROL

VIA NESTED DATA

Benedict Bunting
UNIVERSITY OF OXFORD

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

CONTEXTUAL APPROXIMATION
AND EQUIVALENCE

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

Complete trace models of state and control⋆

Guilhem Jaber1 (!) and Andrzej S. Murawski2 (!)

1 Université de Nantes, LS2N CNRS, Inria, Nantes, France
guilhem.jaber@univ-nantes.fr

2 University of Oxford, Oxford, UK
andrzej.murawski@cs.ox.ac.uk

Abstract. We consider a hierarchy of four typed call-by-value languages
with either higher-order or ground-type references and with either call/cc
or no control operator.
Our first result is a fully abstract trace model for the most expressive
setting, featuring both higher-order references and call/cc, constructed
in the spirit of operational game semantics. Next we examine the impact
of suppressing higher-order references and callcc in contexts and provide
an operational explanation for the game-semantic conditions known as
visibility and bracketing respectively. This allows us to refine the original
model to provide fully abstract trace models of interaction with contexts
that need not use higher-order references or call/cc. Along the way, we
discuss the relationship between error- and termination-based contextual
testing in each case, and relate the two to trace and complete trace
equivalence respectively.
Overall, the paper provides a systematic development of operational
game semantics for all four cases, which represent the state-based face
of the so-called semantic cube.

Keywords: contextual equivalence, operational game semantics, higher-
order references, control operators

1 Introduction

Research into contextual equivalence has a long tradition in programming lan-
guage theory, due to its fundamental nature and applicability to numerous veri-
fication tasks, such as the correctness of compiler optimisations. Capturing con-
textual equivalence mathematically, i.e. the full abstraction problem [26], has
been an important driving force in denotational semantics, which led, among
others, to the development of game semantics [2,12]. Game semantics models
computation through sequences of question- and answer-moves by two players,
traditionally called O and P, who play the role of the context and the program
respectively. Because of its interactive nature, it has often been referred to as a
middle ground between denotational and operational semantics.

⋆ The full version is available at https://hal.archives-ouvertes.fr/hal-03116698.

© The Author(s) 2021
N. Yoshida (Ed.): ESOP 2021, LNCS 12648, pp. 348–374, 2021.
https://doi.org/10.1007/978-3-030-72019-3_13

complete
(restricted) trace

equivalence

complete
(restricted) trace

equivalence

trace
equivalence

(restricted) trace
equivalence

SOURCE OF UNDECIDABILITY

• integer arithmetic

• higher-order recursion (with state)

• general references

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

DECIDABILITY STATUS OF X[FOSC]
(FINITE BASE TYPES, NO RECURSION)LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

RELATED UNDECIDABILITY
RESULTS

• GOS[GOS] is undecidable [M. & Tzevelekos,
ICALP’12]

• The undecidability of GOS[GOS] implies that
X[GOS] is undecidable for any X.

• FOS[FOS] is undecidable [M., LICS’03]

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

GOS = FOS + Ref8 (Int)

DECIDABILITY STATUS OF X[FOSC]
(FINITE BASE TYPES, NO RECURSION)LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

unrestricted
order!

TRACE SEMANTICS
Contextual Equivalence for State and Control via Nested Data LICS ’24, July 8–11, 2024, Tallinn, Estonia

• Player Answer (PA) 2̄ (�), where 2 : f and � : f . This corre-
sponds to the term returning a value � using continuation
name 2 .

• Player Question (PQ) 5̄ (�, 2), where 5 : f ! f0, � : f and
2 : f0. This corresponds to the term calling the function
named by 5 , passing� as argument, and expecting the result
with continuation name 2 .

• Opponent Answer (OA) 2 (�), where 2 : f and � : f . In this
case, the context is producing a value � to the term, which
is acting as a continuation with name 2 .

• Opponent Question (OQ) 5 (�, 2), where 5 : f ! f0, � : f
and 2 : f0. This action corresponds to the context calling the
function named by 5 from the term, passing � as argument,
and expecting the result with continuation name 2 .

In what follows, a is used to range over actions. We refer to 5 in
5̄ (�, 2) and 5 (�, 2), and 2 in 2̄ (�) and 2 (�) as the head names of a.

De�nition 3.3. Let #$ ✓ Names. An #$ -trace is a sequence C
of actions such that: actions alternate between P and O actions; no
name is introduced twice; names from #$ need no introduction;
any action a must have the form 5̄ (�, 2), 5 (�, 2), 2̄ (�) or 2 (�),
where the head name of a was introduced by an earlier action a0 of
opposite polarity or 5 2 #$ in the �rst case, or 2 2 #$ in the third.

Example 3.4. We revisit the sequence from Example 1.2. Let#$ =
{5 , 2}, where 5 : ((Unit ! Unit) ! Unit) ! Unit, 2 : Unit. Then
the sequence C = 5̄ (⌘, 21) ⌘(6, 22) 6̄((), 23) 21 (()) 2̄ (()), where ⌘ :
(Unit ! Unit) ! Unit, 6 : Unit ! Unit and 21, 22, 23 : Unit, is an
#$ -trace.

3.2 Transition System
To generate traces corresponding to a term, one de�nes a special
LTS, called LHOSC. Its transition rules are presented in Figure 3.
LHOSC contains terms built fromHOSC syntax, extendedwith func-
tion names as values (with the obvious typing rule) and contg (, 2),
which stands for contg which, when thrown to, passes its result
to 2 . The reduction (",⌘) ! ("0,⌘0) is extended to work on triples,
taking the form (", 2,⌘) ! ("0, 20,⌘0), where 2, 20 are continua-
tion names. This is done to ensure call/cc and throw keep track
of the appropriate continuation name.

There are two types of con�gurations in LHOSC: hW, b,q,⌘i (pas-
sive, O to play) and h", 2,W, b,q,⌘i (active, internal or P to play). In
both, q contains all names introduced so far by both players and ⌘
is the current heap. W is an environment mapping function names
introduced by P to functions, and continuation names to evaluation
contexts (which represent the continuation at that point). b maps
continuation names introduced by P to continuation names intro-
duced by O, indicating continuation awaiting the result of W (2). In
an active con�guration," is the term component, which captures
the current behaviour of P, and 2 is the continuation name to re-
turn the result to. Transitions from active con�gurations are driven
by the term components, while passive con�gurations ‘choose’ an
action to take. Note that] stands for set-theoretic union on the
understanding that the sets involved are disjoint. This guarantees
freshness of names introduced by both players.

(%g) h", 2,W, b,q,⌘i g��! h# , 20,W, b,q,⌘0i
when (", 2,⌘) ! (# , 20,⌘0)

(%�) h+ , 2,W, b,q,⌘i 2̄ (�)����! hW · W 0, b,q] a (�),⌘i
when 2 : f, (�,W 0) 2 AValf (+)

(%&) h [5 +], 2,W, b,q,⌘i
5̄ (�,20)
������!hW · W 0 · [20 7!], b · [20 7! 2],

q] a (�)] {20},⌘i
when 5 : f ! f0, (�,W 0) 2 AValf (+), 20 : f0

($�) hW, b,q,⌘i 2 (�)����! h [�], 20,W, b,q] a (�),⌘i
when 2 : f, � : f, W (2) = , b (2) = 20

($&) hW, b,q,⌘i
5 (�,2)
������! h+�, 2,W, b,q] a (�)] {2},⌘i

when 5 : f ! f0, � : f, 2 : f0, W (5) = +

Figure 3: LHOSC LTS

3.3 Trace semantics
Let � ` " : f be a cr-free HOSC term such that � = {G1 :
f1, · · · , G: : f: }. A �-assignment d is a map from {G1, · · · , G: } to
the set of abstract values such that, for all 1 8 < 9 : , we have
d (G8) : f8 and a (d (G8)) \ a (d (G 9)) = ;. d simply creates a supply
of names corresponding to the context. Let d be a �-assignment,
2 : f and #$ = a (d) [{2}. Then the active initial con�guration
Cd,2
" is de�ned to be h"{d}, 2, ;,#$, ;i.

De�nition 3.5. Given con�gurations C,C0 and t = a1 . . . a= , we
writeC

t�! C0 if there existC1,C0
1, · · · ,C=,C0

= such thatC
g�!⇤C1

a1��!
C0
1
g�!⇤ · · · g�!⇤C=

a=��! C0
=
g�!⇤C0. De�ne

TrHOSC (C) , {t | there exists C0 such that C
t�! C0}.

R����� 3.6. Due to the freedom of name choice, TrHOSC (C) is
closed under type-preserving renamings that preserve names from C.

De�nition 3.7. The trace semantics of a cr-free HOSC term
� ` " : f is de�ned to be
TrHOSC (� ` " : f) , {((d, 2), C) | d is a �-assignment,

2 : f, C 2 TrHOSC (Cd,2
")}.

Example 3.8. Consider the term � ` "1 from Example 1.1 and
the trace C from Example 3.4. Letting d = {5 7! 5 }, 2 : Unit, we
have ((d, 2), C) 2 TrHOSC (� ` "1).

The full abstraction result from [14] then states that trace in-
clusion coincides exactly with contextual approximation and, thus,
contextual equivalence is captured by trace equivalence.

T������ 3.9 (F��� A����������). For any cr-free HOSC terms
� ` "1,"2 : f , we have � ` "1 . "2 i� TrHOSC (� ` "1) ✓
TrHOSC (� ` "2).

R����� 3.10. The full abstraction result [14, 15] was shown for the
in�nitary version of HOSC (with in�nite Int). However, the unbound-
edness of Int was not relevant to the argument. In particular, in the
de�nability argument (proof of Lemma 5), which shows that for every
�nite trace one can �nd a corresponding con�guration, only integer
values from the �nite trace were actually used, i.e. the construction
carries over to the �nitary setting.

AUTOMATA OVER INFINITE
ALPHABETS

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

GOS = FOS + Ref8 (Int)
• ⌃ is a �nite alphabet of tags.
• D is an in�nite alphabet of data values.
• Automata accept data words from (⌃ ⇥D)⇤.

(C1,31) (C2,32) · · · (C: ,3:)

Class memory automata [Björklund & Schwentick, FCT 2007] main-
tain �nite state as well as class memory (a map from a �nite subset
of D to a �nite set of memories).

(C1,31) (C2,32) · · · (C: ,3:) (C:+1,32)

• Lack of recursion means terms do not grow unboundedly
and there are �nitely many "skeletons".

• But terms also contain function names (introduced by the
environment) as well as location names!

• It is not immediate to accommodate W as class memory.

• Fortunately, FOS satis�es a visibility condition: function and
location names in terms in W always come from the scope
(P-view).

• P-views for recursion-free FOS terms are bounded, so we
can enumerate the names and refer to their position in the
P-view.

• This makes it possible to represent W as a class memory
function!

• However, location names must also be updated. For this we
need access to whole "scope" (P-view).

• Idea: use a tree-shaped set D and allow the automaton to ac-
cess memory not only for one data value but for its ancestors
too.

• To achieve this, we use nested data and class memory au-
tomata over nested data [Cotton-Barratt, M. & Ong, LATA
2015].

• FOSC terms can be translated into NDCMA.

• The containment problem for deterministic NDCMA is de-
cidable.

FROM LTS TO CMA

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

GOS = FOS + Ref8 (Int)
• ⌃ is a �nite alphabet of tags.
• D is an in�nite alphabet of data values.
• Automata accept data words from (⌃ ⇥D)⇤.

(C1,31) (C2,32) · · · (C: ,3:) (C:+1,32)

Class memory automata [Björklund & Schwentick, FCT 2007] main-
tain �nite state as well as class memory (a map from a �nite subset
of D to a �nite set of memories).

• Lack of recursion means terms do not grow unboundedly
and there are �nitely many "skeletons".

• But terms also contain function names (introduced by the
environment) as well as location names!

• It is not immediate to accommodate W as class memory.

• Fortunately, FOS satis�es a visibility condition: function and
location names in terms in W always come from the scope
(P-view).

• P-views for recursion-free FOS terms are bounded, so we
can enumerate the names and refer to their position in the
P-view.

• This makes it possible to represent W as a class memory
function!

• However, location names must also be updated. For this we
need access to whole "scope" (P-view).

• Idea: use a tree-shaped set D and allow the automaton to ac-
cess memory not only for one data value but for its ancestors
too.

• To achieve this, we use nested data and class automata over
nested data [Cotton-Barratt, M. & Ong, LATA 2015].

FROM LTS TO CMA

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

GOS = FOS + Ref8 (Int)
• ⌃ is a �nite alphabet of tags.
• D is an in�nite alphabet of data values.
• Automata accept data words from (⌃ ⇥D)⇤.

(C1,31) (C2,32) · · · (C: ,3:)

Class memory automata [Björklund & Schwentick, FCT 2007] main-
tain �nite state as well as class memory (a map from a �nite subset
of D to a �nite set of memories).

(C1,31) (C2,32) · · · (C: ,3:) (C:+1,32)

• Lack of recursion means terms do not grow unboundedly
and there are �nitely many "skeletons".

• But terms also contain function names (introduced by the
environment) as well as location names!

• It is not immediate to accommodate W as class memory.

• Fortunately, traces of FOSC satisfy a visibility condition:
function and location names are always introduced in the
current scope (P-view).

• P-views for recursion-free FOSC terms are bounded, so we
can enumerate the names and refer to their position in the
P-view.

• This makes it possible to represent W as a class memory
function!

• However, location names must also be updated. For this we
need access to whole "scope" (P-view).

• Idea: use a tree-shaped set D and allow the automaton to ac-
cess memory not only for one data value but for its ancestors
too.

• To achieve this, we use nested data and class memory au-
tomata over nested data [Cotton-Barratt, M. & Ong, LATA
2015].

• FOSC terms can be translated into NDCMA.

• The containment problem for deterministic NDCMA is de-
cidable.

HEAP

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

GOS = FOS + Ref8 (Int)
• ⌃ is a �nite alphabet of tags.
• D is an in�nite alphabet of data values.
• Automata accept data words from (⌃ ⇥D)⇤.

(C1,31) (C2,32) · · · (C: ,3:) (C:+1,32)

Class memory automata [Björklund & Schwentick, FCT 2007] main-
tain �nite state as well as class memory (a map from a �nite subset
of D to a �nite set of memories).

• Lack of recursion means terms do not grow unboundedly
and there are �nitely many "skeletons".

• But terms also contain function names (introduced by the
environment) as well as location names!

• It is not immediate to accommodate W as class memory.

• Fortunately, FOS satis�es a visibility condition: function and
location names in terms in W always come from the scope
(P-view).

• P-views for recursion-free FOS terms are bounded, so we
can enumerate the names and refer to their position in the
P-view.

• This makes it possible to represent W as a class memory
function!

• However, location names must also be updated. For this we
need access to whole "scope" (P-view).

• Idea: use a tree-shaped set D and allow the automaton to ac-
cess memory not only for one data value but for its ancestors
too.

• To achieve this, we use nested data and class memory au-
tomata over nested data [Cotton-Barratt, M. & Ong, LATA
2015].

NDCMA

Contextual Equivalence for State and Control via Nested Data LICS ’24, July 8–11, 2024, Tallinn, Estonia

Example 6.3. Consider theNDCMA h{@0,@1,@2}, {01,02,03,04}, ;,
@0, {@2}, 2, Xi with X de�ned by the following transitions.

@0
01,?����!
<1

@0 @0
02,(<1,?)��������!
(<2,<3)

@1 @1
03,(<2,?)��������!
(<2,<4)

@1 @1
04,(<2,<3)���������!
(<5,<6)

@2

Belowwe present an accepting run on (01,31) (01,32) (02,33) (03,34)
(04,33), where 31,32 are roots and pred(33) = pred(34) = 31. The
class memory functions ` inside con�gurations are shown as �nite
forests, where 3< stands for ` (3) =<.

(@0, ;) (@0, 3<1
1) (@0, 3<1

1 3<1
2) (@1, 3<2

1 3<1
2

3<3
3

)

(@1, 3<2
1 3<1

2

3<3
3 3<4

4

) (@2, 3<5
1 3<1

2

3<6
3 3<4

4

)

The automata are a variation on the weak NDCMA de�ned in [?
]. For convenience, our de�nition features an initial class memory
function `0, whereas, for the original NDCMA, `0 was empty, i.e.
`0 (3) = ? for all 3 2 D. As one can use initial steps of an NDCMA
to initialise the class memory to the same shape as `0, we inherit the
decidability results for language containment from [?], provided
the initial class memories are de�ned on the same data values.

T������ 6.4. Given two deterministic NDCMA A1,A2, whose
initial class memory functions are de�ned on the same data values,
the associated containment problem (L(A1) ✓ L(A2)) is decidable.

In [?], the above result was obtained via a reduction to well-
structured transitions systems [?]. In particular, the problem is at
least as hard as that of deciding coverability in Petri nets with reset
arcs, i.e. it is Ackermann-hard [?].

7 FROM FOSC TO NDCMA (ENCODING)
In this section we explain how to simulate Lcan

HOSC as an NDCMA,
provided that the term � ` " in question comes from FOSC. Recall
that NDCMA read data words from (⌃ ⇥D)⇤, where ⌃ is a �nite
tag alphabet and D is an in�nite forest-shaped data alphabet, as
in De�nition 6.1. Let us discuss how to represent traces of Lcan

HOSC
as data words. We will represent both indices and P-names using
elements of D. As the indices are bounded (Lemma 5.10), we �x a
set N of data values at level 1 and refer to the corresponding data
values as 8̃:

N = { 8̃ | 1 8 MaxInd(")}.
These �xed data values will be provided through the initial

class memory function. In contrast, data values corresponding to
P-names will be generated by the automaton at run time and their
level will vary. Next, we describe the set of �nite tags ⌃ that will
be used in the encoding.

7.1 Tag alphabet
Since actions of the LTS may involve multiple names and NDCMA
can process only a single name in each step, it is necessary to
represent each action as a sequence from (⌃ ⇥D)⇤.
• The �rst tag in such a sequence will indicate the kind of action
as well as the corresponding pattern of arguments. The tags will

have one of the following shapes:

Pcall(�⇤), Pret(�⇤),Ocall(�⇤),Oret(�⇤),
where �⇤ stands for value patterns generated by the grammar

�⇤ , ⇤ | () | b= | � | � | h�⇤,�⇤i.
Note that they do not contain any names, which have been re-
placed with a placeholder ⇤. In our encoding of actions, the tags
will be paired with a data value that corresponds to the head
name of the action.

• Whenever �⇤ contains any occurrences of ⇤, the encoding of
the action will further contain a sequence from (⌃ ⇥D)⇤ (of the
same length as the number of ⇤s in �⇤) representing function
arguments. Each element of that argument sequence will be
tagged with Parg (resp. Oarg), and these tags will be paired up
with data values representing P-names (resp. indices).

• Finally, if an action introduces a continuation name then this will
be represented using the tag Pcont (resp. Ocont), which will be
paired up with the corresponding data value.

Additionally, the encoding of each P-action will be preceded by
(Gopen,>) and succeeded by (Gopen,>) for the same data value > ,
with di�erent data values> used for di�erent P-actions. In particular,
the encoding of the whole trace will begin with (Gopen,>) for
some > . The values > will be disjoint from those used to simulate
indices or names, and we shall refer to them as ghost data values
(or simply ghost values). The extra ghost tags and values will help
us simulate administrative operations of Lcan

HOSC and maintain a
helpful relationship between the data values, used to handle storing
the heap. To sum up, we will take ⌃ to be a �nite subset of

⌃FOSC = {Gopen,Gclose, Parg, Pcont,Oarg,Ocont}

[
ÿ

�⇤2Vals⇤
{Pcall(�⇤), Pret(�⇤),Ocall(�⇤),Oret(�⇤)}.

where Vals⇤ is the set of all value patterns. Although ⌃FOSC is
in�nite (becauseVals⇤ is in�nite), we will only need a �nite number
of value patterns, because the types used in actions are syntactic
subtypes of those occurring in the boundary types of terms.

7.2 Data alphabet
Wehave alreadymentioned that wewill use �xed level-1 data values
to correspond to indices. We will now explain the relationships
between various other names used in the encoding.
• Recall that the encoding of each P-action will be preceded by
(Gopen,>). If that P-action introduces any (function or continu-
ation) names then to model such names we will use fresh data
values 3 such that pred(3) = > .

• For (Gopen,>) occurring at the very beginning of a trace encod-
ing, we require that > be fresh and a root (level 1). For further
occurrences of (Gopen,>), i.e. those following encodings of O-
actions, we require that > be fresh and pred(>) = pred(3), where
3 represents the head name of the O-action.

Note that, because pred(3) is a ghost value, the second condition
will generate tree structure among ghost values, and data values
used to model P-names will always be leaves. Moreover, as we
require pred(>) = pred(3), the induced tree on ghost values will
have the same shape as the tree of P-views that are generated

LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

GOS = FOS + Ref8 (Int)
• ⌃ is a �nite alphabet of tags.
• D is an in�nite alphabet of data values.
• Automata accept data words from (⌃ ⇥D)⇤.

(C1,31) (C2,32) · · · (C: ,3:) (C:+1,32)

Class memory automata [Björklund & Schwentick, FCT 2007] main-
tain �nite state as well as class memory (a map from a �nite subset
of D to a �nite set of memories).

• Lack of recursion means terms do not grow unboundedly
and there are �nitely many "skeletons".

• But terms also contain function names (introduced by the
environment) as well as location names!

• It is not immediate to accommodate W as class memory.

• Fortunately, FOS satis�es a visibility condition: function and
location names in terms in W always come from the scope
(P-view).

• P-views for recursion-free FOS terms are bounded, so we
can enumerate the names and refer to their position in the
P-view.

• This makes it possible to represent W as a class memory
function!

• However, location names must also be updated. For this we
need access to whole "scope" (P-view).

• Idea: use a tree-shaped set D and allow the automaton to ac-
cess memory not only for one data value but for its ancestors
too.

• To achieve this, we use nested data and class memory au-
tomata over nested data [Cotton-Barratt, M. & Ong, LATA
2015].

• FOSC terms can be translated into NDCMA.

• The containment problem for deterministic NDCMA is de-
cidable.

• HOSC[FOSC] is decidable.

(C1,31) (C1,32) (C2,33) (C3,34) (C4,33)

SUMMARY
Contextual Equivalence for State and Control via Nested Data LICS ’24, July 8–11, 2024, Tallinn, Estonia

• The trace semantics of FOSC terms can be faithfully repre-
sented using deterministic NDCMA.

• The containment problem for deterministic NDCMA is de-
cidable.

• HOSC[FOSC] is decidable.

(C1,31) (C1,32) (C2,33) (C3,34) (C4,33)

DECIDABILITY STATUS OF X[FOSC]
(FINITE BASE TYPES, NO RECURSION)LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

HOSC

FOSC HOS

FOS

HOSC

GOSC HOS

FOSC GOS

FOS

Ref (Int) Ref8 (Int) Ref (g) Cont (g)

Contextual approximation and equivalence

Let � ` "1,"2 : g beHOSC terms and- 2 {HOSC, FOSC,HOS, FOS}.

We de�ne � ` "1 .- "2 to hold, when for all - contexts ⇠ [g]
such that ` ⇠ ["1],⇠ ["2] : g 0 for some g 0, if (⇠ ["1], ;) + then
(⇠ ["2], ;) +.

The terms � ` "1,"2 : g are called contextually equivalent (wrt
- contexts), written � ` "1 '- "2, when � ` "1 .- "2 and
� ` "2 .- "1.

'HOSC

'FOSC 'HOS

'FOS

'HOSC

'FOSC 'HOS

'FOS

HOSC[FOSC]

FOSC[FOSC] HOS[FOSC]

FOS[FOSC]

unrestricted
order!

