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Principles of TLA*

e High-level models of discrete (distributed) algorithms

» represent algorithms and their properties by logical formulas
» Zermelo-Frankel set theory for static model (data structures)

» temporal logic for dynamic model (system executions)

@ State machines specified as logical formulas Init A O[Next], A F

> Init state predicate: initial states
» Next transition predicate: state transitions
» F fairness hypotheses: explicit progress assumption

» allow for stuttering steps: useful for refinement and composition

@ Rely on formal logic for handling complexity

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 2/30



TLA* Tools

@ TLA™: specify algorithms at high level of abstraction

» Leslie Lamport, mid-1990s: paper-and-pencil formalism
» based on set theory and temporal logic

» explicit-state model checker TLC (Yuan Yu et al., 1999)

@ TLA* Proof System: deductive system verification

» full correctness proofs of TLA* specifications

» developed at MSR-INRIA Centre since ~ 2007

@ Discuss some principles and challenges in designing TLAPS
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Outline

e Introductory Example
9 Non-Temporal Proofs in TLAPS

9 Handling Temporal Proofs

e Wrapping Up
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Example: Distributed Termination Detection

O

O

@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive
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@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive
e Token-based algorithm

» initially: token at master node, who may pass it to its neighbor
» when a node is inactive, it passes on the token
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» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive
e Token-based algorithm

» initially: token at master node, who may pass it to its neighbor
» when a node is inactive, it passes on the token
» termination detected when token returns to inactive master node
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Example: Distributed Termination Detection
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@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive

@ Token-based algorithm

» initially: token at master node, who may pass it to its neighbor
» when a node is inactive, it passes on the token
» termination detected when token returns to inactive master node

@ Complication: nodes may send messages, activating receiver
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Dijkstra’s Algorithm (EWD 840, 1983)
O

O
A

@ Nodes and token colored black or white

» master node initiates probe by sending white token
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» master node initiates probe by sending white token
» message to higher-numbered node stains sending node
» when passing the token, a black node stains the token
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Dijkstra’s Algorithm (EWD 840, 1983)
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@ Nodes and token colored black or white

» master node initiates probe by sending white token
» message to higher-numbered node stains sending node
» when passing the token, a black node stains the token

@ Termination detection by master node

» white token at inactive, white master node
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Dijkstra’s Algorithm (EWD 840, 1983)

O O

O O ~ O O ~ AO
O @
A A

@ Nodes and token colored black or white

» master node initiates probe by sending white token
» message to higher-numbered node stains sending node
» when passing the token, a black node stains the token

@ Termination detection by master node

» white token at inactive, white master node

@ Required correctness properties

» safety:  termination detected only if all nodes inactive
» liveness: when all nodes inactive, termination will be detected
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TLA* Specification of EWD 840: Data Model

[ MODULE EWD§840
EXTENDS Naturals
CONSTANT N
ASSUME NAssumption = N € Nat \ {0}
Nodes = 0..N —1
Color = { “white”, “black” }
VARIABLES tpos, tcolor, active, color
TypeOK = A tpos € Nodes A tcolor € Color
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

@ Declaration of parameters

@ Definition of operators

> sets Nodes and Color
» TypeOK documents expected values of variables
» active and color are arrays, i.e. functions
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TLA™ Specification of EWD 840: Behavior (1)

Init = A tpos € Nodes A tcolor = “black”
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

@ Initial condition: any “type-correct” values; token should be black
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TLA™ Specification of EWD 840: Behavior (1)

Init = A tpos € Nodes A tcolor = “black”
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

InitiateProbe =

A tpos = 0 A (tcolor = “black” V color[0] = “black”)

A tpos' = N — 1 A teolor’ = “white”

A color’ = [color EXCEPT ![0] = “white”]

A active’ = active
PassToken (i) =

A tpos = i A (—active[i] V color[i] = “black” V tcolor = “black”)

Atpos’' =i—1

A teolor’ = IF color|i] = “black” THEN “black” ELSE tcolor

A color’ = [color EXCEPT ![i] = “white”]

A active’ = active

A

System = InitiateProbe V 3i € Nodes \ {0} : PassToken(i)

@ Initial condition: any “type-correct” values; token should be black

@ System transitions: token passing
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TLA™ Specification of EWD 840: Behavior (2)

SendMsg (i) =
A activeli]
A 3j € Nodes \ {i} :
A active’ = |active EXCEPT ![j] = TRUE]
A color’ = [color EXCEPT ![i] = IFj > i THEN “black” ELSE @]
A UNCHANGED (tpos, tcolor)
Deactivate(i) =
A activeli] A active’ = [active EXCEPT ![i] = FALSE]
A UNCHANGED (color, tpos, tcolor)
Env = 3i € Nodes : SendMsg (i) \VV Deactivate(i)

@ Definition of remaining (“environment”) actions
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TLA™ Specification of EWD 840: Behavior (2)

SendMsg (i) =
A activeli]
A 3j € Nodes \ {i} :
A active’ = |active EXCEPT ![j] = TRUE]

A color’ = [color EXCEPT ![i] = IFj > i THEN “black” ELSE @]
A UNCHANGED (tpos, tcolor)
Deactivate(i) =

A activeli] A active’ = [active EXCEPT ![i] = FALSE]
A UNCHANGED (color, tpos, tcolor)

Env = 3i € Nodes : SendMsg (i) \VV Deactivate(i)

vars = (tpos, tcolor, active, color)

Spec 2 Init A O[System V Env]yars A WEqars (System)

@ Definition of remaining (“environment”) actions

@ Executions: initial condition, interleaving of transitions, fairness
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Safety Properties in TLA™

@ Type correctness

» invariant of the specification: THEOREM Spec = OTypeOK |

» asserts that TypeOK is always true during any execution of Spec
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Safety Properties in TLA™

@ Type correctness

» invariant of the specification: THEOREM Spec = OTypeOK |

» asserts that TypeOK is always true during any execution of Spec

@ Correctness of termination detection

» termination detected when white token at inactive, white node 0
terminationDetected =
tpos = 0 A tcolor = “white” A —active[0] A color[0] = “white”
TerminationDetection =

terminationDetected = Vi € Nodes : —activeli]
THEOREM Spec = OTerminationDetection

» formally again expressed as an invariant
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Safety Properties in TLA™

@ Type correctness

» invariant of the specification: THEOREM Spec = OTypeOK |

» asserts that TypeOK is always true during any execution of Spec

@ Correctness of termination detection

» termination detected when white token at inactive, white node 0

terminationDetected =

tpos = 0 A tcolor = “white” A —active[0] A color[0] = “white”
TerminationDetection =

terminationDetected = Vi € Nodes : —activeli]
THEOREM Spec = OTerminationDetection

» formally again expressed as an invariant

Model checker TLC validates properties for finite instances
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Using TLAPS to Prove Safety of EWD 840

@ Proving a simple invariant in TLAPS

A

THEOREM TypeOK_inv = Spec = OTypeOK
(1)1. Init = TypeOK

(1)2. TypeOK A [System \ Envlyers = TypeOK’
(1)3. QeD  BY(1)1,(1)2, PTL DEF Spec

» hierarchical proof language represents proof tree
» steps can be proved in any order: usually start with QED step
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Using TLAPS to Prove Safety of EWD 840

@ Proving a simple invariant in TLAPS
THEOREM TypeOK _inv = Spec = OTypeOK
(1)1. Init = TypeOK
(1)2. TypeOK A [System \ Envlyers = TypeOK’
(1)3. QeD  BY(1)1,(1)2, PTL DEF Spec

» hierarchical proof language represents proof tree
» steps can be proved in any order: usually start with QED step

@ Prove that Init implies TypeOK

(1)1. Init = TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

» explicitly cite definitions and facts used in the proof
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Using TLAPS to Prove Safety of EWD 840

@ Proving a simple invariant in TLAPS
THEOREM TypeOK _inv = Spec = OTypeOK
(1)1. Init = TypeOK
(1)2. TypeOK A [System \ Envlyers = TypeOK’
(1)3. QeD  BY(1)1,(1)2, PTL DEF Spec

» hierarchical proof language represents proof tree
» steps can be proved in any order: usually start with QED step

@ Prove that Init implies TypeOK

(1)1. Init = TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

» explicitly cite definitions and facts used in the proof

@ Invariant preservation can be proved similarly

» when proof fails, decompose into “simpler” sub-steps

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

11 /30



Hierarchical Proofs

(1)2. TypeOK A [System V Envlyers = TypeOK’
(2) USE NAssumption DEF TypeOK, Node, Color
(2) SUFFICES ASSUME TypeOK, System V Env

PROVE TypeOK'
BY DEFS TypeOK, vars
(2)1. CASE InitiateProbe
BY (2)1 DEF InitiateProbe
(2)2. ASSUME NEW i € Node \ {0}, PassToken (i)
PROVE TypeOK’
BY (2)2 DEF PassToken
. similar for remaining actions ...
(2) QED BY (2)1,(2)2,... DEF System, Env

@ SUFFICES steps represent backward chaining
@ trivial case UNCHANGED vars handled during decomposition

@ Toolbox IDE helps with hierarchical decomposition
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Architecture of TLAPS

TLA*
Toolbox

(IDE)

Proof manager

interpret proofs

compute proof obligations

coalesce modal /

certify proof

(optional, when possible)

first-order expressions

call backend provers

to attempt proof

7 A

Stephan Merz (INRIA Nancy)

7

SMT solvers Zenon

Isabelle PTL (Is4)
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e Introductory Example
e Non-Temporal Proofs in TLAPS
e Handling Temporal Proofs

e Wrapping Up
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TLA* Assertions

e TLA* assertions: formula or sequent (ASSUME ... PROVE)
ASSUME NEW P(_), P(0),
Vk € Nat : P(k) = P(k+1)
PROVE Vn € Nat : P(n)

» ASSUME introduces new symbols, formulas or sequents into context

» formulas identified with sequents without hypotheses
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TLA* Assertions

e TLA* assertions: formula or sequent (ASSUME ... PROVE)
ASSUME NEW P(_), P(0),

ASSUME NEW k € Nat, P(k) PROVE P(k+1)
PROVE  Vn € Nat: P(n)

» ASSUME introduces new symbols, formulas or sequents into context

» formulas identified with sequents without hypotheses

@ Assertions may appear ...

> ... at top-level as the body of lemmas and theorems

> ... as steps within a proof

@ Sequent asserts provability of conclusion in extended context
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Proof Structure

@ Leaf proofs OBVIOUS BY ... [DEF...] J

» cite facts and definitions to be used in the proof

» no “procedural” indication for the back-end prover
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Proof Structure

@ Leaf proofs OBVIOUS BY ... [DEF...] J

» cite facts and definitions to be used in the proof

» no “procedural” indication for the back-end prover

@ Hierarchical proofs: sequence of assertions ending in QED

» proof language oriented towards forward reasoning

» SUFFICES steps introduce backward reasoning

(3)5. SUFFICES ASSUME ... PROVE ...

BY ... shows that new sequent implies previous assertion
(3). QED
BY ... proves assertion of SUFFICES
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Untyped Logic: Boolean Expressions

@ Untyped TLA™ doesn’t even distinguish terms from formulas

(42 = TRUE) A*abc” | syntactically well-formed

» rely on underspecified conversion to Boolean values
» formula ¢ interpreted as  boolify(¢) = @ = TRUE
» operators such as =, €, A, V always evaluate to TRUE or FALSE
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Untyped Logic: Boolean Expressions

@ Untyped TLA™ doesn’t even distinguish terms from formulas

(42 = TRUE) A “abc” | syntactically well-formed

» rely on underspecified conversion to Boolean values
» formula ¢ interpreted as  boolify(¢) = @ = TRUE
» operators such as =, €, A, V always evaluate to TRUE or FALSE

e Standard laws of logic remain valid

ASSUME NEW S, NEW P(_),
ASSUME NEW x € S PROVE P(x)
PROVE Vx € S:P(x)
(=P) = (P = FALSE) -(PAQ) = (=PV-Q)
(P A TRUE) = boolify(P) boolify(QV R) = (QVR)

@ Straightforward automation of logical reasoning
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Untyped Logic: Theory Reasoning

@ Backend provers rely on sort information for automation

@ Untyped embedding: inject interpreted sorts into TLA*™ universe
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Untyped Logic: Theory Reasoning

@ Backend provers rely on sort information for automation

@ Untyped embedding: inject interpreted sorts into TLA*™ universe

Characteristic axioms

Yk, 1:2u(k) = 2u(l) = k=1
Vu:u € Int = 3k:u=i2u(k)

2u
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Untyped Logic: Theory Reasoning

@ Backend provers rely on sort information for automation

@ Untyped embedding: inject interpreted sorts into TLA*™ universe

Characteristic axioms

Vk,1: i2u(k) = i2u(l) = k =1

Vu:u € Int = 3k:u=i2u(k)
i2u : g Wk, 1z i2u(k) +, 2u(l) = 2u(k +1)
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Untyped Logic: Theory Reasoning

@ Backend provers rely on sort information for automation

@ Untyped embedding: inject interpreted sorts into TLA*™ universe

Characteristic axioms

Vk,1: i2u(k) = i2u(l) = k =1
Vu:u € nt = Jk:u=i2u(k)
u i T VK, 1+ i2u(k) 4 2u(l) = i2u(k+1)

@ Theoretically elegant, but impractical due to quantified axioms
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Optimization: Type Inference

@ Proof context contains domain assumptions

ASSUME N € Nat\ {0}, u€1..N, NEWk € 0..u
PROVE u—ke0..u

@ Exploit domain assumptions to infer types for expressions

» above: N, u, k, u — k can be represented as SMT integers
» no need for generating background axioms

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

19 / 30



Optimization: Type Inference

@ Proof context contains domain assumptions

ASSUME N € Nat\ {0}, u€1..N, NEWk € 0..u
PROVE u—-kecO.u
@ Exploit domain assumptions to infer types for expressions
» above: N, u, k, u — k can be represented as SMT integers
» no need for generating background axioms
@ Expressive types help speed up backend proofs

» ensure well-definedness: function applications, partial operations
» rely on dependent types, predicative subtyping, ...
» when type inference fails: locally fall back to untyped encoding

M., Vanzetto: Refinement Types for TLA*. NFM 2014 (LNCS 8430).
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Optimization: Type Inference

@ Proof context contains domain assumptions

ASSUME N € Nat\ {0}, u€1..N, NEWk € 0..u
PROVE u—-kecO.u
@ Exploit domain assumptions to infer types for expressions
» above: N, u, k, u — k can be represented as SMT integers
» no need for generating background axioms
@ Expressive types help speed up backend proofs

» ensure well-definedness: function applications, partial operations
» rely on dependent types, predicative subtyping, ...
» when type inference fails: locally fall back to untyped encoding

M., Vanzetto: Refinement Types for TLA*. NFM 2014 (LNCS 8430).

e Untyped expressiveness and efficiency of typed reasoning
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e Introductory Example
e Non-Temporal Proofs in TLAPS
° Handling Temporal Proofs

e Wrapping Up
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What's Difficult in Temporal Reasoning

@ Modal logic breaks natural deduction

» FF G cannotbe identified with +F = G
» for example, have FF OF butnot +F= OF
» OFF G canbeidentified with FOF = G

@ Arrange temporal reasoning so that hypotheses are boxed

» formula F is boxed if |=F = OF
» syntactic approximation: constant formulas, OF, OOF, WF,(A), ...
» apply implicit necessitation to formulas derived in boxed context

» corresponds to natural decomposition of temporal logic proofs:
context contains invariants, next-state relation, fairness, ...

@ Provers must still handle first-order temporal logic
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A Typical Proof Involving Temporal Logic

THEOREM Init A O[Next], = Vp € Proc : OSafe(p)
(1)1. SUFFICES ASSUME NEW p € Proc
PROVE Init A O[Next|, = OSafe(p)

OBVIOUS
(1)2. Init = Safe(p) BY DEF Init, Safe
(1)3. Safe(p) A [Next|, = Safe(p)’  BY DEF Safe, Next, v
(1)4. QED BY (1)2, (1)3, PTL

@ Separate steps based on action and temporal reasoning

v

>

>

>

first-order provers vs. PTL decision procedure

prime “modality” handled by pre-processing

temporal reasoning is mostly propositional

remaining steps will be supported by specific back-end

@ What is really going on here?
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Coalescing: Basic Idea

@ Abstract subformulas that given back-end doesn’t understand

» in the SUFFICES step, the FOL prover sees the proof obligation

p € Proc  Init A D[Step]v] = [DSﬂfEJ (»)

Init A|O[Steply| = Vp € Proc : (p)

» in the QED step, the PTL decision procedure sees

= (Safe(p)) (Safe(p)) A ([Step]v] = O[Safe(p)]
A D([Step]v] =0 [Safe(p)J

» the formulas in boxes are introduced as ad-hoc operators

@ Must ensure soundness of abstraction
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Alternatives to Coalescing

@ Temporal operators as uninterpreted predicate symbols

» simple: does not need special support for temporal logic

» unsound: temporal logic violates Leibniz principle

> for example, one should not prove v=0=0(v=0) |
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Alternatives to Coalescing

@ Temporal operators as uninterpreted predicate symbols

» simple: does not need special support for temporal logic

» unsound: temporal logic violates Leibniz principle

> for example, one should not prove v=0=0(v=0) |

e Standard translation to first-order logic
» encode semantics of temporal logic in FOL

» example above becomes v(n)=0=Vm=>n:v(m)=0 )

» complication: PTL requires induction for relating © and O
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Alternatives to Coalescing

@ Temporal operators as uninterpreted predicate symbols

» simple: does not need special support for temporal logic

» unsound: temporal logic violates Leibniz principle

> for example, one should not prove  v=0=D0(=0) |

e Standard translation to first-order logic
» encode semantics of temporal logic in FOL

> example above becomes  v(n) =0=Vm >n:o(m) =0 |

» complication: PTL requires induction for relating © and O

@ Coalescing is useful due to little interaction between FOL and PTL
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Coalescing to FOL: Definition

@ Basic idea: abstract subformula O¢ by new proposition

» needs care in the presence of bound variables:

coalescing Va: O(x =a) = x =a to Vazwﬁx:a

“forgets” occurrence of bound variable 2 ~ unsoundness
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Coalescing to FOL: Definition

@ Basic idea: abstract subformula O¢ by new proposition

» needs care in the presence of bound variables:

coalescing Va: O(x =a) = x =a to Vazwﬁx:a

“forgets” occurrence of bound variable 2 ~ unsoundness

@ Abstract O¢ by (Z) (2 all bound variables occuring in @)

» identify operators up to a-equivalence
» canprove (dx,z:O(v=x)) = (Jy:0(v=1y))

» optimizations possible to identify less superficial equivalences
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Soundness of Coalescing to FOL

Theorem
For any set T of TLA™ formulas and TLA* formula ¢:

Tror Fror ¢ror  implies T = ¢

Proof sketch. Assume I [~ ¢, obtain M s.t. M, n |=T but M,0 [~ ¢.
Define FOL-structure S = (Z’,¢’) based on M and state 0:

e ¢'(v)=¢(0,0) forveV

o T'(12: oy)) @) = [oylF~

Now show [eror]® = [e]o for all sub-expressions e in T or ¢.

Hence T'ror Fror -
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Coalescing to Propositional Temporal Logic

@ Coalesce first-order subformulas to atomic propositions

> (op(e1,...,en))prL = |op(ey, ..., en)

> (e1 =ex)prr =
> (Vx:e)prr =

> (¢)pr = Oleprr

e Example

x=y=00(x=y) vyields :DO
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Coalescing to Propositional Temporal Logic

@ Coalesce first-order subformulas to atomic propositions

> (op(e1,...,en))prL = |op(ey, ..., en)

> (e1 =ex)prr =
> (Vx:e)prr =

> (¢)pr = Oleprr

e Example

x=y=00(x=y) vyields :DO

» add hypothesis = O|P| if P only contains constants
» implication above is provable if x, i are constants

@ Soundness result similar to previous one
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Coalescing: Summing Up

@ Extends to full TLA* language

» (second-order) operator definitions require extra care

» track operator arguments used in the scope of modal operators

@ Sound integration of first-order and temporal reasoning

» interface with standard FOL provers and PTL decision procedures
» temporal induction handled by PTL reasoner

» prime modality handled during pre-processing for FOL

e Complete for proving standard safety properties
@ Liveness requires special back-end for first-order temporal logic
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@ Introductory Example
e Non-Temporal Proofs in TLAPS
e Handling Temporal Proofs

e Wrapping Up
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Experience With TLAPS So Far

@ Designed around language, not tools

» declarative and hierarchical proof language
» freedom in design of interfaces to back-ends
» architecture accommodates certification of overall soundness

@ Engineering aspects: handling large proofs

» tool support for maintaining and adapting proofs

» GUI support for reading and writing hierarchical proofs
» finger printing of proof obligations for tracking changes
» existing case studies: (Byzantine) Paxos, Memoir, Pastry

e Future and ongoing work

» full support for proofs of liveness properties
» disproving invalid obligations: finite model finding
» compute and strengthen inductive invariants

@ Post-doctoral position available
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