Bohm Trees as Higher-Order Recursion Schemes

Pierre Clairambault Andrzej Murawski

ENS Lyon University of Warwick

Higher-order recursion schemes (HORS)

@ HORS are an abstract form of functional programs.

@ They can be viewed as typed grammars generating possibly infinite trees.

Example

o TERMINALS
a:o0—o0 b:o—>0—o0 c:o

@ NONTERMINALS

S:o F:(0o—>0)—>0—o0 G:(0o—>0)—>o0
e RULES
S = Ga
Ffx = f(fx)
Gf = b(fc)(G(FfF))

@ STARTING SYMBOL

Example

S = Ga
Ffx = f(fx)
Gf = b(fc)(G(Ff))

Example (Tree Generation)

Example

S = Ga
Ffx = f(fx)
Gf = b(fc)(G(Ff))

Example (Tree Generation)

Ga

Example

S = Ga
Ffx = f(fx)
Gf = b(fc)(G(Ff))

Example (Tree Generation)

b /a—C

TNG(Fa)

Example

S = Ga
Ffx = f(fx)
Gf = b(fc)(G(Ff))

Example (Tree Generation)

Example

S = Ga
Ffx = f(fx)
Gf = b(fc)(G(Ff))

Example (Tree Generation)

a—C
b< /afa—c
b\b /F(Fa)c

TNG(F(F(Fa)))

Example

S = Ga
Ffx = f(fx)
Gf = b(fc)(G(Ff))

Example (Tree Generation)

a—c
/
b\b/aac
\b/aa,ac

\ooo

Alternative presentation : AY-calculus

Types. Simple types over one atom o.

0,0 :=0|60—0

Terms.
M,N ::=x | X’ M| M N|Yp
Typing rules.
Mx:0-M:¢
Mx:0F-x:6 TYs:(0—0)—0 r=xx?M: 06
rM-M:0-¢9 Fr=N:0
FrN-MN:¢
Reduction.

M MYN 5 M[N/x]
Yo M —5 M (Ye M)
M -, MM x

(in the last, x ¢ fv(M) and M has type 0 — 6')

Relationship of HORS and A\Y

Example

S = Ga
Ffx f (f x)
Gf = b(fc)(G(FF))

Relationship of HORS and A\Y

Example

S = Ga
A Ax.f (f x)
G = MDb(fc)(G(FfF))

N
Il

Relationship of HORS and \Y

Example

S = Ga

)
I

Afb (f) (G (Ax.f (f x)))

Relationship of HORS and A\Y

Example

S = Ga

[
I

Y (AG.AF.b (f ¢) (G (Ax.f (f x))))

Relationship of HORS and A\Y

Example

S = Y (AGAD (fo) (G Oxf(fx)) a

Relationship of HORS and A\Y

Example

S = Y (AG.Xf.b (f c) (G (Ax.f (f x)))) a

This is a AY-term of type o in context
a:o—o b:o—o0—o0 c:o.

We write <1 for contexts with types of order at most 1.

Relationship of HORS and \Y

Example

S = Y (AG.Xf.b (f c) (G (Ax.f (f x)))) a

This is a AY-term of type o in context
a:o—o b:o—o0—o0 c:o.

We write <1 for contexts with types of order at most 1.

Proposition (Salvati, Walukiewicz)

There is a correspondence between HORS and \Y -terms of the form

rgll—M:O.

Higher-order program verification

Theorem (Ong)
Monadic Second-Order logic (MSO) is decidable on trees generated by HORS.

Example (Kobayashi)

Application to verification of correct resource usage.

let rec g() = if _then close() else (read();g()) in g()

\

Y (AG.Ak.br (close k) (read (G k))) e

with terminals:

br : o—>0—o0
read : o—o0
close : o— o

e : O

One can automatically check that all finite paths have the form read*close.

Bohm trees (rather than trees)
Consider the term
g:0—>0—0F M)V, (A f Ax°.g xy)): ((0—0)—>0)—o0

Its Bohm tree starts with

v
v

U

How can we generate representations of pointers within HORS?

Result

Question
Can we relate HORS and arbitrary B6hm trees?

c
—
Fr<i—M:o r—m:o

Theorem (Clairambault, M. ; FSTTCS'13)
For any AY-term I — M : 0 there is a term

rrep|_Mrep:O
with
Mep={z:0, succ:o— o0, var:o— o, app:0— 0 — o0, lam:0— 0 — o

such that M., evaluates to a representation of M's Béhm tree, where binders
are represented by De Bruijn levels.

We also prove the same result for terms of finitary PCF (PCFy).

De Bruijn levels

Definition
De Bruijn levels are a variable-naming convention where
@ variables are natural numbers,

@ each variable is given the smallest index not yet in use.

Example

The term
g:0—>0— o0k M.f ()\X.g X (f ()\y.g y (f y))

can be represented by

0:0—>0 — ok ALL(X2.02 (1 (A3.0 3 (13))))

Proposition

Two terms M and M’ have the same De Bruijn levels representation iff they are
a-equivalent.

v

(not to be confused with De Bruijn indices)

Representation of De Bruijn levels in AY
We represent terms with binders as Bohm trees of type o in the context

Mep={z:0, succ:o— o0, var:o—o, app:0o—>o0—o, lam:0—> o0 — o0}

lam
_—
1 app
~~
var lam
[5 ap
1 2 ~
/apfi app
var var vcﬁ Em
1 1 a\pp
0o 2 1 3/ ~
app app
AR VAR
vclw“ ’U(IJ,T vclzr vclw“
0 3 1 3

7 = succ (succ ... (succ z)...)

Formal statement

Theorem
LetT — M : 60 be a \Y-term.

There exists a \Y -term [ep = Myep : 0 (a2 HORS) such that
BT (Mep) = rep(BT (M)).

Write 0* for 8[o — o/o] and M* = M[o — o/0].

There exists a A-term
rrspl_ l919*—>0—>o

such that, for - M : 6, setting
Mep = Lo M* 0

validates the above theorem.

Normalization by evaluation for the simply-typed A-calculus

Step 1: Interpretation. Let E be a set containing representations of terms.

lo) = E 6 ~67 = 6] [01]
I, = p() ML, = AL M e
M N, = [M],([N],)

All the right-hand-side operations are operations on sets and functions.

Step 2: Reification. The normal form of - M : 6 can be extracted from [M]
by setting nf(M) =ll¢ [M].

o = [0]l—E
Jox = x
U91H92 x = lamn U92(X (ﬂ%(var n))) (n fresh)
o : E—>]6]
foe = e

fo,0 e = AxIfg,app e (Ig,%)

Example

‘U’O—)O*}O H)\Xo.)\yo.x]]

Remarks

lam 0 (Jomo [Ax°.Ay°.x] (fto (var 0)))
lam 0 (oo [AXx°.Ay°.x] (var 0))
lam 0 (lam 1 (Yo [Ax°.Ay°.x] (var 0) (fo (var 1))))
lam 0 (lam 1 ([Ax°.Ay°.x] (var 0) (var 1)))
(lam 1 ((Xa®.AbE.a) (var 0) (var 1)))
lam 0 (lam 1 (var 0))

lam 0

@ Normal form obtained by evaluation in the model

@ Need for generation of fresh variable indices

Generating De Bruijn levels (Berger, Schwichtenberg)

Expressions replaced with indexed expressions E=N-E.

Step 1: Interpretation. Let E be a set containing representations of terms.

[o] N—E [o—o] = [0]—[¢]
[xI, p(x) [[/\X9~Mﬂp = Aa[[el[[M]]p@{XHa}
[[M N]]p = [[M]]p([[N]]p)

All the right-hand-side operations are operations on sets and functions.

Step 2: Reification. The normal form of - M : 6 can be extracted from [M]
by setting nf(M) =g [M].

lox = x oo, x = lam (An". Yo, (x (e, var n)))
ﬂa e = e ﬂ91—>92 e = AXHHI]]' ﬂez ﬁ) e (‘UGZ X)

Generalized constructors

Constructors. var, lam, app are replaced with compositional variants.

var = AVan"varv:N—E

P Ey Ey N £ S s
app = Xep.Ae An.app (e1n) (e2en): E—>E—E
lam = AY"EXn".damn (f n (succ n)): (N> E) > E

The semantic ingredients used in NBE for AY can be expressed within the
AY-calculus!

Internalization
Expressions are AY-terms [yep = M : 0.
Indexed expressions have the type E=o0—>o.
Interpretation is the substitution 8* = [0 — o/0] and M* = M[o — o/0].

Term formers

var = Av®An®varv
lam = Af°”°.An°.lam n (f n (succ n))
app = Ael.\e;.An’.app (e1 n) (e n)

Reify/reflect are now terms of the A\Y-calculus.

lo = M°x loyos, = MT% Tam (AnV. Lo, (x (16, Var n)))

fo = Ae®e oo, = Xe®AxT. 1o, 3PP e (Lo, X)

Internalization

Theorem
If =M : 0 is a \Y-term then the term M, defined as

[rep 1o M*0:o0

satisfies
BT (M,ep) = rep(BT(M)).

17

Outcome

We represent terms with binders as Bohm trees of type o in the context

Mep={z:0, succ:o— o0, var:o—o, app:0o—>o0—o, lam:0—> o0 — o0}

lam
>~
1 app
var lam
[5 ap
I 2 5§
/apﬁi app
var var vcﬁ Em
1 1 a\pp
0 2 1T 3 92
app app
AR ~
vclzr ’U(llT Uclzr vclw"
0 3 1 3

7 = succ (succ ... (succ z)...)

Extension to PCF¢

Definition

The types and terms of PCF¢ are defined as follows.
0,00 = B|0—6
M,N == x|XX’M|MN]|Y

tt | ff | if M then N else N’

equipped with the standard operational semantics.

Definition (PCF Bohm trees)

The notion of (infinite) normal forms

Mx1:A,....xp: A= M: B
r-_L:B M- tt:B l-f:B FrEAX.M: A >B
FT-M:6 (1<i<n) THM:B TrFM:B (x:0—->B)erl

I if x M then Ny else No : B

The NBE translation for PCF¢

Representation. In the w-cpo E of infinitary terms ',er = M : o0, with:

Mper =Trep U {tt:0,ff 1 0,if 10— 0— 0— 0}

Semantics. Standard domain semantics of PCF, based on:
[B] = E-ESE
Reflect and reify. Adaptations of those for AY.

Internalization. Follows the same lines as for \Y.

Normal forms. The normal forms generated are infinitary PCF Bohm trees, or
equivalently, innocent strategies.

20

Consequences

Corollary
The following problems are recursively equivalent.
(1) Equivalence of HORS

(2) Language equivalence of deterministic collapsible pushdown automata
(3) Béhm tree equivalence for \Y
(

4) Contextual equivalence for PCF¢ (wrt contexts with state and control
operators)

By MSO model-checking on HORS
Corollary

The following problems are decidable for PCF¢ and \Y terms:
(1) Normalizability

(2) Finiteness

(3) Finite prefix

21

Thank you!

22

	Background and motivation

