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The Satisfiability Problem

Given a formula φ of some logic L, does φ have a model?

Closely related to the validity problem: φ is not satisfiable iff ¬φ is a
tautology.
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Satisfiability for First-Order Logic

Non-satisfiability is semidecidable: a sentence φ is not satisfiable iff |= ¬φ
iff ⊢ ¬φ.

Non-satisfiability is not decidable: For a given Minsky machineM, there is
an effectively constructible sentence φM over the language
{0,Succ,Reach} such thatM halts iff |= φ iff ¬φ is not satisfiable.

φM ≡ (Reach([1], [0], [0]) ∧ Closed)⇒ ∃c,d.Reach([m+1], c,d)}

Closed ≡ “whenever Reach([i], c,d), then Reach([i′], c′,d′)
where (i, c,d) 7→ (i′, c′,d′)”

Consequently, satisfiability is not even semidecidable.
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Finite Satisfiability for First-Order Logic

Finite satisfiability is semidecidable.

Finite satisfiability is not decidable: For a given Minsky machineM, there
is an effectively constructible sentence ψM over the language
{0,Succ,Reach} such thatM halts iff ψM has a finite-state model.

ψM ≡ Reach([1], [0], [0], [0]) ∧ Closed
∧ Reach(x1, x2, x3, y)⇒ (S(y),0 ∧ ∀z(y,z ⇒ S(y),S(z)))

Consequently, the finite non-satisfiability (and hence also finite validity) is
not semi-decidable. In particular, there is no complete deductive system
satisfying |=f φ iff ⊢ φ.
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Satisfiability for Temporal Logics

The satisfiability problem for the modal µ-calculus is EXPTIME-complete.

Small model property: every satisfiable φ has a model whose size is at
most exponential in |φ|.

There is a complete deductive system (satisfying |= φ iff ⊢ φ).
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Satisfiability for Probabilistic Temporal Logics (1)

Probabilistic CTL:

φ ::= a | ¬φ | φ1 ∧ φ2 | P(Φ) ▷◁ r
Φ ::= XXXφ | φ1 UUUφ2 | φ1 UUU

k φ2

Here, a ∈ AP, ▷◁ ∈ {≥, >,≤, <,=}, r ∈ [0,1] is a rational constant, and k ∈N.

FFFφ and FFFk φ abbreviate trueUUUφ and trueUUUk φ.

We write XXX=1 φ instead of P(XXXφ) = 1, GGG=1 φ instead of FFF=0 ¬φ, etc.

The qualitative fragment of PCTL is obtained by restricting r to 0 and 1.

PCTL formulae are interpreted over Markov chains.
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Satisfiability for Probabilistic Temporal Logics (2)

PCTL does not have the small model property. There are satisfiable PCTL
formulae with only infinite-state models.

GGG>0(¬a ∧ FFF>0 a)

The satisfiability problem has been studied in two basic variants:

general satisfiability, i.e., the existence of an unrestricted model;

finite satisfiability, i.e., the existence of a finite-state model.
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Satisfiability for Probabilistic Temporal Logics (3)

General/finite PCTL satisfiability has been first studied for the qualitative
PCTL fragment. Both problems are EXPTIME-complete, and a (finite
representation of) a model for a satisfiable qPCTL formula is effectively
constructible in exponential time.

Proof techniques are similar to non-probabilistic logics (filtration,
tableaux,. . .)
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Satisfiability for Probabilistic Temporal Logics (4)

The decidability of general/finite PCTL satisfiability has been open for
about 30 years, despite numerous research attempts.

There are positive decidability results about finite PCTL satisfiability
obtained for various PCTL fragments.

For a given PCTL formula φ and a given n ≥ 1, the existence of model for
φ with precisely n states is decidable (by encoding the question in
first-order arithmetic of the reals).

Hence, the finite PCTL satisfiability is semidecidable. The decidability can
be obtained by establishing any computable upper bound on the number of
states of a model for a finite satisfiable PCTL formula.
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Satisfiability for Probabilistic Temporal Logics (5)

Theorem 1 (Chodil, K., 2024)
The finite PCTL satisfiability is undecidable. The general PCTL satisfiability is
even highly undecidable (beyond the arithmetical hierarchy). Consequently,
there is no complete deductive system proving all valid (or all finitely valid)
PCTL formulae.
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Th Undecidability Proof

If the finite PCTL satisfiability is undecidable, then the intuition about the
existence of a bounded-size model must be wrong.

We show that there exists a fixed parameterized PCTL formula ψ(x , y)
enforcing arbitrarily large finite models just be changing the numerical
probability constraints x , y.

Intuitively, the vector (p,q) substituted for (x , y) encodes an (arbitrarily
large) non-negative integer value n, and the formula ψ(x/p, y/q) enforces
the existence of states representing all counter values ranging from 0 to n
by “implementing the decrement operation”.

Then, we show how to implement the increment (test for zero is trivial due
to the chosen encoding). Finally, we show how to encode two counters
simultaneously, and how simulate a Minsky machine.
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Encoding a non-negative counter in PCTL formulae

Let q = 13
16 , I = ( 1

4 ,
3
4 ), κκκ = (κκκ1,κκκ2) where κκκ1 ∈ I, κκκ2 > 0, and κκκ1 + κκκ2 ≤ 1.

Let W = I × (0,∞), and let τ, σ : W →W be functions defined as follows:

τ(vvv) =
(q − 1 + vvv1

vvv1
,
vvv2

vvv1

)
, σ(vvv) =

(
1 − q
1 − vvv1

,
vvv2(1 − q)

1 − vvv1

)
.

Intuitively 0,1,2, . . . are represented by vectors κκκ, σ(κκκ), σ(σ(κκκ)), . . .

A state t of a Markov chain represents a given n ∈N iff the path formulae
XXXa and XXXb are satisfied in t with the probabilities σn(κκκ)1 and σn(κκκ)2.
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Encoding a non-negative counter in PCTL formulae
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Constructing the Formula ψ(x , y)
Let A = {a,b , c,h, r0, r1, r2, r3, r4}. We put

ψ(x , y) ≡ Init(x , y) ∧ GGG=1 Invariant

where

Init(x , y) ≡ ⟨a, r0⟩ ∧ XXX=x a ∧ XXX=y b
Invariant ≡ Fin ∨ Trans ∨ Free

where

Free ≡ h ∧
∨
B⊆A

(⟨B⟩ ∧ XXX=1⟨B⟩)

Fin ≡

∨
i∈{0,...,4}

⟨a, ri⟩ ∧ FSuc i ∧ Zero

where

FSuc i ≡ XXX=1(⟨h,a,S(ri)⟩ ∨ ⟨h,b ,S2(ri)⟩ ∨ ⟨h, c,S2(ri)⟩),

Zero ≡ XXX=κκκ1 a ∧ XXX=κκκ2 b .
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Constructing the Formula ψ(x , y)

Finally, we put

Trans ≡
∨

i∈{0,...,4}

⟨a, ri⟩ ∧ Suc i ∧ Interval ∧ Eqi

where

Suc i ≡ XXX=1(⟨a,S(ri)⟩ ∨ ⟨h,b ,S2(ri)⟩ ∨ ⟨h, c,S2(ri)⟩)

Interval ≡ XXX> 1
4

a ∧ XXX< 3
4

a ∧ XXX>0 b

Eqi ≡ FFF2
=q S2(ri) ∧ FFF

2
=q((S

2(ri) ∧ ¬b) ∨ (S3(ri) ∧ b))
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