
WG 2.2 and semantics of
programming languages

Peter Mosses
Swansea University, UK

IFIP WG 2.2 Meeting
15–18 September 2014, Munich

1

IFIP WG 2.2 pre-history

1964: IFIP Working Conference, Baden-bei-Wien

2

IFIP WG 2.2 history

1962

‣ TC 2 – Software: Theory and Practice

1965(!)

‣ WG 2.2 – Formal Description of Programming Concepts

- chair: T. B. Steel, Jr.

1967

‣ first WG 2.2 meeting (Alghero, Italy)

1984

‣ (member)

3

WG 2.2

AIMS

‣ The [primary] aim of the Working Group is to explicate
programming concepts through the development,
examination and comparison of various formal models
of these concepts.

SCOPE

‣ The Working Group will investigate formalisms and
models which represent different approaches to formal
specification of programming concepts. […]

wg22.labri.fr

4

http://wg22.labri.fr
http://wg22.labri.fr

Own contributions

early 1980s

‣ abstract semantic algebras

late 80s – 90s

‣ action semantics

late 90s – 2000s

‣ modular SOS

2010s

‣ component-based semantics

5

Further IFIP WGs

WG 1.3 (member since 1994, chair 1998–2003)

‣ Foundations of system specification

‣ COFI: Common Framework Initiative for algebraic
specification and development of software

- CASL

6

Further IFIP WGs

WG 2.11 (member since 2013)

‣ Program generation

SCOPE [https://wiki.hh.se/wg211/]

‣ The working group covers the following research areas
(and maybe others):

- programming language design, semantics and
implementation

- program synthesis

- type systems and type theory

- […]

7

https://wiki.hh.se/wg211/%5D
https://wiki.hh.se/wg211/%5D

Recent WG 2.2 talks

‣ 2010 (Warsaw):

- On bisimulation and modularity

‣ 2011 (Paris):

- PLANCOMPS – Programming Language
Components and Specifications

‣ 2012 (Amsterdam):

- Component-based semantics

‣ 2013 (Lisbon):

- Editor support for formal specifications

8

This talk

Component-based semantics

‣ brief recap/overview

- motivation

- main ideas

‣ PLANCOMPS project

- progress report

- current and planned work

9

Component-based
semantics

10

Programming languages

Evolution!

2012

ISO/IEC C (C11)
december 8, 2011

Tcl/Tk 8.5.11
november 4, 2011

Java 7 update 3
february 15, 2012

Ruby 1.9.3
october 31, 2011

PHP 5.4.0
march 1, 2012

Haskell HP 2011.4.0.0
december 2011

Tcl/Tk 8.5.12
july 27, 2012

Python 3.3.0
september 29, 2012

Java 7 update 7
august 30, 2012

Perl 5.16
may 20, 2012

Java 6 update 51
june 18, 2013

Ada 2012
december 15, 2012

Tcl/Tk 8.6.0
december 20, 2012

2013

Java 7 update 25
june 18, 2013

Python 3.3.2
may 15, 2013

Python 2.7.5
may 15, 2013

Ruby 2.0.0
february 24, 2013

PHP 5.5.1
july 18, 2013

Perl 5.18
may 18, 2013

OCaml 4.00.1
october 5, 2012

C# 5.0
august 15, 2012 [Éric Lévénez]

11

http://www.levenez.com/email.html
http://www.levenez.com/email.html

Component-based semantics

Fundamental programming
constructs (funcons)

Evolving languages

Translation
(reduction)

Components-off-the-shelf
(digital library)

12

Reusable components

Fundamental constructs (funcons)

‣ correspond to programming constructs

- directly (if-true), or

- special case (apply), or

- implicit (bound-value)

‣ and have (when validated and released)

- fixed notation, and

- fixed behaviour, and

- fixed algebraic properties

specified/proved
once and for all!

13

Component reuse

Language construct:

‣ exp ::= exp ? exp : exp

Translation to funcons:

‣ expr⟦ E₁ ? E₂ : E₃ ⟧ =
 if-true(expr⟦ E₁ ⟧, expr⟦ E₂ ⟧, expr⟦ E₃ ⟧)

For languages with non-Boolean tests:

‣ expr⟦ E₁ ? E₂ : E₃ ⟧ =
 if-true(not(equal(expr⟦ E₁ ⟧, 0)),
 expr⟦ E₂ ⟧, expr⟦ E₃ ⟧)

14

Component reuse

Language construct:

‣ stm ::= if(exp) stm else stm

Translation to funcons:

‣ comm⟦ if(E₁) S₂ else S₃ ⟧ =
 if-true(expr⟦ E₁ ⟧, comm⟦ S₂ ⟧, comm⟦ S₃ ⟧)

For languages with non-Boolean tests:

‣ comm⟦ if(E₁) S₂ else S₃ ⟧ =
 if-true(not(equal(expr⟦ E₁ ⟧, 0)),
 comm⟦ S₂ ⟧, comm⟦ S₃ ⟧)

destructive
change

15

Component specification

Notation

Static semantics

Dynamic semantics

if-true(boolean, comp(T), comp(T)) : comp(T)

E : boolean, X₁ : T, X₂ : T
if-true(E, X₁, X₂) : T

if-true(true, X₁, X₂) → X₁

if-true(false, X₁, X₂) → X₂

specified
once and
for all!

modular extension

16

PLANCOMPS project

17

FOSSACS’13:

‣ bisimilarity
congruence
format

‣ preservation by
disjoint extension

PLANCOMPS – foundations

Modular Bisimulation Theory
for Computations and Values

Martin Churchill and Peter D. Mosses
{m.d.churchill,p.d.mosses}@swansea.ac.uk

Department of Computer Science, Swansea University, Swansea, UK

Abstract. For structural operational semantics (SOS) of process alge-
bras, various notions of bisimulation have been studied, together with
rule formats ensuring that bisimilarity is a congruence. For programming
languages, however, SOS generally involves auxiliary entities (e.g. stores)
and computed values, and the standard bisimulation and rule formats
are not directly applicable.
Here, we first introduce a notion of bisimulation based on the distinction
between computations and values, with a corresponding liberal congruence
format. We then provide metatheory for a modular variant of SOS (MSOS)
which provides a systematic treatment of auxiliary entities. This is based
on a higher order form of bisimulation, and we formulate an appropriate
congruence format. Finally, we show how algebraic laws can be proved
sound for bisimulation with reference only to the (M)SOS rules defining
the programming constructs involved in them. Such laws remain sound
for languages that involve further constructs.

Keywords: structural operational semantics, programming languages,
congruence formats, Modular SOS, higher-order bisimulation.

1 Introduction

Background. Structural operational semantics (SOS) [16] is a well-established
framework for specifying computational behaviour, where the behaviour of pro-
grams is modelled by labelled transition systems, defined inductively by axioms
and inference rules. The metatheory of SOS provides various notions of bisimula-
tion [7,15] for proving behavioural equivalence. Bisimilarity is guaranteed to be a
congruence when the rules used to define transition relations are restricted to
particular formats, e.g. tyft/tyxt [3].

SOS is particularly suitable for specifying process calculi such as CCS: the
states of the transition system are simply (closed) process terms, and the labels
on transitions represent actions corresponding to steps of process execution. For
programming languages, however, transition relations often involve auxiliary enti-
ties as arguments, e.g. stores (recording the values of imperative variables before
and after transitions) and environments (determining the bindings of currently
visible identifiers); they also use terminal states to represent computed values.

18

SLE’13:

‣ addressing
deficiency of
disambiguation
annotations in
SDF, Rascal,
Spoofax

PLANCOMPS – foundations

Safe Specification of Operator Precedence Rules

Ali Afroozeh1, Mark van den Brand3, Adrian Johnstone4, Elizabeth Scott4,
and Jurgen Vinju1,2

1 Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands
2 INRIA Lille Nord Europe, France

{ali.afroozeh,jurgen.vinju}@cwi.nl
3 Eindhoven University of Technology, NL-5612 AZ Eindhoven, The Netherlands

m.g.j.v.d.brand@tue.nl
4 Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

{a.johnstone,e.scott}@rhul.ac.uk

Abstract. In this paper we present an approach to specifying opera-
tor precedence based on declarative disambiguation constructs and an
implementation mechanism based on grammar rewriting. We identify a
problem with existing generalized context-free parsing and disambigua-
tion technology: generating a correct parser for a language such as OCaml
using declarative precedence specification is not possible without resort-
ing to some manual grammar transformation. Our approach provides a
fully declarative solution to operator precedence specification for context-
free grammars, is independent of any parsing technology, and is safe in
that it guarantees that the language of the resulting grammar will be the
same as the language of the specification grammar. We evaluate our new
approach by specifying the precedence rules from the OCaml reference
manual against the highly ambiguous reference grammar and validate
the output of our generated parser.

1 Introduction

There is an increasing demand for front-ends for programming and domain-
specific languages. We are interested in parser generation technology that can
cover a wide range of programming languages, their dialects and embeddings.
These front-ends are used for example to implement reverse engineering tools,
to build quality assessment tools, to execute research in mining software reposi-
tories, or to build (embedded) domain specific languages. In these contexts the
creation of the parser is a necessary and important step, but it is also an overhead
cost that would preferably be mitigated. In such language engineering applica-
tions, as opposed to compiler construction, we may expect frequent updates and
maintenance to deal with changes in the grammar.

Expression grammars are an important part of virtually every programming
language. The natural specification of expressions is usually ambiguous. In pro-
gramming languages books and reference manuals, the semantic definition of
expressions usually includes a table of binary and unary operators accompa-
nied with their priority and associativity relationships. This approach feels very

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 137–156, 2013.
c© Springer International Publishing Switzerland 2013

19

ESOP’14:

‣ refocusing
small-step
(M)SOS rules

PLANCOMPS – foundations

Deriving Pretty-Big-Step Semantics

from Small-Step Semantics

Casper Bach Poulsen and Peter D. Mosses

Department of Computer Science, Swansea University, Swansea, UK,
cscbp@swansea.ac.uk, p.d.mosses@swansea.ac.uk

Abstract. Big-step semantics for languages with abrupt termination
and/or divergence suffer from a serious duplication problem, addressed by
the novel ‘pretty-big-step’ style presented by Charguéraud at ESOP’13.
Such rules are less concise than corresponding small-step rules, but they
have the same advantages as big-step rules for program correctness proofs.
Here, we show how to automatically derive pretty-big-step rules directly
from small-step rules by ‘refocusing’. This gives the best of both worlds:
we only need to write the relatively concise small-step specifications,
but our reasoning can be big-step as well as small-step. The use of
strictness annotations to derive small-step congruence rules gives further
conciseness.

Keywords: structural operational semantics, SOS, Modular SOS, pretty-
big-step semantics, small-step semantics, big-step semantics, natural
semantics, refocusing

1 Introduction

Structural operational semantics (SOS) are typically given in either small-step
(Plotkin 2004) or big-step (Kahn 1987) style. Big-step rules evaluate terms by
relating them to their computed values, whereas small-step evaluation involves
partly evaluated terms. Both styles are powerful frameworks for formalizing
operational semantics, and each has its own merits and limitations. For example,
small-step semantics is usually preferred for process algebras (Milner 1980),
interleaving, and type soundness proofs (Pierce 2002; Wright and Felleisen 1994),
whereas the big-step style is more suitable for proving correctness of program
transformations (Charguéraud 2013; Leroy and Grall 2009). An equally important
concern is the effort involved in specifying the semantics: rules should be concise,
but comprehensible. But which style requires less effort?

The answer to this question depends not only on conciseness, but also on
the application, i.e., on features of the specified language and properties that
the semantics will be used to reason about. When the language involves abrupt
termination, Charguéraud (2013) recently noted that big-step semantics (also
called natural semantics) duplicate premises and rules to propagate abrupt
termination and/or divergence. In contrast, the small-step style allows for more
concise specifications involving abrupt termination, and there is no need to specify

20

MODULARITY’14:

‣ component-based semantics of Caml Light

‣ partially validated (by empirical testing)

‣ detailed introduction to the approach

‣ preliminary tool support

PLANCOMPS – mini case study

Reusable Components of Semantic Specifications

Martin Churchill Peter D. Mosses Paolo Torrini
Swansea University, Swansea, UK

martin.churchill@keble.oxon.org, {p.d.mosses, p.torrini}@swansea.ac.uk

Abstract

Semantic specifications of programming languages typically have
poor modularity. This hinders reuse of parts of the semantics of one
language when specifying a different language – even when the
two languages have many constructs in common – and evolution
of a language may require major reformulation of its semantics.
Such drawbacks have discouraged language developers from using
formal semantics to document their designs.

In the PLANCOMPS project, we have developed a component-
based approach to semantics. Here, we explain its modularity as-
pects, and present an illustrative case study. Our approach provides
good modularity, facilitates reuse, and supports co-evolution of lan-
guages and their formal semantics. It could be particularly useful
in connection with domain-specific languages and language-driven
software development.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages; D.3.1 [Pro-
gramming Languages]: Formal Definitions and Theory; D.2.13
[Software Engineering]: Reusable Software

Keywords modularity; reusability; co-evolution; component-based
semantics; fundamental constructs; funcons; modular SOS.

1. Introduction

Various programming constructs are common to many languages.
For instance, assignment statements, sequencing, conditional
branching, loops and procedure calls are almost ubiquitous among
languages that support imperative programming; expressions usu-
ally include references to declared variables and constants, arith-
metic and logical operations on values, and function calls; and
blocks are provided to restrict the scope of local declarations. The
details of such constructs often vary between languages, both re-
garding their syntax and their intended behaviour, but sometimes
they are identical.

Many constructs are also ‘independent’, in that their contri-
butions to program behaviour are unaffected by the presence of
other constructs in the same language. For instance, consider con-
ditional expressions ‘E1 ?E2 :E3’. How they are evaluated is un-
affected by whether expressions involve variable references, side
effects, function calls, process synchronisation, etc. In contrast, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODULARITY ’14, April 22–26, 2014, Lugano, Switzerland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2772-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2577080.2577099

behaviour of a loop may depend on whether the language includes
break and continue statements.

We consider a semantic specification framework to have good
modularity when independent constructs can be specified sepa-
rately, once and for all. Such frameworks support verbatim reuse
of the specifications of common independent constructs between
different language specifications. They also reduce the amount of
reformulation needed when languages evolve.

It is well known that various semantic frameworks do not have
good modularity. For example, using structural operational seman-
tics (SOS) [39] we might start by specifying the evaluation of con-
ditional expressions as follows.

E ! E0

E1 ! E0
1

E1 ?E2 :E3 ! E0
1 ?E2 :E3

(1)

true ?E2 :E3 ! E2 (2)

false ?E2 :E3 ! E3 (3)

The transition formula E ! E0 asserts the possibility of a step
of the computation of the value of E such that, after making the
step, E0 remains to be evaluated. The inference rule (1) specifies
that computing the value of ‘E1 ?E2 :E3’ involves computing the
value of E1; the axioms (2) and (3) specify how the computation
proceeds after E1 has computed the value true or false. If the
computation of the value of E1 does not terminate, neither does
that of ‘E1 ?E2 :E3’; if it terminates with a value other than true

or false, the computation of ‘E1 ?E2 :E3’ is stuck: it cannot
make any further steps.

If we are specifying the semantics of a simple imperative lan-
guage, we would specify the evaluation of an assignment expres-
sion ‘I =E’, assigning the value of E to a simple variable named I ,
as follows.

⇢ ` (E,�) ! (E0,�0)

⇢ ` (E,�) ! (E0,�0)
⇢ ` (I =E,�) ! (I =E0,�0)

(4)

⇢ ` (I =V,�) ! (V,�[⇢(I) 7! V]) (5)

The environment ⇢ represents the current bindings of identifiers
(e.g., to declared variables) and the store � represents the val-
ues currently assigned to variables. The formula ⇢ ` (E,�) !
(E0,�0) asserts that, after making the step, E0 remains to be evalu-
ated, and �0 reflects any side-effects. Axiom (5) specifies that when
the value V of E has been computed, it is also the value of the en-
closing expression; the resulting store �0 reflects the assignment of
that value to the variable bound to I in ⇢.

However, if conditional expressions are included in the same
language as the above assignment expressions, conventional SOS
requires their semantics to be specified using the same form of

21

PLANCOMPS – tool support

Preliminary tool chain:

‣ SPOOFAX

- parsing programs (SDF3, disambiguation, AST creation)

- translating ASTs to funcon terms (SDF3, Stratego-1.2)

- browsing and editing component-based specifications
(SDF3, NaBL, Stratego-1.2)

‣ PROLOG

- translating MSOS rules for funcons to PROLOG

- running funcon terms

22

PLANCOMPS – current, planned

Case studies:

‣ C# (started), Java

Improved tool support:

‣ generating SDF3 and Prolog from CBS

‣ refocusing MSOS rules

Digital library:

‣ historic semantics documents (Cliff Jones, Newcastle)

- ALGOL 60 in various frameworks (scan, OCR to PDF)

‣ browsing and searching an open-access repository

23

Conclusion

Component-based semantics

‣ translating programs to funcons

‣ specifying funcons in (I-)MSOS

PLANCOMPS project (2011-2015)

‣ foundations

‣ case studies

‣ tool support

‣ digital library

24

