
Verification of Recursive Asynchronous Concurrency

Luke Ong

(Joint work with Jonathan Kochems and Emanuele D’Osualdo)

University of Oxford

IFIP WG 2.2 Meeting, Munich, 15-18 September 2014

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 1 / 44

Outline

1 A Quick Overview of Soter: Automatic Safety Verification of Erlang
Programs

2 A New Model of Recursive Asynchronous Concurrency: Asynchronously
Communicating Context-Free Grammar (ACCFG) and the Shaped
Constraint

3 Nested Nets with Coloured Tokens (NNCT) and Tower-Complete
Coverability

4 Conclusions and Further Directions

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 2 / 44

– designed by Ericsson in 1980s to program real-time,
distributed, fault-tolerant telecoms systems.

1 Each process (actor) is a sequential, higher-order functional program.

2 Each process has an unbounded mailbox. Processes communicate by
asynchronous message passing – send is non-blocking.

3 Each process has a unique name or pid, which is datum and passable
as message.

4 A process may block while waiting to receive a message that matches
a given pattern: message retrieval is first-in-first-firable-out (FIFFO).

5 A process may spawn new processess (and remember their names).

Natural fit for programming “irregular concurrency”; e.g. multicore CPUs,
networked servers, parallel databases, GUIs and interacting programs.

Erlang: “a gold standard in concurrency-oriented programming”

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 4 / 44

Goal: automatically verify safety properties (e.g. race freedom and mailbox
boundedness).

Approach: by abstract interpretation and infinite-state model checking.

Verifying Erlang programs is inherently difficult.

Erlang’s state space has many sources of infinity Abstraction

1 Sequential Erlang is already Turing complete. finite

2 Message space is unbounded. finite

3 Value domains are infinite. finite

4 Arbitrarily many processes can be spawned dynamically. counter

5 Mailboxes have unbounded capacity. counter

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 5 / 44

What’s decidable about Erlang?

Almost nothing interesting!

Theorem (Turing Completeness)

The following (tiny) fragment of Erlang is already Turing powerful.

(1) finite data types (in particular, finite message space)

(2) each process computes a first-order recursive function

(3) static spawning: the number of processes is fixed at 2

(4) bounded mailbox: mailboxes have a fixed capacity of 1

Proof is by encoding Minsky’s counter machine.

Replacing (1) and (2) by the following is also Turing powerful.

(1’) constructors with arity at most 2

(2’) order-0 function, equivalently, a finite-state transduceer

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 6 / 44

Soter – A Safety Verification Tool

Take (Core) Erlang code as source. Two-stage abstraction (A1, A2)
+ model checking (MC).

A1 Perform a k-CFA-like analysis to construct abstractions of data and
control-flow.

A2 Bootstrap the analysis to yield an Actor Communicating System
(ACS)—a CCS-like infinite-state model—that soundly approximates
the program via a counter abstraction of three quantities: ι, q,m

I Counter (ι, q) counts # processes in pid-class ι currently in state q
I Counter (ι,m) sums the occurrences of message m in the mailbox of a

process p, as p ranges over pid-class ι

MC Model-check the ACS using a vector addition system coverability
checker (BFC)

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 7 / 44

Soter: Workflow in 3 Phases

http://mjolnir.cs.ox.ac.uk/soter/

ACS
BFC

model

Cover-
ability

queries

Elang
module

+

safety
queries

Core
Elang

module
erlc

Analysis

Data Abs

Msg Abs

bfc

Gen.

SAFE

UNSAFE

(ERROR)Mailbox
Abs

Context
Abs

Simpl.

Phase 3Phase 1

Phase 2

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 8 / 44

http://mjolnir.cs.ox.ac.uk/soter/

Empirical Evaluation

Example LOC SAFE?
ABS ACS TIME (sec.)

D M #Pl. Rat. Ana. Sim. BFC Total

reslockbeh 507 yes 0 2 40 4% 1.94 0.41 0.85 3.21
reslock 356 yes 0 2 40 10% 0.56 0.08 0.82 1.48
sieve 230 yes 0 2 47 19% 0.26 0.03 2.46 2.76
concdb 321 yes 0 2 67 12% 1.10 0.16 5.19 6.46
state factory 295 yes 0 1 22 4% 0.59 0.13 0.02 0.75
pipe 173 yes 0 0 18 8% 0.15 0.03 0.00 0.18
ring 211 yes 0 2 36 9% 0.55 0.07 0.25 0.88
parikh 101 yes 0 2 42 41% 0.05 0.01 0.07 0.13
unsafe send 49 no 0 1 10 38% 0.02 0.00 0.00 0.02
safe send 82 no* 0 1 33 36% 0.05 0.01 0.00 0.06
safe send 82 yes 1 2 82 34% 0.23 0.03 0.06 0.32
firewall 236 no* 0 2 35 10% 0.36 0.05 0.02 0.44
firewall 236 yes 1 3 74 10% 2.38 0.30 0.00 2.69
finite leader 555 no* 0 2 56 20% 0.35 0.03 0.01 0.40
finite leader 555 yes 1 3 97 23% 0.75 0.07 0.86 1.70
stutter 115 no* 0 0 15 19% 0.04 0.00 0.00 0.05
howait 187 no* 0 2 29 14% 0.19 0.02 0.00 0.22

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 9 / 44

Soter 0.1: http://mjolnir.cs.ox.ac.uk/soter/

D’Osualdo, Kochems & O.: Soter: an Automatic Safety Verifier for Erlang.
AGERE! ’12.

D’Osualdo, Kochems & O.: Automatic Verification of Erlang-style Concurrency.
Static Analysis Symposium (SAS), 2013.

Limitations: Two Sources of Imprecision

(1) Each process is abstracted as a finite-state machine (even though the
ACS is an infinite-state model).

I Cannot analyse non-tail-recursive functions accurately. Undesirable –
because Erlang processes are (higher-order) functional programs, and
definition-by-recursion is standard.

I Cannot support stack-based reasoning.

(2) Pids (process ids) are abstracted as finitely many pid equiv. classes
I Unable to support analysis that requires precision of process identity.
I Because mailboxes are merged, certain patterns of communication

cannot be analysed accurately.

The rest of the talk aims to address (1) above; for (2) see Further Directions.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 10 / 44

http://mjolnir.cs.ox.ac.uk/soter/

Asynchronous Programming Style

A ubiquitous systems programming idiom for managing concurrent
interactions with the environment.

The programmer can make conventional (synchronous) function calls:
a caller waits until the callee completes computation.

However, for time-consuming tasks, the programmer makes
(non-blocking) asynchronous procedure calls: the (callback) tasks are
not immediately executed but are rather posted in a task bag.

A cooperative despatcher picks and executes callback tasks from the
task bag to completion (and these callbacks can post further
callbacks to be executed later).

E.g. async – a common construct in modern concurrency-oriented
languages; e.g. Microsoft’s F#, IBM’s X10, Haskell, etc.

Asynchronous programming is used to build fast servers, routers, sensor
networks; basis of web programming in Ajax.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 12 / 44

Working Example: Server in Asynchronous Programming Style

1 server() →
2 init_despatcher(), do_server(), post_task(),
3 case (*) of
4 true →server();
5 false →system ? stop
6 end,
7 task_bag ! stop.
8

9 post_task() →task_bag ! task, task_bag ? ok.
10

11 init_despatcher() →task_bag ! init, task_bag ? ready.
12

13 despatcher() →
14 task_bag ? init, task_bag ! ready,
15 task_bag ? task, task_bag ! ok, do_task(),
16 case (*) of
17 true →despatcher();
18 false →task_bag ? stop, system ! despatcher_done.
19

20 main() →spawn(server), spawn(despatcher), system ! stop.

Question. Can the system reach a state s.t. ready ∈ task_bag and
despatcher_done ∈ system?

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 13 / 44

A Model for Asynchronous Programming

Asynchronously Communicating Pushdown Systems (ACPS)

Each process is a pushdown system.

Processes may be spawned dynamically.

Processes communicate asynchronously by message
passing—non-blocking send, and blocking receive—via a fixed, finite
number of unbounded, unordered channels (or message buffers).

Unfortunately reachability is undecidable in ACPS.
“Any context-sensitive and synchronisation-sensitive analysis is
undecidable.” (Ramalingam: TOPLAS 2000)

A common restriction of ACPS sufficient for decidability

A process may only receive a message when its call stack is empty.

Large literature: see, e.g., (Sen & Viswanathan: CAV 2006), (Jhala & Majumdar: POPL

2007).

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 14 / 44

Asynchronous Communicating Pushdown Systems: Related Work

Various ways to achieve decidability:

Asynchronous procedure calls – empty-stack constraint
(Sen & Viswanathan: CAV06), (Jhala & Majumdar: POPL07),
(Ganty et al.: POPL09)

Hierarchical communication topology
(Bouajjani & Emmi: POPL12), (Bouajjani et al.: Concur05)

Synchronisation via locks
(Kahlon: LICS09), etc.

Variously bounded by: context, phase and scope
(Lal & Reps: FMSD09), (Bouajjani & Emmi: TACAS12), (Torre et
al.: Concur11)

Pattern-based verification
(Esparza & Ganty: POPL11)

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 15 / 44

Questions
1 Find a model of asynchronous concurrency that relaxes the

Receiveable-Only-When-Stack-is-Empty restriction (hence extending
the paradigm), while preserving decidablity of reachability.

2 Is the new model realistic and useful?

3 How hard is safety verification of these models? What is the precise
complexity of (ExpSpace-hard) reachability / coverability?

4 Are there practical algorithms?

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 16 / 44

Idea

Because channels are unordered, the precise sequencing of
non-blocking actions (i.e. send and spawn) are unobservable.

Thus we postulate: certain actions commute with each other over
sequential composition, while others (notably receive) do not.

Independence Relation and Commutative / Non-Comm. Actions

1 An independence relation # ⊆ Σ2 is an irreflexive and symmetric
relation; it induces a congruence between terms, '# ⊆ (Σ∗)2.
[Intuition: if a# b then “a commutes with b”]

2 a ∈ Σ is #-non-commutative if ∀a′ ∈ Σ : (a, a′) 6∈ #

3 a ∈ Σ is #-commutative if ∀a′ ∈ Σ: either a′ is #-non-commutative
or (a, a′) ∈ #.

4 An independence relation # is unambiguous just if it partitions Σ into
#-commutative (written Σcom) and #-non-comm. (Σ¬com) parts.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 17 / 44

A New Model of Asynchronous Concurrency: Notation

Fix finite sets: Chan (channels), M sg (messages), and N (non-terminal
symbols, for procedures). Define actions

Spawns := { νX | X ∈ N }
Sends := { c !m | c ∈ Chan,m ∈ M sg }
Receives := { c ?m | c ∈ Chan,m ∈ M sg }

Set terminal symbols (= concurrency/communication actions)

Σ := Sends ∪ Receives ∪ Spawns.

1 Easy to define an unambiguous #: partitioning Σ into commutative
actions Σcom and non-commutative actions Σ¬com as follows:

Σ := (Spawns ∪ Sends)︸ ︷︷ ︸
Commutative

∪ Receives︸ ︷︷ ︸
Non-Comm.

2 We can lift # ∈ Σ2 to an unambiguous #̂ ⊆ (Σ ∪N)2, and so
partition N = N com ∪N¬com

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 18 / 44

A New Model of Asynchronous Concurrency: ACCFG

Given Chan, M sg, and N , an asynchronously communicating context
free grammar (ACCFG) is a tuple (Σ,#,N ,R, S) where

Σ := Sends ∪ Receives ∪ Spawns is a finite set of terminal symbols
(= conc./comm. actions) as defined above

N is a finite set of non-terminal symbols (= procedure names);
S ∈ N is a start symbol

⊆ Σ2 is an unambiguous independence relation (defined above)
giving partitions: Σ = Σcom ∪ Σ¬com and N = N com ∪N¬com

R is a set of context-free rewrite rules of the forms A→ a, or
A→ BC, where a ∈ Σ ∪ { ε }, A,B,C ∈ N

The induced leftmost derivation relation, →, is a binary relation over
(Σ ∪N)∗/ '#.

N.B. Equivalent presentation using asynchronously communitating
pushdown systems, ACPS.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 19 / 44

Example: ACCFG

1 server() →
2 init_despatcher(), do_server(), post_task(),
3 case (*) of
4 true →server();
5 false →system ? stop
6 end,
7 task_bag ! stop.
8

9 post_task() →task_bag ! task, task_bag ? ok.
10

11 init_despatcher() →task_bag ! init, task_bag ? ready.

Define a ACCFG with rules:

S → I ·D · P · Scase · Sstop

Scase → S | system ? stop
Sstop → task bag ! stop
· · ·

Commutative non-terminal: Sstop

Non-commutative non-terminals: S, I, P, Scase

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 20 / 44

Standard Semantics of ACCFG

Write Terms := (Σ ∪N)∗/ '#.

The configurations are elements of

M[Terms]× (Chan→M[M sg])

where M[A] is the set of multisets of A.

For simplicity, we write a configuration

([α, β, α], { c1 7→ [m1,m1], c2 7→ [] })

as
α ‖ β ‖ α J (c1 7→ [m1,m1], c2 7→ [])

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 21 / 44

Standard Semantics: Some Rules

Fix ACCFG (Σ,#,N ,R, S). Set Terms := (Σ ∪N)∗/ '#.

Define binary relation → over Config := M[Terms]× (Chan→M[M sg]).

Aγ ‖ Π J Γ → BC γ ‖ Π J Γ (‘A→ BC’ ∈ R)

(c ?m) γ ‖ Π J ([m]⊕ l)c,Γ → γ ‖ Π J lc,Γ

(c !m) γ ‖ Π J lc,Γ → γ ‖ Π J ([m]⊕ l)c,Γ

(νX) γ ‖ Π J Γ → γ ‖ X ‖ Π J Γ

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 22 / 44

Safety Verification Problems

We order processes (elements of Terms) δ π0 ≤Procs δ π1 just if there
exist π′0 and π′1 such that δ π′0 ≤Hig δ π

′
1 and both δ πi '# δ π′i.

We lift ≤Procs to a preorder ≤ over Config , using the multiset and
function extension.

ACCFG Coverability Problem

Given an ACCFG and configuration Π0 J Γ0, is there a configuration
Π J Γ such that

1 S J ∅ →∗ Π J Γ, and

2 Π0 J Γ0 ≤ Π J Γ?

Question: Is Coverability decidable?

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 23 / 44

An Approach to Deciding Coverability

A well-structured transition system (WSTS) is a triple (S,→,≤) such that

1 (S,≤) is a well-quasi-order (WQO) i.e. a preorder such that
∀s0 s1 s2 · · · ∈ Sω .∃i < j . si ≤ sj

2 transition relation (S,→) is ≤-monotone i.e. if s→ t and s ≤ s′ then
there exists t′ s.t. s′ → t′ and t ≤ t′

3 for each s ∈ S, min(pred(↑s)) is computable.

WSTS Coverability Problem

Given a WSTS (S,→,≤), a start state and an (error) state serr, is there a
reachable element s that covers serr i.e. s ≥ serr?

WSTS Coverability is decidable.
(Abdulla et al.: LICS96), (Finkel & Schnoebelen: TCS 2001)

Thus we seek conditions on ACCFG that guarantee a well-quasi-ordering
of the configurations, with respect to which the (ACCFG) transition
relation is monotone.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 24 / 44

An Abstract Semantics by Summarisation

Idea: An ACCFG process (element of Term) has shape:

α β0 X1 β1 X2 β2 · · ·Xj βj ∈ (Σ ∪N)∗/ '#

where α ∈ N ∪ (Σ · N) ∪ Σ ∪ { ε }︸ ︷︷ ︸
CtrlState

, βi ∈ (N com ∪ Σcom)∗ and

Xi ∈ N¬com

1 View α as control state, and β0 X1 β1 · · ·Xj βj as (pushdown)
“stack”

2 Summarise the stack as M0 X1 M1 · · ·Xj Mj where each
Mi := M[βi], is the Parikh image1 of βi.

3 The non-commutative non-terminals Xis act as separators of the
caches Mjs of commutative actions.

4 Whenever the top separator is popped, the actions of the top cache
M0 is despatched at once.

1The Parikh image of a word is the number of occurrences of each letter in the word.
E.g. Take Σ = { a, b, c, d }. MΣ(b a c a) is the multiset a 7→ 2, b 7→ 1, c 7→ 1, d 7→ 0.Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 25 / 44

Standard Coverability Reduces to Abstract Coverability

Theorem (Reduction)

An instance of the Coverability Problem is a yes-instance according to the
standard semantics iff it is a yes-instance according to the abstract
semantics.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 26 / 44

A Decidable Subclass: ACCFG with Shaped Constraint

An ACCFG is k-shaped just if every reachable process has at most k
occurrences of non-commutative non-terminals.

An ACCFG satisfies the shaped constraint if it is k-shaped, for some k.

Theorem

Using the abstract semantics, shaped ACCFG gives rise to a WSTS.

Corollary

The Coverability Problem for shaped ACCFG is decidable and
ExpSpace-hard.

J. Kochems & O.: Safety Verification of Asynchronous Pushdown Systems with Shaped

Stacks. Concur 2013.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 27 / 44

Is the Shaped Constraint Useful in Practice?

The shaped constraint is a “semantic” condition and undecidable.
Fortunately there is a sufficient syntactic condition.

Proposition (Well-foundedness)

If an ACCFG G satisfies

Well-foundnedness. There is a well-founded preorder � s.t. for
all A ∈ N and B ∈ RHS(A) ∩N

1 A � B, and
2 if A→ BC is a G-rule where C ∈ N¬com then A � B

then it is k-shaped, for some k.

N.B. The k above is the length of the longest �-chain.

The condition is quite general and seems practically useful.

Example: The ACCFG server satisfies the condition.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 28 / 44

Nested Nets with Coloured Tokens (NNCT)

Question

What is the complexity of coverability for k-shaped ACCFG?

We introduce a new extension of Petri nets as a model of ACCFG.

Simple places may contain (ordinary) tokens.

Complex places may contain complex tokens. A complex token is a
bag of coloured tokens.

Three kinds of transition:
1 simple transition: new complex tokens may be created, and empty

complex token removed
2 complex transition: complex tokens may be removed from a complex

place and added (with possibly an injection of tokens) to another
complex place

3 transfer transition: coloured tokens of a complex token are flushed out
to simple places

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 30 / 44

Example: Nested Nets with Coloured Tokens (NNCT)

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 31 / 44

Example: NNCT

Complex transition

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 32 / 44

Example: NNCT

Complex transition

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 33 / 44

Example: NNCT

Complex transition

Consider the complex token with 2 black, 2 green, 1 blue, and 1 red tokens.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 34 / 44

Example: NNCT

Transfer transition: contents of the complex tokens (2 black, 2 green, 1
blue, 1 red) are “flushed out”.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 35 / 44

Extensions of Petri nets and Complexity of Coverability

Petri nets with transfer arcs: non-PR (Schnoebelen MFCS 2010)

Petri nets with reset arcs: non-PR (Dufourd, Finkel and Schnoebelen
ICALP 1998)

Nested Petri nets: Ackermanian (Lamazova & Schnoebelen Ershov
1999)

Data nets (various versions): undecidable, Ackermanian and
Tower-hard but no upper bound (Lazic, Newcomb, Ouaknine,
Worrell and Roscoe ICATPN07)

In all these extensions, coverability is not primitive recursive, if decidable.

In contrast, NNCT coverability is in Tower.

To our knowledge, NNCT is the first extension of Petri nets (with infinite
token types) that has primitive recursive coverability. (Cf. Branching VAS,
Lazic & Schmitz LICS14)

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 36 / 44

Tower (Schmitz 2013): A new complexity class between Elem and PR
Intuitively a Tower-complete problem “spans” infinitely-many finite
towers-of-exponentials.

Sylvain Schmitz: Complexity Hierarchies Beyond Elementary. arXiv 20 Dec 2013.

Examples of Tower-complete problems:

1 SFEq (Stockmeyer & Meyer STOC 1973)

2 WS1S Satisfiability

3 Higher-Order Model Checking (Ong LICS 2006)

4 NNCT Coverability

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 37 / 44

Complexity of ACCFG Coverability via NNCT

Theorem (Inter-reducibility)

Shaped-ACCFG coverability and NNCT coverability are elementarily
inter-reducible.

Idea: Given an ACCFG, we define a simulating NNCT:

Use simple places to monitor channel contents & (pending) spawns

Encode processes as complex tokens: for each a ∈ Σ and i < K,
allocate a colour for (a, i) in order to encode summaries as coloured
tokens.

Theorem

Coverability of NNCT is Tower-complete.

Upper bound: a novel “nested” Rackoff argument

Lower bound: a modified Stockmeyer’s ruler-construction

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 38 / 44

Summary

1 We introduce a new model of computation for asynchronous
procedure calls—shaped asynchronously communicating context free
grammar (ACCFG)—that relaxes the standard
Receivable-Only-When-Stack-is-Empty constraint.

2 Coverability of shaped ACCFG is decidable and Tower-complete.

3 We give a syntactic sufficient condition for ACCFG to have shaped
stacks. The condition seems practically useful.

4 We introduce the first extension of Petri nets (with infinite token
types)—Nested Nets with Coloured Tokens (NNCT)—with PR
coverability.

J. Kochems & O.: Safety Verification of Asynchronous Pushdown Systems with Shaped
Stacks. Concur 2013.

J. Kochems & O.: Decidable Models of Recursive Asynchronous Concurrency. Preprint,

2014.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 40 / 44

Further Directions

1 Extend the ACCFG framework to higher-order processes.

2 Is the BFC algorithm the basis of an efficient solution for
model-checking ACCFG?

3 Use π-calculus (rather than ACS) as intermediate models of
computation

I Fragments of π-calculus that are decidable models of computation:
depth-bounded / mixed-bounded / breadth-bounded fragments map
(“bisimilarly”) into WSTS, Petri nets and bounded Petri nets.
(Roland Meyer: PhD thesis 2008)

I Membership of these fragments are undecidable. We (D’Osualdo and
Ong) aim to develop a type-based static analysis for a fragment of
depth-bounded π-terms.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 41 / 44

FAQ

Surely Tower complexity is too high for any practical purposes!

Answer

Verification problems of Tower-complete worst-case complexity is not
doomed to fail.
Recent advances in algorithm design for problems of comparable or higher
complexity:

1 Higher-order Model Checking (Ramsay et al., POPL 2014;
Tower-complete) http://mjolnir.cs.ox.ac.uk/web/preface

2 Safety verification of concurrent C programs with broadcast by BFC,
equivalent to Petri nets with transfer arcs (Kaiser et al., CONCUR
2012; non-primitive recursive)

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 42 / 44

http://mjolnir.cs.ox.ac.uk/web/preface

FAQ

Is “shaped ACCFG” relevant to real-life verification?

Answer

Yes. Here are some examples:

1 When modelling recursion and values returned asynchronously by
procedures e.g. via promises, delay, or C++11’s std::future (see Sec.
6 para. 2).

2 Erlang behaviour, a functional interface that abstracts away a variety
of concurrent interactions. This promotes a programming style that
does not fit the empty-stack restriction.

3 Replicated worker pattern: Tasks are recursively decomposed and
possibly returned to the distributor. Workers also interact with a
shared resource. Such programs are modelled by shaped ACCFG and
naturally arise from abstracting Erlang programs produced by Soter.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 43 / 44

FAQ

What are the differences between empty-stack constraint and 1-shaped
constraint?

Answer

Empty-stack restriction limits a process to remember only a bounded
amount of information along a receive transition (thus finite state).

A 1-shaped ACCFG can remember a commutative stack of arbitrary height
along a receive transition (and so, infinite state). We exploit the latter in
the lower-bound proof.

Luke Ong (Oxford) Verifying Recursive Asynchrony IFIP WG 2.2, Sep 2014 44 / 44

	A Quick Overview of Soter: Automatic Safety Verification of Erlang Programs
	A New Model of Recursive Asynchronous Concurrency: Asynchronously Communicating Context-Free Grammar (ACCFG) and the Shaped Constraint
	Nested Nets with Coloured Tokens (NNCT) and Tower-Complete Coverability
	Conclusions and Further Directions

