Abstract

Negotiations are a formalism for describing multiparty distributed cooperation. Alternatively, they can be seen as a model of concurrency with synchronized choice as communication primitive. Well-designed negotiations must be sound, meaning that, whatever its current state, the negotiation can still be completed. In their work, Esparza and Desel have shown that deciding soundness of a negotiation is PSPACE-complete, and in PTIME if the negotiation is deterministic. They have also provided an algorithm for an intermediate class of acyclic, non-deterministic negotiations, but left the complexity of the soundness problem open.

We show that soundness of acyclic, weakly non-deterministic negotiations is in PTIME, and that checking soundness is already NP-complete for slightly more general classes.

We also study two further analysis problems for sound acyclic deterministic negotiations, called the race and the omission problem, and give polynomial algorithms. We use these results to provide the first polynomial algorithm for some analysis problems of workflow nets with data previously studied by Trcka, van der Aalst, and Sidorova.


Last modified: Mon Aug 22 14:11:40 CEST 2016