TLAPS: A Proof Assistant for TLA⁺

Stephan Merz

with D. Doligez, L. Lamport, K. Chaudhuri, D. Cousineau, J. Kriener, T. Libal, D. Ricketts, H. Vanzetto and others

INRIA Nancy & LORIA Nancy, France

IFIP WG 2.2 Meeting Munich, September, 2014

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

IFIP WG 2.2, September 2014 1 / 30

Principles of TLA⁺

- High-level models of discrete (distributed) algorithms
 - represent algorithms and their properties by logical formulas
 - Zermelo-Frankel set theory for static model (data structures)
 - temporal logic for dynamic model (system executions)
- State machines specified as logical formulas $Init \land \Box[Next]_v \land F$
 - Init state predicate: initial states
 - *Next* transition predicate: state transitions
 - *F* fairness hypotheses: explicit progress assumption
 - allow for stuttering steps: useful for refinement and composition
- Rely on formal logic for handling complexity

Stephan Merz (INRIA Nancy)

TLA⁺ Tools

• TLA⁺: specify algorithms at high level of abstraction

- Leslie Lamport, mid-1990s: paper-and-pencil formalism
- based on set theory and temporal logic
- explicit-state model checker TLC (Yuan Yu et al., 1999)
- TLA⁺ Proof System: deductive system verification
 - full correctness proofs of TLA⁺ specifications
 - developed at MSR-INRIA Centre since ~ 2007

Discuss some principles and challenges in designing TLAPS

Stephan Merz (INRIA Nancy)

Outline

Introductory Example

- 2 Non-Temporal Proofs in TLAPS
- 3 Handling Temporal Proofs

Wrapping Up

• Nodes arranged on a ring perform some computation

- nodes can be active (double circle) or inactive
- node 0 (master node) wishes to detect when all nodes are inactive

- Nodes arranged on a ring perform some computation
 - nodes can be active (double circle) or inactive
 - node 0 (master node) wishes to detect when all nodes are inactive
- Token-based algorithm
 - initially: token at master node, who may pass it to its neighbor

• Nodes arranged on a ring perform some computation

- nodes can be active (double circle) or inactive
- node 0 (master node) wishes to detect when all nodes are inactive
- Token-based algorithm
 - initially: token at master node, who may pass it to its neighbor
 - when a node is inactive, it passes on the token

• Nodes arranged on a ring perform some computation

- nodes can be active (double circle) or inactive
- node 0 (master node) wishes to detect when all nodes are inactive

• Token-based algorithm

- initially: token at master node, who may pass it to its neighbor
- when a node is inactive, it passes on the token
- termination detected when token returns to inactive master node

• Nodes arranged on a ring perform some computation

- nodes can be active (double circle) or inactive
- node 0 (master node) wishes to detect when all nodes are inactive

• Token-based algorithm

- initially: token at master node, who may pass it to its neighbor
- when a node is inactive, it passes on the token
- termination detected when token returns to inactive master node

• Complication: nodes may send messages, activating receiver

- A - E - M-

- Nodes and token colored black or white
 - master node initiates probe by sending white token

- Nodes and token colored black or white
 - master node initiates probe by sending white token
 - message to higher-numbered node stains sending node

- Nodes and token colored black or white
 - master node initiates probe by sending white token
 - message to higher-numbered node stains sending node
 - when passing the token, a black node stains the token

- Nodes and token colored black or white
 - master node initiates probe by sending white token
 - message to higher-numbered node stains sending node
 - when passing the token, a black node stains the token
- Termination detection by master node
 - white token at inactive, white master node

- Nodes and token colored black or white
 - master node initiates probe by sending white token
 - message to higher-numbered node stains sending node
 - when passing the token, a black node stains the token
- Termination detection by master node
 - white token at inactive, white master node
- Required correctness properties
 - safety: termination detected only if all nodes inactive
 - liveness: when all nodes inactive, termination will be detected

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

TLA⁺ Specification of EWD 840: Data Model

- MODULE EWD840

```
EXTENDS Naturals

CONSTANT N

ASSUME NAssumption \triangleq N \in Nat \setminus \{0\}

Nodes \triangleq 0..N - 1

Color \triangleq \{ "white", "black" \}

VARIABLES tpos, tcolor, active, color

TypeOK \triangleq \land tpos \in Nodes \land tcolor \in Color

\land active \in [Nodes \rightarrow BOOLEAN] \land color \in [Nodes \rightarrow Color]
```

- Declaration of parameters
- Definition of operators
 - sets Nodes and Color
 - TypeOK documents expected values of variables
 - active and color are arrays, i.e. functions

TLA⁺ Proof System

TLA⁺ Specification of EWD 840: Behavior (1)

 $Init \stackrel{\Delta}{=} \land tpos \in Nodes \land tcolor = "black"$ $\land active \in [Nodes \rightarrow BOOLEAN] \land color \in [Nodes \rightarrow Color]$

• Initial condition: any "type-correct" values; token should be black

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

IFIP WG 2.2, September 2014 8 / 30

TLA⁺ Specification of EWD 840: Behavior (1)

```
Init \stackrel{\Delta}{=} \land tpos \in Nodes \land tcolor = "black"
           \land active \in [Nodes \rightarrow BOOLEAN] \land color \in [Nodes \rightarrow Color]
InitiateProbe \stackrel{\Delta}{=}
      \wedge tpos = 0 \wedge (tcolor = "black" \vee color[0] = "black")
      \wedge tpos' = N - 1 \wedge tcolor' = "white"
      \wedge color' = [color EXCEPT ![0] = "white"]
      \wedge active' = active
PassToken(i) \stackrel{\Delta}{=}
      \land tpos = i \land (\neg active[i] \lor color[i] = "black" \lor tcolor = "black")
      \wedge tpos' = i - 1
      \wedge tcolor' = IF color[i] = "black" THEN "black" ELSE tcolor
      \wedge color' = [color EXCEPT ![i] = "white"]
      \wedge active' = active
System \stackrel{\Delta}{=} InitiateProbe \lor \exists i \in Nodes \setminus \{0\} : PassToken(i)
```

- Initial condition: any "type-correct" values; token should be black
- System transitions: token passing

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

IFIP WG 2.2, September 2014 8 / 30

TLA⁺ Specification of EWD 840: Behavior (2)

 $\begin{aligned} & \text{SendMsg}(i) \triangleq \\ & \land \text{active}[i] \\ & \land \exists j \in \text{Nodes} \setminus \{i\} : \\ & \land \text{active}' = [\text{active EXCEPT }![j] = \text{TRUE}] \\ & \land \text{color}' = [\text{color EXCEPT }![i] = \text{IF } j > i \text{ THEN "black" ELSE }@] \\ & \land \text{UNCHANGED} \langle \text{tpos, tcolor} \rangle \end{aligned}$ $\begin{aligned} & \text{Deactivate}(i) \triangleq \\ & \land \text{active}[i] \land \text{active}' = [\text{active EXCEPT }![i] = \text{FALSE}] \\ & \land \text{UNCHANGED} \langle \text{color, tpos, tcolor} \rangle \end{aligned}$ $\begin{aligned} & \text{Env} \triangleq \exists i \in \text{Nodes} : \text{SendMsg}(i) \lor \text{Deactivate}(i) \end{aligned}$

• Definition of remaining ("environment") actions

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

TLA⁺ Specification of EWD 840: Behavior (2)

SendMsg(i) $\stackrel{\Delta}{=}$ \land active[i] $\land \exists i \in Nodes \setminus \{i\}$: \land active' = [active EXCEPT ![j] = TRUE] $\wedge color' = [color \text{ EXCEPT } ! [i] = \text{ IF } i > i \text{ THEN "black" ELSE } @]$ \wedge UNCHANGED $\langle tpos, tcolor \rangle$ $Deactivate(i) \stackrel{\Delta}{=}$ \land active[i] \land active' = [active EXCEPT ![i] = FALSE] ∧ UNCHANGED ⟨*color*, *tpos*, *tcolor*⟩ $Env \stackrel{\scriptscriptstyle \Delta}{=} \exists i \in Nodes : SendMsg(i) \lor Deactivate(i)$ vars $\stackrel{\Delta}{=} \langle tpos, tcolor, active, color \rangle$ $Spec \triangleq Init \land \Box[System \lor Env]_{vars} \land WF_{vars}(System)$

• Definition of remaining ("environment") actions

• Executions: initial condition, interleaving of transitions, fairness

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

Safety Properties in TLA⁺

Type correctness

invariant of the specification:

THEOREM $Spec \Rightarrow \Box TypeOK$

asserts that *TypeOK* is always true during any execution of *Spec*

▶ < 프 ▶ < 프</p>

Safety Properties in TLA⁺

Type correctness

invariant of the specification:

THEOREM $Spec \Rightarrow \Box TypeOK$

asserts that *TypeOK* is always true during any execution of *Spec*

Orrectness of termination detection

termination detected when white token at inactive, white node 0

```
\begin{array}{l} terminationDetected \triangleq \\ tpos = 0 \land tcolor = "white" \land \neg active[0] \land color[0] = "white" \\ \hline TerminationDetection \triangleq \\ terminationDetected \Rightarrow \forall i \in Nodes : \neg active[i] \\ \hline THEOREM \ Spec \Rightarrow \Box TerminationDetection \end{array}
```

formally again expressed as an invariant

Safety Properties in TLA⁺

Type correctness

invariant of the specification:

THEOREM Spec $\Rightarrow \Box TypeOK$

asserts that *TypeOK* is always true during any execution of *Spec*

Orrectness of termination detection

termination detected when white token at inactive, white node 0

```
\begin{array}{l} terminationDetected \triangleq \\ tpos = 0 \land tcolor = "white" \land \neg active[0] \land color[0] = "white" \\ \hline TerminationDetection \triangleq \\ terminationDetected \Rightarrow \forall i \in Nodes : \neg active[i] \\ \hline THEOREM \ Spec \Rightarrow \Box TerminationDetection \end{array}
```

formally again expressed as an invariant

Model checker TLC validates properties for finite instances

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

IFIP WG 2.2, September 2014 10 / 30

Using TLAPS to Prove Safety of EWD 840

• Proving a simple invariant in TLAPS

```
THEOREM TypeOK_inv \triangleq Spec \Rightarrow \BoxTypeOK
(1)1. Init \Rightarrow TypeOK
(1)2. TypeOK \land [System \lor Env]<sub>vars</sub> \Rightarrow TypeOK'
(1)3. QED BY(1)1, (1)2, PTL DEF Spec
```

- hierarchical proof language represents proof tree
- steps can be proved in any order: usually start with QED step

Using TLAPS to Prove Safety of EWD 840

• Proving a simple invariant in TLAPS

```
THEOREM TypeOK_inv \triangleq Spec \Rightarrow \BoxTypeOK
(1)1. Init \Rightarrow TypeOK
(1)2. TypeOK \land [System \lor Env]<sub>vars</sub> \Rightarrow TypeOK'
(1)3. QED BY(1)1, (1)2, PTL DEF Spec
```

- hierarchical proof language represents proof tree
- steps can be proved in any order: usually start with QED step
- Prove that *Init* implies *TypeOK*

(1)1. Init \Rightarrow TypeOK BY NAssumption DEFS Init, TypeOK, Node, Color

explicitly cite definitions and facts used in the proof

Using TLAPS to Prove Safety of EWD 840

• Proving a simple invariant in TLAPS

THEOREM TypeOK_inv \triangleq Spec $\Rightarrow \Box$ TypeOK (1)1. Init \Rightarrow TypeOK (1)2. TypeOK \land [System \lor Env]_{vars} \Rightarrow TypeOK' (1)3. QED BY(1)1, (1)2, PTL DEF Spec

- hierarchical proof language represents proof tree
- steps can be proved in any order: usually start with QED step
- Prove that *Init* implies *TypeOK*

(1)1. Init \Rightarrow TypeOK BY NAssumption DEFS Init, TypeOK, Node, Color

- explicitly cite definitions and facts used in the proof
- Invariant preservation can be proved similarly
 - when proof fails, decompose into "simpler" sub-steps

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

Hierarchical Proofs

 $\langle 1 \rangle 2$. TypeOK \land [System \lor Env]_{vars} \Rightarrow TypeOK' (2) USE NAssumption DEF TypeOK, Node, Color $\langle 2 \rangle$ SUFFICES ASSUME *TypeOK*, *System* \lor *Env* PROVE TypeOK' BY DEFS TypeOK, vars $\langle 2 \rangle$ 1. CASE InitiateProbe BY $\langle 2 \rangle$ 1 DEF InitiateProbe $\langle 2 \rangle$ 2. ASSUME NEW $i \in Node \setminus \{0\}$, PassToken(i)PROVE TypeOK' BY $\langle 2 \rangle 2$ DEF PassToken ... similar for remaining actions ... $\langle 2 \rangle$ QED BY $\langle 2 \rangle 1, \langle 2 \rangle 2, \dots$ DEF System, Env

- SUFFICES steps represent backward chaining
- trivial case UNCHANGED vars handled during decomposition
- Toolbox IDE helps with hierarchical decomposition

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

Architecture of TLAPS

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

IFIP WG 2.2, September 2014 13 / 30

- 3

Outline

Introductory Example

- 2 Non-Temporal Proofs in TLAPS
 - 3 Handling Temporal Proofs
- 4 Wrapping Up

э

TLA⁺ Assertions

• TLA⁺ assertions: formula or sequent (ASSUME ... PROVE)

ASSUME	NEW $P(_{-}), P(0),$
	$\forall k \in Nat : P(k) \Rightarrow P(k+1)$
PROVE	$\forall n \in Nat : P(n)$

- ► ASSUME introduces new symbols, formulas or sequents into context
- formulas identified with sequents without hypotheses

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ○理

TLA⁺ Assertions

• TLA⁺ assertions: formula or sequent (ASSUME ... PROVE)

ASSUME	NEW $P(_{-}), P(0),$
	Assume new $k \in Nat$, $P(k)$ prove $P(k+1)$
PROVE	$\forall n \in Nat : P(n)$

- ASSUME introduces new symbols, formulas or sequents into context
- formulas identified with sequents without hypotheses
- Assertions may appear ...
 - ... at top-level as the body of lemmas and theorems
 - ... as steps within a proof

• Sequent asserts provability of conclusion in extended context

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

Proof Structure

BY ... [DEF ...]

- cite facts and definitions to be used in the proof
- no "procedural" indication for the back-end prover

→ < Ξ → <</p>

Proof Structure

• Leaf proofs

OBVIOUS

BY ... [DEF ...]

- cite facts and definitions to be used in the proof
- no "procedural" indication for the back-end prover
- Hierarchical proofs: sequence of assertions ending in QED
 - proof language oriented towards forward reasoning
 - SUFFICES steps introduce backward reasoning

```
(3)5. SUFFICES ASSUME ... PROVE ...
BY ... shows that new sequent implies previous assertion
:
(3). QED
BY ... proves assertion of SUFFICES
```

Untyped Logic: Boolean Expressions

• Untyped TLA⁺ doesn't even distinguish terms from formulas

 $(42 = \text{TRUE}) \land \text{``abc''}$ syntactically well-formed

- rely on underspecified conversion to Boolean values
- ► formula φ interpreted as $boolify(\varphi) \stackrel{\Delta}{=} \varphi = \text{TRUE}$
- operators such as $=, \in, \land, \forall$ always evaluate to TRUE or FALSE

Untyped Logic: Boolean Expressions

• Untyped TLA⁺ doesn't even distinguish terms from formulas

 $(42 = \text{TRUE}) \land \text{``abc''}$ syntactically well-formed

- rely on underspecified conversion to Boolean values
- ► formula φ interpreted as *boolify*(φ) $\stackrel{\Delta}{=} \varphi = \text{TRUE}$
- operators such as $=, \in, \land, \forall$ always evaluate to TRUE or FALSE
- Standard laws of logic remain valid

ASSUME NEW S, NEW $P(_)$, ASSUME NEW $x \in S$ PROVE P(x)PROVE $\forall x \in S : P(x)$ $(\neg P) = (P \Rightarrow FALSE)$ $(P \land TRUE) = boolify(P)$ $\neg (P \land Q) = (\neg P \lor \neg Q)$ $boolify(Q \lor R) = (Q \lor R)$

• Straightforward automation of logical reasoning

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

- Backend provers rely on sort information for automation
- Untyped embedding: inject interpreted sorts into TLA⁺ universe

- Backend provers rely on sort information for automation
- Untyped embedding: inject interpreted sorts into TLA⁺ universe

Characteristic axioms

$$\forall k, l : i2u(k) = i2u(l) \Rightarrow k = l$$

 $\forall u : u \in Int \equiv \exists k : u = i2u(k)$

- Backend provers rely on sort information for automation
- Untyped embedding: inject interpreted sorts into TLA⁺ universe

Characteristic axioms

$$\begin{aligned} \forall k,l : i2u(k) &= i2u(l) \Rightarrow k = l \\ \forall u : u \in Int \equiv \exists k : u = i2u(k) \\ \forall k,l : i2u(k) +_u i2u(l) &= i2u(k+l) \end{aligned}$$

- Backend provers rely on sort information for automation
- Untyped embedding: inject interpreted sorts into TLA⁺ universe

Characteristic axioms

 $\begin{aligned} \forall k,l: i2u(k) &= i2u(l) \Rightarrow k = l \\ \forall u: u \in Int \equiv \exists k: u = i2u(k) \\ \forall k,l: i2u(k) +_u i2u(l) &= i2u(k+l) \end{aligned}$

イロト イポト イヨト イヨト

• Theoretically elegant, but impractical due to quantified axioms

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

IFIP WG 2.2, September 2014 18 / 30

Optimization: Type Inference

• Proof context contains domain assumptions

ASSUME $N \in Nat \setminus \{0\}$, $u \in 1..N$, NEW $k \in 0..u$ PROVE $u - k \in 0..u$

• Exploit domain assumptions to infer types for expressions

- above: N, u, k, u k can be represented as SMT integers
- no need for generating background axioms

ヘロト 人間 とくほ とくほ とう

Optimization: Type Inference

• Proof context contains domain assumptions

ASSUME $N \in Nat \setminus \{0\}$, $u \in 1..N$, NEW $k \in 0..u$ PROVE $u - k \in 0..u$

- Exploit domain assumptions to infer types for expressions
 - above: N, u, k, u k can be represented as SMT integers
 - no need for generating background axioms
- Expressive types help speed up backend proofs
 - ensure well-definedness: function applications, partial operations
 - rely on dependent types, predicative subtyping, ...
 - when type inference fails: locally fall back to untyped encoding M., Vanzetto: Refinement Types for TLA⁺. NFM 2014 (LNCS 8430).

Optimization: Type Inference

• Proof context contains domain assumptions

ASSUME $N \in Nat \setminus \{0\}$, $u \in 1..N$, NEW $k \in 0..u$ PROVE $u - k \in 0..u$

- Exploit domain assumptions to infer types for expressions
 - above: N, u, k, u k can be represented as SMT integers
 - no need for generating background axioms
- Expressive types help speed up backend proofs
 - ensure well-definedness: function applications, partial operations
 - rely on dependent types, predicative subtyping, ...
 - when type inference fails: locally fall back to untyped encoding M., Vanzetto: Refinement Types for TLA⁺. NFM 2014 (LNCS 8430).

• Untyped expressiveness and efficiency of typed reasoning

Outline

- I Introductory Example
- 2 Non-Temporal Proofs in TLAPS
- 3 Handling Temporal Proofs
- 4 Wrapping Up

э

What's Difficult in Temporal Reasoning

- Modal logic breaks natural deduction
 - $F \vdash G$ cannot be identified with $\vdash F \Rightarrow G$
 - for example, have $F \vdash \Box F$ but not $\vdash F \Rightarrow \Box F$
 - $\Box F \vdash G$ can be identified with $\vdash \Box F \Rightarrow G$
- Arrange temporal reasoning so that hypotheses are boxed
 - formula *F* is boxed if $\models F \equiv \Box F$
 - ▶ syntactic approximation: constant formulas, $\Box F$, $\Diamond \Box F$, $WF_v(A)$, ...
 - apply implicit necessitation to formulas derived in boxed context
 - corresponds to natural decomposition of temporal logic proofs: context contains invariants, next-state relation, fairness, ...

• Provers must still handle first-order temporal logic

Stephan Merz (INRIA Nancy)

A Typical Proof Involving Temporal Logic

```
THEOREM Init \land \Box[Next]_v \Rightarrow \forall p \in Proc : \Box Safe(p)
\langle 1 \rangle 1. SUFFICES ASSUME NEW p \in Proc
PROVE Init \land \Box[Next]_v \Rightarrow \Box Safe(p)
OBVIOUS
\langle 1 \rangle 2. Init \Rightarrow Safe(p) BY DEF Init, Safe
\langle 1 \rangle 3. Safe(p) \land [Next]_v \Rightarrow Safe(p)' BY DEF Safe, Next, v
\langle 1 \rangle 4. QED BY \langle 1 \rangle 2, \langle 1 \rangle 3, PTL
```

• Separate steps based on action and temporal reasoning

- first-order provers vs. PTL decision procedure
- prime "modality" handled by pre-processing
- temporal reasoning is mostly propositional
- remaining steps will be supported by specific back-end

• What is really going on here?

Coalescing: Basic Idea

- Abstract subformulas that given back-end doesn't understand
 - ▶ in the SUFFICES step, the FOL prover sees the proof obligation

$$p \in Proc \qquad Init \land \Box[Step]_v) \Rightarrow \Box Safe(p)$$
$$Init \land \Box[Step]_v) \Rightarrow \forall p \in Proc : \Box Safe(p)$$

in the QED step, the PTL decision procedure sees

$$\begin{array}{c} \hline Init \Rightarrow \hline Safe(p) & \hline Safe(p) \land \hline [Step]_v \Rightarrow \circ \hline Safe(p) \\ \hline Init \land \Box \hline [Step]_v \Rightarrow \Box \hline Safe(p) \\ \end{array}$$

the formulas in boxes are introduced as ad-hoc operators

• Must ensure soundness of abstraction

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

Alternatives to Coalescing

- Temporal operators as uninterpreted predicate symbols
 - simple: does not need special support for temporal logic
 - unsound: temporal logic violates Leibniz principle
 - for example, one should not prove

 $v=0 \Rightarrow \Box (v=0)$

イロト イロト イヨト イヨト

Alternatives to Coalescing

- Temporal operators as uninterpreted predicate symbols
 - simple: does not need special support for temporal logic
 - unsound: temporal logic violates Leibniz principle
 - for example, one should not prove

 $v = 0 \Rightarrow \Box(v = 0)$

- Standard translation to first-order logic
 - encode semantics of temporal logic in FOL
 - example above becomes

$$v(n) = 0 \Rightarrow \forall m \ge n : v(m) = 0$$

▶ complication: PTL requires induction for relating ○ and □

Alternatives to Coalescing

- Temporal operators as uninterpreted predicate symbols
 - simple: does not need special support for temporal logic
 - unsound: temporal logic violates Leibniz principle
 - for example, one should not prove

 $v = 0 \Rightarrow \Box(v = 0)$

- Standard translation to first-order logic
 - encode semantics of temporal logic in FOL
 - example above becomes

$$v(n) = 0 \Rightarrow \forall m \ge n : v(m) = 0$$

▶ complication: PTL requires induction for relating ○ and □

• Coalescing is useful due to little interaction between FOL and PTL

Stephan Merz (INRIA Nancy)

Coalescing to FOL: Definition

- Basic idea: abstract subformula $\Box \varphi$ by new proposition $\Box \varphi$
 - needs care in the presence of bound variables:

coalescing $\forall a : \Box(x = a) \Rightarrow x = a$ to $\forall a : [\Box(x = a)] \Rightarrow x = a$

"forgets" occurrence of bound variable $a \rightsquigarrow$ unsoundness

ヘロン 人間 とくほ とくほ とう

Coalescing to FOL: Definition

- Basic idea: abstract subformula $\Box \varphi$ by new proposition $\Box \varphi$
 - ▶ needs care in the presence of bound variables: coalescing $\forall a : \Box(x = a) \Rightarrow x = a$ to $\forall a : (\Box(x = a)) \Rightarrow x = a$

"forgets" occurrence of bound variable $a \rightsquigarrow$ unsoundness

- Abstract $\Box \varphi$ by $\lambda \vec{z} : \Box \varphi$ (\vec{z}) (\vec{z} all bound variables occuring in φ)
 - identify operators up to *α*-equivalence
 - can prove $(\exists x, z : \Box(v = x)) \equiv (\exists y : \Box(v = y))$
 - optimizations possible to identify less superficial equivalences

Stephan Merz (INRIA Nancy)

Soundness of Coalescing to FOL

Theorem

For any set Γ of TLA⁺ formulas and TLA⁺ formula φ : $\Gamma_{FOL} \models_{FOL} \varphi_{FOL}$ implies $\Gamma \models \varphi$

Proof sketch. Assume $\Gamma \not\models \varphi$, obtain \mathcal{M} s.t. $\mathcal{M}, n \models \Gamma$ but $\mathcal{M}, 0 \not\models \varphi$. Define FOL-structure $\mathcal{S} = (\mathcal{I}', \xi')$ based on \mathcal{M} and state 0:

•
$$\zeta'(v) = \zeta(0, v)$$
 for $v \in \mathcal{V}$
• $\mathcal{I}'((\lambda \vec{z} : \Box \psi))(\vec{d}) = [\![\Box \psi]\!]_0^{\vec{z}:=\vec{d}}$

Now show $\llbracket e_{FOL} \rrbracket^{\mathcal{S}} = \llbracket e \rrbracket_0$ for all sub-expressions *e* in Γ or φ .

Hence $\Gamma_{FOL} \not\models_{FOL} \varphi$.

Coalescing to Propositional Temporal Logic

• Coalesce first-order subformulas to atomic propositions

•
$$(op(e_1, \dots, e_n))_{PTL} = op(e_1, \dots, e_n)$$

• $(e_1 = e_2)_{PTL} = e_1 = e_2$
• $(\forall x : e)_{PTL} = \forall x : e$
• $(e')_{PTL} = \circ(e_{PTL})$

• Example

$$x = y \Rightarrow \Box \diamondsuit (x = y)$$
 yields $x = y \Rightarrow \Box \diamondsuit x = y$

Stephan Merz (INRIA Nancy)

Coalescing to Propositional Temporal Logic

• Coalesce first-order subformulas to atomic propositions

•
$$(op(e_1, \dots, e_n))_{PTL} = op(e_1, \dots, e_n)$$

• $(e_1 = e_2)_{PTL} = e_1 = e_2$
• $(\forall x : e)_{PTL} = \forall x : e$
• $(e')_{PTL} = \circ(e_{PTL})$

• Example

$$x = y \Rightarrow \Box \diamondsuit (x = y)$$
 yields $x = y \Rightarrow \Box \diamondsuit x = y$

- add hypothesis $P \Rightarrow \Box P$ if *P* only contains constants
- implication above is provable if x, y are constants
- Soundness result similar to previous one

Stephan Merz (INRIA Nancy)

TLA⁺ Proof System

Coalescing: Summing Up

- Extends to full TLA⁺ language
 - (second-order) operator definitions require extra care
 - track operator arguments used in the scope of modal operators
- Sound integration of first-order and temporal reasoning
 - interface with standard FOL provers and PTL decision procedures
 - temporal induction handled by PTL reasoner
 - prime modality handled during pre-processing for FOL
- Complete for proving standard safety properties
- Liveness requires special back-end for first-order temporal logic

Stephan Merz (INRIA Nancy)

Outline

- Introductory Example
- 2 Non-Temporal Proofs in TLAPS
- 3 Handling Temporal Proofs
- Wrapping Up

э

Experience With TLAPS So Far

- Designed around language, not tools
 - declarative and hierarchical proof language
 - freedom in design of interfaces to back-ends
 - architecture accommodates certification of overall soundness
- Engineering aspects: handling large proofs
 - tool support for maintaining and adapting proofs
 - GUI support for reading and writing hierarchical proofs
 - finger printing of proof obligations for tracking changes
 - existing case studies: (Byzantine) Paxos, Memoir, Pastry
- Future and ongoing work
 - full support for proofs of liveness properties
 - disproving invalid obligations: finite model finding
 - compute and strengthen inductive invariants

Post-doctoral position available