TLAPS: A Proof Assistant for TLA* J

Stephan Merz

with D. Doligez, L. Lamport, K. Chaudhuri, D. Cousineau,
J. Kriener, T. Libal, D. Ricketts, H. Vanzetto and others

INRIA Nancy & LORIA
Nancy, France
- i P
O
informatics #” mathematics .
Loria | O A
i/ ,a/- ¢ ;‘;I;Ic'r‘c_ilg%fetﬁ]gsgarch - Inria
IFIP WG 2.2 Meeting

Munich, September, 2014

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 1/30

http://www.inria.fr/
http://www.loria.fr/
http://www.msr-inria.inria.fr/

Principles of TLA*

e High-level models of discrete (distributed) algorithms

» represent algorithms and their properties by logical formulas
» Zermelo-Frankel set theory for static model (data structures)

» temporal logic for dynamic model (system executions)

@ State machines specified as logical formulas Init A O[Next], A F

> Init state predicate: initial states
» Next transition predicate: state transitions
» F fairness hypotheses: explicit progress assumption

» allow for stuttering steps: useful for refinement and composition

@ Rely on formal logic for handling complexity

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 2/30

TLA* Tools

@ TLA™: specify algorithms at high level of abstraction

» Leslie Lamport, mid-1990s: paper-and-pencil formalism
» based on set theory and temporal logic

» explicit-state model checker TLC (Yuan Yu et al., 1999)

@ TLA* Proof System: deductive system verification

» full correctness proofs of TLA* specifications

» developed at MSR-INRIA Centre since ~ 2007

@ Discuss some principles and challenges in designing TLAPS

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 3/30

Outline

e Introductory Example
9 Non-Temporal Proofs in TLAPS

9 Handling Temporal Proofs

e Wrapping Up

Stephan Merz (INRIA Nancy) TLA™ Proof System

IFIP WG 2.2, September 2014

4/30

Example: Distributed Termination Detection

O

O

@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 5/30

Example: Distributed Termination Detection

A
O O

@) O ~ O OA
O O

@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive

@ Token-based algorithm

» initially: token at master node, who may pass it to its neighbor

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 5/30

Example: Distributed Termination Detection

A
O O O

O O ~ O oA ~ O O
O O O

Y4
@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive
e Token-based algorithm

» initially: token at master node, who may pass it to its neighbor
» when a node is inactive, it passes on the token

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 5/30

Example: Distributed Termination Detection

A A
O O O O
@) O ~ O QA ~ O O e Q‘O
O O O O
v

@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive
e Token-based algorithm

» initially: token at master node, who may pass it to its neighbor
» when a node is inactive, it passes on the token
» termination detected when token returns to inactive master node

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 5/30

Example: Distributed Termination Detection

A A
O O O O
@) O ~ O QA ~ O O e Q‘@
O O O O
v

@ Nodes arranged on a ring perform some computation

» nodes can be active (double circle) or inactive
» node 0 (master node) wishes to detect when all nodes are inactive

@ Token-based algorithm

» initially: token at master node, who may pass it to its neighbor
» when a node is inactive, it passes on the token
» termination detected when token returns to inactive master node

@ Complication: nodes may send messages, activating receiver

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 5/30

Dijkstra’s Algorithm (EWD 840, 1983)
O

O
A

@ Nodes and token colored black or white

» master node initiates probe by sending white token

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 6 /30

Dijkstra’s Algorithm (EWD 840, 1983)
O

@ Nodes and token colored black or white

» master node initiates probe by sending white token
» message to higher-numbered node stains sending node

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 6 /30

Dijkstra’s Algorithm (EWD 840, 1983)
O

~ O O ~ AO

@
A

@ Nodes and token colored black or white

» master node initiates probe by sending white token
» message to higher-numbered node stains sending node
» when passing the token, a black node stains the token

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 6 /30

Dijkstra’s Algorithm (EWD 840, 1983)

O O

O O ~ O O ~ AO
O @
A A

@ Nodes and token colored black or white

» master node initiates probe by sending white token
» message to higher-numbered node stains sending node
» when passing the token, a black node stains the token

@ Termination detection by master node

» white token at inactive, white master node

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 6 /30

Dijkstra’s Algorithm (EWD 840, 1983)

O O

O O ~ O O ~ AO
O @
A A

@ Nodes and token colored black or white

» master node initiates probe by sending white token
» message to higher-numbered node stains sending node
» when passing the token, a black node stains the token

@ Termination detection by master node

» white token at inactive, white master node

@ Required correctness properties

» safety: termination detected only if all nodes inactive
» liveness: when all nodes inactive, termination will be detected

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 6 /30

TLA* Specification of EWD 840: Data Model

[MODULE EWD§840
EXTENDS Naturals
CONSTANT N
ASSUME NAssumption = N € Nat \ {0}
Nodes = 0..N —1
Color = { “white”, “black” }
VARIABLES tpos, tcolor, active, color
TypeOK = A tpos € Nodes A tcolor € Color
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

@ Declaration of parameters

@ Definition of operators

> sets Nodes and Color
» TypeOK documents expected values of variables
» active and color are arrays, i.e. functions

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 7 /30

TLA™ Specification of EWD 840: Behavior (1)

Init = A tpos € Nodes A tcolor = “black”
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

@ Initial condition: any “type-correct” values; token should be black

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

8 /30

TLA™ Specification of EWD 840: Behavior (1)

Init = A tpos € Nodes A tcolor = “black”
A active € [Nodes — BOOLEAN] A color € [Nodes — Color]

InitiateProbe =

A tpos = 0 A (tcolor = “black” V color[0] = “black”)

A tpos' = N — 1 A teolor’ = “white”

A color’ = [color EXCEPT ![0] = “white”]

A active’ = active
PassToken (i) =

A tpos = i A (—active[i] V color[i] = “black” V tcolor = “black”)

Atpos’' =i—1

A teolor’ = IF color|i] = “black” THEN “black” ELSE tcolor

A color’ = [color EXCEPT ![i] = “white”]

A active’ = active

A

System = InitiateProbe V 3i € Nodes \ {0} : PassToken(i)

@ Initial condition: any “type-correct” values; token should be black

@ System transitions: token passing

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 8 /30

TLA™ Specification of EWD 840: Behavior (2)

SendMsg (i) =
A activeli]
A 3j € Nodes \ {i} :
A active’ = |active EXCEPT ![j] = TRUE]
A color’ = [color EXCEPT ![i] = IFj > i THEN “black” ELSE @]
A UNCHANGED (tpos, tcolor)
Deactivate(i) =
A activeli] A active’ = [active EXCEPT ![i] = FALSE]
A UNCHANGED (color, tpos, tcolor)
Env = 3i € Nodes : SendMsg (i) \VV Deactivate(i)

@ Definition of remaining (“environment”) actions

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

9/30

TLA™ Specification of EWD 840: Behavior (2)

SendMsg (i) =
A activeli]
A 3j € Nodes \ {i} :
A active’ = |active EXCEPT ![j] = TRUE]

A color’ = [color EXCEPT ![i] = IFj > i THEN “black” ELSE @]
A UNCHANGED (tpos, tcolor)
Deactivate(i) =

A activeli] A active’ = [active EXCEPT ![i] = FALSE]
A UNCHANGED (color, tpos, tcolor)

Env = 3i € Nodes : SendMsg (i) \VV Deactivate(i)

vars = (tpos, tcolor, active, color)

Spec 2 Init A O[System V Env]yars A WEqars (System)

@ Definition of remaining (“environment”) actions

@ Executions: initial condition, interleaving of transitions, fairness

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

9/30

Safety Properties in TLA™

@ Type correctness

» invariant of the specification: THEOREM Spec = OTypeOK |

» asserts that TypeOK is always true during any execution of Spec

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 10 / 30

Safety Properties in TLA™

@ Type correctness

» invariant of the specification: THEOREM Spec = OTypeOK |

» asserts that TypeOK is always true during any execution of Spec

@ Correctness of termination detection

» termination detected when white token at inactive, white node 0
terminationDetected =
tpos = 0 A tcolor = “white” A —active[0] A color[0] = “white”
TerminationDetection =

terminationDetected = Vi € Nodes : —activeli]
THEOREM Spec = OTerminationDetection

» formally again expressed as an invariant

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 10 / 30

Safety Properties in TLA™

@ Type correctness

» invariant of the specification: THEOREM Spec = OTypeOK |

» asserts that TypeOK is always true during any execution of Spec

@ Correctness of termination detection

» termination detected when white token at inactive, white node 0

terminationDetected =

tpos = 0 A tcolor = “white” A —active[0] A color[0] = “white”
TerminationDetection =

terminationDetected = Vi € Nodes : —activeli]
THEOREM Spec = OTerminationDetection

» formally again expressed as an invariant

Model checker TLC validates properties for finite instances

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

10 / 30

Using TLAPS to Prove Safety of EWD 840

@ Proving a simple invariant in TLAPS

A

THEOREM TypeOK_inv = Spec = OTypeOK
(1)1. Init = TypeOK

(1)2. TypeOK A [System \ Envlyers = TypeOK’
(1)3. QeD BY(1)1,(1)2, PTL DEF Spec

» hierarchical proof language represents proof tree
» steps can be proved in any order: usually start with QED step

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

11 /30

Using TLAPS to Prove Safety of EWD 840

@ Proving a simple invariant in TLAPS
THEOREM TypeOK _inv = Spec = OTypeOK
(1)1. Init = TypeOK
(1)2. TypeOK A [System \ Envlyers = TypeOK’
(1)3. QeD BY(1)1,(1)2, PTL DEF Spec

» hierarchical proof language represents proof tree
» steps can be proved in any order: usually start with QED step

@ Prove that Init implies TypeOK

(1)1. Init = TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

» explicitly cite definitions and facts used in the proof

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

11 /30

Using TLAPS to Prove Safety of EWD 840

@ Proving a simple invariant in TLAPS
THEOREM TypeOK _inv = Spec = OTypeOK
(1)1. Init = TypeOK
(1)2. TypeOK A [System \ Envlyers = TypeOK’
(1)3. QeD BY(1)1,(1)2, PTL DEF Spec

» hierarchical proof language represents proof tree
» steps can be proved in any order: usually start with QED step

@ Prove that Init implies TypeOK

(1)1. Init = TypeOK
BY NAssumption DEFS Init, TypeOK, Node, Color

» explicitly cite definitions and facts used in the proof

@ Invariant preservation can be proved similarly

» when proof fails, decompose into “simpler” sub-steps

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

11 /30

Hierarchical Proofs

(1)2. TypeOK A [System V Envlyers = TypeOK’
(2) USE NAssumption DEF TypeOK, Node, Color
(2) SUFFICES ASSUME TypeOK, System V Env

PROVE TypeOK'
BY DEFS TypeOK, vars
(2)1. CASE InitiateProbe
BY (2)1 DEF InitiateProbe
(2)2. ASSUME NEW i € Node \ {0}, PassToken (i)
PROVE TypeOK’
BY (2)2 DEF PassToken
. similar for remaining actions ...
(2) QED BY (2)1,(2)2,... DEF System, Env

@ SUFFICES steps represent backward chaining
@ trivial case UNCHANGED vars handled during decomposition

@ Toolbox IDE helps with hierarchical decomposition

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

12 /30

Architecture of TLAPS

TLA*
Toolbox

(IDE)

Proof manager

interpret proofs

compute proof obligations

coalesce modal /

certify proof

(optional, when possible)

first-order expressions

call backend provers

to attempt proof

7 A

Stephan Merz (INRIA Nancy)

7

SMT solvers Zenon

Isabelle PTL (Is4)

TLA* Proof System IFIP WG 2.2, September 2014

13 / 30

e Introductory Example
e Non-Temporal Proofs in TLAPS
e Handling Temporal Proofs

e Wrapping Up

«4Or «Fr «=Er «=)» DA

TLA* Assertions

e TLA* assertions: formula or sequent (ASSUME ... PROVE)
ASSUME NEW P(_), P(0),
Vk € Nat : P(k) = P(k+1)
PROVE Vn € Nat : P(n)

» ASSUME introduces new symbols, formulas or sequents into context

» formulas identified with sequents without hypotheses

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 15/ 30

TLA* Assertions

e TLA* assertions: formula or sequent (ASSUME ... PROVE)
ASSUME NEW P(_), P(0),

ASSUME NEW k € Nat, P(k) PROVE P(k+1)
PROVE Vn € Nat: P(n)

» ASSUME introduces new symbols, formulas or sequents into context

» formulas identified with sequents without hypotheses

@ Assertions may appear ...

> ... at top-level as the body of lemmas and theorems

> ... as steps within a proof

@ Sequent asserts provability of conclusion in extended context

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 15/ 30

Proof Structure

@ Leaf proofs OBVIOUS BY ... [DEF...] J

» cite facts and definitions to be used in the proof

» no “procedural” indication for the back-end prover

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 16 / 30

Proof Structure

@ Leaf proofs OBVIOUS BY ... [DEF...] J

» cite facts and definitions to be used in the proof

» no “procedural” indication for the back-end prover

@ Hierarchical proofs: sequence of assertions ending in QED

» proof language oriented towards forward reasoning

» SUFFICES steps introduce backward reasoning

(3)5. SUFFICES ASSUME ... PROVE ...

BY ... shows that new sequent implies previous assertion
(3). QED
BY ... proves assertion of SUFFICES

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

16 / 30

Untyped Logic: Boolean Expressions

@ Untyped TLA™ doesn’t even distinguish terms from formulas

(42 = TRUE) A*abc” | syntactically well-formed

» rely on underspecified conversion to Boolean values
» formula ¢ interpreted as boolify(¢) = @ = TRUE
» operators such as =, €, A, V always evaluate to TRUE or FALSE

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

17 / 30

Untyped Logic: Boolean Expressions

@ Untyped TLA™ doesn’t even distinguish terms from formulas

(42 = TRUE) A “abc” | syntactically well-formed

» rely on underspecified conversion to Boolean values
» formula ¢ interpreted as boolify(¢) = @ = TRUE
» operators such as =, €, A, V always evaluate to TRUE or FALSE

e Standard laws of logic remain valid

ASSUME NEW S, NEW P(_),
ASSUME NEW x € S PROVE P(x)
PROVE Vx € S:P(x)
(=P) = (P = FALSE) -(PAQ) = (=PV-Q)
(P A TRUE) = boolify(P) boolify(QV R) = (QVR)

@ Straightforward automation of logical reasoning

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

17 / 30

Untyped Logic: Theory Reasoning

@ Backend provers rely on sort information for automation

@ Untyped embedding: inject interpreted sorts into TLA*™ universe

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 18 / 30

Untyped Logic: Theory Reasoning

@ Backend provers rely on sort information for automation

@ Untyped embedding: inject interpreted sorts into TLA*™ universe

Characteristic axioms

Yk, 1:2u(k) = 2u(l) = k=1
Vu:u € Int = 3k:u=i2u(k)

2u

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 18 / 30

Untyped Logic: Theory Reasoning

@ Backend provers rely on sort information for automation

@ Untyped embedding: inject interpreted sorts into TLA*™ universe

Characteristic axioms

Vk,1: i2u(k) = i2u(l) = k =1

Vu:u € Int = 3k:u=i2u(k)
i2u : g Wk, 1z i2u(k) +, 2u(l) = 2u(k +1)

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 18 / 30

Untyped Logic: Theory Reasoning

@ Backend provers rely on sort information for automation

@ Untyped embedding: inject interpreted sorts into TLA*™ universe

Characteristic axioms

Vk,1: i2u(k) = i2u(l) = k =1
Vu:u € nt = Jk:u=i2u(k)
u i T VK, 1+ i2u(k) 4 2u(l) = i2u(k+1)

@ Theoretically elegant, but impractical due to quantified axioms

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 18 / 30

Optimization: Type Inference

@ Proof context contains domain assumptions

ASSUME N € Nat\ {0}, u€1..N, NEWk € 0..u
PROVE u—ke0..u

@ Exploit domain assumptions to infer types for expressions

» above: N, u, k, u — k can be represented as SMT integers
» no need for generating background axioms

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

19 / 30

Optimization: Type Inference

@ Proof context contains domain assumptions

ASSUME N € Nat\ {0}, u€1..N, NEWk € 0..u
PROVE u—-kecO.u
@ Exploit domain assumptions to infer types for expressions
» above: N, u, k, u — k can be represented as SMT integers
» no need for generating background axioms
@ Expressive types help speed up backend proofs

» ensure well-definedness: function applications, partial operations
» rely on dependent types, predicative subtyping, ...
» when type inference fails: locally fall back to untyped encoding

M., Vanzetto: Refinement Types for TLA*. NFM 2014 (LNCS 8430).

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 19 / 30

Optimization: Type Inference

@ Proof context contains domain assumptions

ASSUME N € Nat\ {0}, u€1..N, NEWk € 0..u
PROVE u—-kecO.u
@ Exploit domain assumptions to infer types for expressions
» above: N, u, k, u — k can be represented as SMT integers
» no need for generating background axioms
@ Expressive types help speed up backend proofs

» ensure well-definedness: function applications, partial operations
» rely on dependent types, predicative subtyping, ...
» when type inference fails: locally fall back to untyped encoding

M., Vanzetto: Refinement Types for TLA*. NFM 2014 (LNCS 8430).

e Untyped expressiveness and efficiency of typed reasoning

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 19 / 30

e Introductory Example
e Non-Temporal Proofs in TLAPS
° Handling Temporal Proofs

e Wrapping Up

«4Or «Fr «=Er «=)» DA

What's Difficult in Temporal Reasoning

@ Modal logic breaks natural deduction

» FF G cannotbe identified with +F = G
» for example, have FF OF butnot +F= OF
» OFF G canbeidentified with FOF = G

@ Arrange temporal reasoning so that hypotheses are boxed

» formula F is boxed if |=F = OF
» syntactic approximation: constant formulas, OF, OOF, WF,(A), ...
» apply implicit necessitation to formulas derived in boxed context

» corresponds to natural decomposition of temporal logic proofs:
context contains invariants, next-state relation, fairness, ...

@ Provers must still handle first-order temporal logic

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 21/ 30

A Typical Proof Involving Temporal Logic

THEOREM Init A O[Next], = Vp € Proc : OSafe(p)
(1)1. SUFFICES ASSUME NEW p € Proc
PROVE Init A O[Next|, = OSafe(p)

OBVIOUS
(1)2. Init = Safe(p) BY DEF Init, Safe
(1)3. Safe(p) A [Next|, = Safe(p)’ BY DEF Safe, Next, v
(1)4. QED BY (1)2, (1)3, PTL

@ Separate steps based on action and temporal reasoning

v

>

>

>

first-order provers vs. PTL decision procedure

prime “modality” handled by pre-processing

temporal reasoning is mostly propositional

remaining steps will be supported by specific back-end

@ What is really going on here?

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

22 /30

Coalescing: Basic Idea

@ Abstract subformulas that given back-end doesn’t understand

» in the SUFFICES step, the FOL prover sees the proof obligation

p € Proc Init A D[Step]v] = [DSﬂfEJ (»)

Init A|O[Steply| = Vp € Proc : (p)

» in the QED step, the PTL decision procedure sees

= (Safe(p)) (Safe(p)) A ([Step]v] = O[Safe(p)]
A D([Step]v] =0 [Safe(p)J

» the formulas in boxes are introduced as ad-hoc operators

@ Must ensure soundness of abstraction

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

23 /30

Alternatives to Coalescing

@ Temporal operators as uninterpreted predicate symbols

» simple: does not need special support for temporal logic

» unsound: temporal logic violates Leibniz principle

> for example, one should not prove v=0=0(v=0) |

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 24 /30

Alternatives to Coalescing

@ Temporal operators as uninterpreted predicate symbols

» simple: does not need special support for temporal logic

» unsound: temporal logic violates Leibniz principle

> for example, one should not prove v=0=0(v=0) |

e Standard translation to first-order logic
» encode semantics of temporal logic in FOL

» example above becomes v(n)=0=Vm=>n:v(m)=0)

» complication: PTL requires induction for relating © and O

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 24 /30

Alternatives to Coalescing

@ Temporal operators as uninterpreted predicate symbols

» simple: does not need special support for temporal logic

» unsound: temporal logic violates Leibniz principle

> for example, one should not prove v=0=D0(=0) |

e Standard translation to first-order logic
» encode semantics of temporal logic in FOL

> example above becomes v(n) =0=Vm >n:o(m) =0 |

» complication: PTL requires induction for relating © and O

@ Coalescing is useful due to little interaction between FOL and PTL

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 24 /30

Coalescing to FOL: Definition

@ Basic idea: abstract subformula O¢ by new proposition

» needs care in the presence of bound variables:

coalescing Va: O(x =a) = x =a to Vazwﬁx:a

“forgets” occurrence of bound variable 2 ~ unsoundness

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

25/ 30

Coalescing to FOL: Definition

@ Basic idea: abstract subformula O¢ by new proposition

» needs care in the presence of bound variables:

coalescing Va: O(x =a) = x =a to Vazwﬁx:a

“forgets” occurrence of bound variable 2 ~ unsoundness

@ Abstract O¢ by (Z) (2 all bound variables occuring in @)

» identify operators up to a-equivalence
» canprove (dx,z:O(v=x)) = (Jy:0(v=1y))

» optimizations possible to identify less superficial equivalences

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 25/ 30

Soundness of Coalescing to FOL

Theorem
For any set T of TLA™ formulas and TLA* formula ¢:

Tror Fror ¢ror implies T = ¢

Proof sketch. Assume I [~ ¢, obtain M s.t. M, n |=T but M,0 [~ ¢.
Define FOL-structure S = (Z’,¢’) based on M and state 0:

e ¢'(v)=¢(0,0) forveV

o T'(12: oy)) @) = [oylF~

Now show [eror]® = [e]o for all sub-expressions e in T or ¢.

Hence T'ror Fror -

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

26 /30

Coalescing to Propositional Temporal Logic

@ Coalesce first-order subformulas to atomic propositions

> (op(e1,...,en))prL = |op(ey, ..., en)

> (e1 =ex)prr =
> (Vx:e)prr =

> (¢)pr = Oleprr

e Example

x=y=00(x=y) vyields :DO

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 27 / 30

Coalescing to Propositional Temporal Logic

@ Coalesce first-order subformulas to atomic propositions

> (op(e1,...,en))prL = |op(ey, ..., en)

> (e1 =ex)prr =
> (Vx:e)prr =

> (¢)pr = Oleprr

e Example

x=y=00(x=y) vyields :DO

» add hypothesis = O|P| if P only contains constants
» implication above is provable if x, i are constants

@ Soundness result similar to previous one

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014

27 / 30

Coalescing: Summing Up

@ Extends to full TLA* language

» (second-order) operator definitions require extra care

» track operator arguments used in the scope of modal operators

@ Sound integration of first-order and temporal reasoning

» interface with standard FOL provers and PTL decision procedures
» temporal induction handled by PTL reasoner

» prime modality handled during pre-processing for FOL

e Complete for proving standard safety properties
@ Liveness requires special back-end for first-order temporal logic

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 28 /30

@ Introductory Example
e Non-Temporal Proofs in TLAPS
e Handling Temporal Proofs

e Wrapping Up

«4Or «Fr «=Er «=)» DA

Experience With TLAPS So Far

@ Designed around language, not tools

» declarative and hierarchical proof language
» freedom in design of interfaces to back-ends
» architecture accommodates certification of overall soundness

@ Engineering aspects: handling large proofs

» tool support for maintaining and adapting proofs

» GUI support for reading and writing hierarchical proofs
» finger printing of proof obligations for tracking changes
» existing case studies: (Byzantine) Paxos, Memoir, Pastry

e Future and ongoing work

» full support for proofs of liveness properties
» disproving invalid obligations: finite model finding
» compute and strengthen inductive invariants

@ Post-doctoral position available

Stephan Merz (INRIA Nancy) TLA™ Proof System IFIP WG 2.2, September 2014 30/ 30

	Introductory Example
	Non-Temporal Proofs in tlaps
	Handling Temporal Proofs
	Wrapping Up

