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Principles of TLA+

High-level models of discrete (distributed) algorithms

I represent algorithms and their properties by logical formulas
I Zermelo-Frankel set theory for static model (data structures)
I temporal logic for dynamic model (system executions)

State machines specified as logical formulas Init∧2[Next]v ∧ F

I Init state predicate: initial states
I Next transition predicate: state transitions
I F fairness hypotheses: explicit progress assumption
I allow for stuttering steps: useful for refinement and composition

Rely on formal logic for handling complexity
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TLA+ Tools

TLA+: specify algorithms at high level of abstraction

I Leslie Lamport, mid-1990s: paper-and-pencil formalism

I based on set theory and temporal logic

I explicit-state model checker TLC (Yuan Yu et al., 1999)

TLA+ Proof System: deductive system verification

I full correctness proofs of TLA+ specifications

I developed at MSR-INRIA Centre since ∼ 2007

Discuss some principles and challenges in designing TLAPS
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Outline

1 Introductory Example

2 Non-Temporal Proofs in TLAPS

3 Handling Temporal Proofs

4 Wrapping Up
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Example: Distributed Termination Detection
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Nodes arranged on a ring perform some computation
I nodes can be active (double circle) or inactive
I node 0 (master node) wishes to detect when all nodes are inactive

Token-based algorithm
I initially: token at master node, who may pass it to its neighbor
I when a node is inactive, it passes on the token
I termination detected when token returns to inactive master node

Complication: nodes may send messages, activating receiver
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Dijkstra’s Algorithm (EWD 840, 1983)
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Nodes and token colored black or white
I master node initiates probe by sending white token

I message to higher-numbered node stains sending node
I when passing the token, a black node stains the token

Termination detection by master node
I white token at inactive, white master node

Required correctness properties
I safety: termination detected only if all nodes inactive
I liveness: when all nodes inactive, termination will be detected
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TLA+ Specification of EWD 840: Data Model

MODULE EWD840
EXTENDS Naturals
CONSTANT N
ASSUME NAssumption ∆

= N ∈ Nat \ {0}
Nodes ∆

= 0 .. N− 1
Color ∆

= { “white”, “black” }
VARIABLES tpos, tcolor, active, color
TypeOK ∆

= ∧ tpos ∈ Nodes∧ tcolor ∈ Color
∧ active ∈ [Nodes→ BOOLEAN] ∧ color ∈ [Nodes→ Color]

Declaration of parameters

Definition of operators

I sets Nodes and Color
I TypeOK documents expected values of variables
I active and color are arrays, i.e. functions
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TLA+ Specification of EWD 840: Behavior (1)

Init ∆
= ∧ tpos ∈ Nodes∧ tcolor = “black”
∧ active ∈ [Nodes→ BOOLEAN] ∧ color ∈ [Nodes→ Color]

InitiateProbe ∆
=

∧ tpos = 0∧ (tcolor = “black”∨ color[0] = “black”)
∧ tpos′ = N− 1∧ tcolor′ = “white”
∧ color′ = [color EXCEPT ![0] = “white”]
∧ active′ = active

PassToken(i) ∆
=

∧ tpos = i∧ (¬active[i] ∨ color[i] = “black”∨ tcolor = “black”)
∧ tpos′ = i− 1
∧ tcolor′ = IF color[i] = “black” THEN “black” ELSE tcolor
∧ color′ = [color EXCEPT ![i] = “white”]
∧ active′ = active

System ∆
= InitiateProbe∨ ∃i ∈ Nodes \ {0} : PassToken(i)

Initial condition: any “type-correct” values; token should be black

System transitions: token passing
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TLA+ Specification of EWD 840: Behavior (2)

SendMsg(i) ∆
=

∧ active[i]
∧ ∃j ∈ Nodes \ {i} :
∧ active′ = [active EXCEPT ![j] = TRUE]

∧ color′ = [color EXCEPT ![i] = IF j > i THEN “black” ELSE @]

∧ UNCHANGED 〈tpos, tcolor〉
Deactivate(i) ∆

=

∧ active[i] ∧ active′ = [active EXCEPT ![i] = FALSE]

∧ UNCHANGED 〈color, tpos, tcolor〉
Env ∆

= ∃i ∈ Nodes : SendMsg(i) ∨Deactivate(i)

vars ∆
= 〈tpos, tcolor, active, color〉

Spec ∆
= Init∧2[System∨ Env]vars ∧WFvars(System)

Definition of remaining (“environment”) actions

Executions: initial condition, interleaving of transitions, fairness
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Safety Properties in TLA+

1 Type correctness

I invariant of the specification: THEOREM Spec⇒ 2TypeOK

I asserts that TypeOK is always true during any execution of Spec

2 Correctness of termination detection

I termination detected when white token at inactive, white node 0

terminationDetected ∆
=

tpos = 0∧ tcolor = “white”∧ ¬active[0] ∧ color[0] = “white”

TerminationDetection ∆
=

terminationDetected⇒ ∀i ∈ Nodes : ¬active[i]
THEOREM Spec⇒ 2TerminationDetection

I formally again expressed as an invariant

Model checker TLC validates properties for finite instances
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Using TLAPS to Prove Safety of EWD 840

Proving a simple invariant in TLAPS

THEOREM TypeOK inv ∆
= Spec⇒ 2TypeOK

〈1〉1. Init⇒ TypeOK
〈1〉2. TypeOK ∧ [System∨ Env]vars ⇒ TypeOK′

〈1〉3. QED BY〈1〉1, 〈1〉2, PTL DEF Spec

I hierarchical proof language represents proof tree
I steps can be proved in any order: usually start with QED step

Prove that Init implies TypeOK

〈1〉1. Init⇒ TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

I explicitly cite definitions and facts used in the proof

Invariant preservation can be proved similarly
I when proof fails, decompose into “simpler” sub-steps
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Hierarchical Proofs

〈1〉2. TypeOK ∧ [System∨ Env]vars ⇒ TypeOK′

〈2〉 USE NAssumption DEF TypeOK, Node, Color
〈2〉 SUFFICES ASSUME TypeOK, System∨ Env

PROVE TypeOK′

BY DEFS TypeOK, vars
〈2〉1. CASE InitiateProbe

BY 〈2〉1 DEF InitiateProbe
〈2〉2. ASSUME NEW i ∈ Node \ {0}, PassToken(i)

PROVE TypeOK′

BY 〈2〉2 DEF PassToken
. . . similar for remaining actions . . .
〈2〉 QED BY 〈2〉1, 〈2〉2, . . . DEF System, Env

SUFFICES steps represent backward chaining

trivial case UNCHANGED vars handled during decomposition

Toolbox IDE helps with hierarchical decomposition
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Architecture of TLAPS

TLA+

Toolbox

(IDE)

TLA+ proof system

Proof manager

interpret proofs
compute proof obligations

coalesce modal /
first-order expressions

call backend provers
to attempt proof

certify proof
(optional, when possible)

SMT solvers Zenon Isabelle PTL (ls4) . . .
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Outline

1 Introductory Example

2 Non-Temporal Proofs in TLAPS

3 Handling Temporal Proofs

4 Wrapping Up

Stephan Merz (INRIA Nancy) TLA+ Proof System IFIP WG 2.2, September 2014 14 / 30



TLA+ Assertions

TLA+ assertions: formula or sequent (ASSUME . . . PROVE)

ASSUME NEW P( ), P(0),
∀k ∈ Nat : P(k)⇒ P(k + 1)

PROVE ∀n ∈ Nat : P(n)

I ASSUME introduces new symbols, formulas or sequents into context
I formulas identified with sequents without hypotheses

Assertions may appear . . .

I . . . at top-level as the body of lemmas and theorems
I . . . as steps within a proof

Sequent asserts provability of conclusion in extended context
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Proof Structure

Leaf proofs OBVIOUS BY . . . [DEF . . . ]

I cite facts and definitions to be used in the proof
I no “procedural” indication for the back-end prover

Hierarchical proofs: sequence of assertions ending in QED

I proof language oriented towards forward reasoning
I SUFFICES steps introduce backward reasoning

〈3〉5. SUFFICES ASSUME . . . PROVE . . .
BY . . . shows that new sequent implies previous assertion

...
〈3〉. QED

BY . . . proves assertion of SUFFICES
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Untyped Logic: Boolean Expressions

Untyped TLA+ doesn’t even distinguish terms from formulas

(42 = TRUE) ∧ “abc” syntactically well-formed

I rely on underspecified conversion to Boolean values
I formula ϕ interpreted as boolify(ϕ)

∆
= ϕ = TRUE

I operators such as =, ∈, ∧, ∀ always evaluate to TRUE or FALSE

Standard laws of logic remain valid

ASSUME NEW S, NEW P( ),
ASSUME NEW x ∈ S PROVE P(x)

PROVE ∀x ∈ S : P(x)
(¬P) = (P⇒ FALSE) ¬(P∧Q) = (¬P∨ ¬Q)

(P∧ TRUE) = boolify(P) boolify(Q∨ R) = (Q∨ R)

Straightforward automation of logical reasoning
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Untyped Logic: Theory Reasoning

Backend provers rely on sort information for automation

Untyped embedding: inject interpreted sorts into TLA+ universe

u

Int

int

k l

i2u

+

+u

Characteristic axioms

∀k, l : i2u(k) = i2u(l)⇒ k = l

∀u : u ∈ Int ≡ ∃k : u = i2u(k)

∀k, l : i2u(k) +u i2u(l) = i2u(k + l)

Theoretically elegant, but impractical due to quantified axioms
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Optimization: Type Inference

Proof context contains domain assumptions

ASSUME N ∈ Nat \ {0}, u ∈ 1 .. N, NEW k ∈ 0 .. u
PROVE u− k ∈ 0 .. u

Exploit domain assumptions to infer types for expressions
I above: N, u, k, u− k can be represented as SMT integers
I no need for generating background axioms

Expressive types help speed up backend proofs
I ensure well-definedness: function applications, partial operations
I rely on dependent types, predicative subtyping, . . .
I when type inference fails: locally fall back to untyped encoding

M., Vanzetto: Refinement Types for TLA+. NFM 2014 (LNCS 8430).

Untyped expressiveness and efficiency of typed reasoning
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Proof context contains domain assumptions

ASSUME N ∈ Nat \ {0}, u ∈ 1 .. N, NEW k ∈ 0 .. u
PROVE u− k ∈ 0 .. u

Exploit domain assumptions to infer types for expressions
I above: N, u, k, u− k can be represented as SMT integers
I no need for generating background axioms
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What’s Difficult in Temporal Reasoning

Modal logic breaks natural deduction

I F ` G cannot be identified with ` F⇒ G
I for example, have F ` 2F but not ` F⇒ 2F
I 2F ` G can be identified with ` 2F⇒ G

Arrange temporal reasoning so that hypotheses are boxed

I formula F is boxed if |= F ≡ 2F
I syntactic approximation: constant formulas, 2F, 32F, WFv(A), . . .
I apply implicit necessitation to formulas derived in boxed context
I corresponds to natural decomposition of temporal logic proofs:

context contains invariants, next-state relation, fairness, . . .

Provers must still handle first-order temporal logic
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A Typical Proof Involving Temporal Logic

THEOREM Init∧2[Next]v ⇒ ∀p ∈ Proc : 2Safe(p)
〈1〉1. SUFFICES ASSUME NEW p ∈ Proc

PROVE Init∧2[Next]v ⇒ 2Safe(p)
OBVIOUS

〈1〉2. Init⇒ Safe(p) BY DEF Init, Safe
〈1〉3. Safe(p) ∧ [Next]v ⇒ Safe(p)′ BY DEF Safe, Next, v
〈1〉4. QED BY 〈1〉2, 〈1〉3, PTL

Separate steps based on action and temporal reasoning
I first-order provers vs. PTL decision procedure
I prime “modality” handled by pre-processing
I temporal reasoning is mostly propositional
I remaining steps will be supported by specific back-end

What is really going on here?
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Coalescing: Basic Idea

Abstract subformulas that given back-end doesn’t understand

I in the SUFFICES step, the FOL prover sees the proof obligation

p ∈ Proc Init∧
�� ��2[Step]v ⇒

�� ��2Safe (p)

Init∧
�� ��2[Step]v ⇒ ∀p ∈ Proc :

�� ��2Safe (p)

I in the QED step, the PTL decision procedure sees�� ��Init ⇒
�� ��Safe(p)

�� ��Safe(p) ∧
�� ��[Step]v ⇒ c�� ��Safe(p)�� ��Init ∧2

�� ��[Step]v ⇒ 2
�� ��Safe(p)

I the formulas in boxes are introduced as ad-hoc operators

Must ensure soundness of abstraction
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Alternatives to Coalescing

Temporal operators as uninterpreted predicate symbols

I simple: does not need special support for temporal logic
I unsound: temporal logic violates Leibniz principle

I for example, one should not prove v = 0⇒ 2(v = 0)

Standard translation to first-order logic

I encode semantics of temporal logic in FOL

I example above becomes v(n) = 0⇒ ∀m ≥ n : v(m) = 0

I complication: PTL requires induction for relating dand 2

Coalescing is useful due to little interaction between FOL and PTL
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Coalescing to FOL: Definition

Basic idea: abstract subformula 2ϕ by new proposition
�
�

�
�2ϕ

I needs care in the presence of bound variables:

coalescing ∀a : 2(x = a)⇒ x = a to ∀a :
�� ��2(x = a) ⇒ x = a

“forgets” occurrence of bound variable a ; unsoundness

Abstract 2ϕ by
�
�

�
�λ~z : 2ϕ (~z) (~z all bound variables occuring in ϕ)

I identify operators up to α-equivalence

I can prove (∃x, z : 2(v = x)) ≡ (∃y : 2(v = y))

I optimizations possible to identify less superficial equivalences
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Soundness of Coalescing to FOL

Theorem
For any set Γ of TLA+ formulas and TLA+ formula ϕ:

ΓFOL |=FOL ϕFOL implies Γ |= ϕ

Proof sketch. Assume Γ 6|= ϕ, obtainM s.t.M, n |= Γ butM, 0 6|= ϕ.
Define FOL-structure S = (I ′, ξ ′) based onM and state 0:

ξ ′(v) = ζ(0, v) for v ∈ V

I ′(
�� ��λ~z : 2ψ )(~d) = [[2ψ]]~z:=~d

0

Now show [[eFOL]]
S = [[e]]0 for all sub-expressions e in Γ or ϕ.

Hence ΓFOL 6|=FOL ϕ.
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Coalescing to Propositional Temporal Logic

Coalesce first-order subformulas to atomic propositions

I (op(e1, . . . , en))PTL =
�� ��op(e1, . . . , en)

I (e1 = e2)PTL =
�� ��e1 = e2

I (∀x : e)PTL =
�� ��∀x : e

I (e′)PTL = d(ePTL)

Example

x = y⇒ 23(x = y) yields
�� ��x = y ⇒ 23

�� ��x = y

I add hypothesis
�� ��P ⇒ 2

�� ��P if P only contains constants

I implication above is provable if x, y are constants

Soundness result similar to previous one
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Coalescing: Summing Up

Extends to full TLA+ language

I (second-order) operator definitions require extra care

I track operator arguments used in the scope of modal operators

Sound integration of first-order and temporal reasoning

I interface with standard FOL provers and PTL decision procedures

I temporal induction handled by PTL reasoner

I prime modality handled during pre-processing for FOL

Complete for proving standard safety properties

Liveness requires special back-end for first-order temporal logic
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Experience With TLAPS So Far

Designed around language, not tools
I declarative and hierarchical proof language
I freedom in design of interfaces to back-ends
I architecture accommodates certification of overall soundness

Engineering aspects: handling large proofs
I tool support for maintaining and adapting proofs
I GUI support for reading and writing hierarchical proofs
I finger printing of proof obligations for tracking changes
I existing case studies: (Byzantine) Paxos, Memoir, Pastry

Future and ongoing work
I full support for proofs of liveness properties
I disproving invalid obligations: finite model finding
I compute and strengthen inductive invariants

Post-doctoral position available
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