
Limit-Average Properties of pVASS

&

Optimal Strategies in Patrolling Games
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Probabilistic VASS (pVASS)
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Limit-Average Properties of pVASS

A pattern is a tuple of the form p(+, 0,+, 0, 0,+).

Let w be a pVASS run.

We define the vector F(w) of limit pattern frequencies:

F(w) = lim
n→∞

Freqn(w)

If this limit does not exist, we put F(w) =⊥.
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The Problems

Let p~v be a configuration of a d-dimensional pVASS. Then F is a
random variable over the runs initiated in p~v .

Do we have P[F=⊥] = 0 ?

Is F a discrete random variable ?

If so, is the set of admissible values finite ?

Can we compute/approximate these values and the associated
probabilities?
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Previous Results about Stochastic Petri Nets

Theorem 1 (Florin and Natkin, 1989)

If a given SPN with an initial marking M1 has a strongly connected
graph of reachable configurations, then for every transition t there is
a frequency f ∈ R such that for almost every run
M1, t1,M2, t2,M3, . . . we have that

lim
n→∞

#t(t1, . . . , tn)

n
= f .
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A Counterexample to Theorem 1
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A Counterexample to Theorem 1 (cont.)
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Pattern Frequency in 2-dimensional pVASS

Theorem 2
Let p~v be an initial configuration in a 2-dimensional pVASS. Then

P[F=⊥] = 0;

F is a discrete random variable;

F may take infinitely many values with a positive probability,
and it is decidable whether this set is finite or infinite;

these values and the associated probabilities can be
approximated up to an arbitrarily small given ε > 0.

The complexity bounds employ the complexity results about
2-dimensional (non-probabilistic) VASS.
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Pattern Frequency in 3-dimensional pVASS

Theorem 3
There exists a 3-dimensional pVASS A and a initial configuration p~v
such that the graph of reachable configurations is strongly connected
and P[F=⊥] = 1. Further, this property is preserved in
ε-perturbations of A for some ε > 0.
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Pattern Frequency in 3-dimensional pVASS (cont.)

The idea behind the construction of A:

(k , 0, 0)
(+,+,0)−−−−→ (0, 2k , 0)

(0,+,+)−−−−→ (0, 0, 4k)
(+,0,+)−−−−→

(8k , 0, 0)
(+,+,0)−−−−→ (0, 16k , 0)

(0,+,+)−−−−→ (0, 0, 32k)
(+,0,+)−−−−→

(64k , 0, 0)
(+,+,0)−−−−→ (0, 128k , 0)

(0,+,+)−−−−→ (0, 0, 256k)
(+,0,+)−−−−→
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Conclusions

For pVASS with at least three counters, the limit-average
behaviour is generally undefined and this feature can be robust.

The remaining challenge is to identify reasonable sufficient
conditions for eVASS with d ≥ 3 counters under which the
limit-average behaviour exists and can be effectively analyzed.
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Patrolling Problem (Informally)

One of the basic problems in operations research.

Design the best possible strategy for a patroller who travels
among a given set of vulnerable targets and aims at detecting
possible intrusions.

Many technical variants: the number of patrollers/attackers,
attacker’s abilities, various levels of target
improtance/vulnerability, etc.
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Patrolling Problem (Informally)

Existing results.

Main task: Compute as good strategy as possible.

Main tools: Mathematical programming (scalability problems).

Some basic “game-theoretic” questions are not studied in
greater detail (and sometimes answered incorrectly).

This contribution.

We study adversarial patrolling games in unrestricted
environment where all targets are equally important.

We yield a compositional method for computing (sub)optimal
strategies (no scalability problems).
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Patrolling Problem (Formally)

2

32

4

3 3

Defender’s strategy: σ : V + → ∆(V )

Attacker’s strategy: π : V + → V ∪{∗} (must be “prefix free”)

Pσ,π(DRuns)

val = supσ infπ Pσ,π(DRuns)
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Example 1

u0

u1 u2

Attack length = 2

σ(h) = µ`, ` = |h|mod 2

µ0(u0) = 0,
µ0(u1) = κ,
µ0(u2) = 1− κ
µ1(u0) = κ,
µ1(u1) = 0,
µ1(u2) = 1− κ
κ = (

√
5− 1)/2 = 0.618 . . .
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Example 2

v0

v1

v2

t0

t1

d(ti)=2, d(vi)=3

σ(h) selects uniformly between
v|h|+1mod 3 and t|h|+1mod 2

valσ = 1/2

val = 1/2
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The Existence of Optimal Strategies

Recall val = supσ infπ Pσ,π(DRuns)

A strategy σ∗ is optimal if infπ Pσ
∗,π(DRuns) = val

Theorem 4
There exists an optimal strategy σ∗ for the defender.
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An Upper Bound on the Value

A signature of a game G is a function S : N→ N0 where S(k) is
the total number of nodes u where d(u) = k .

Theorem 5
Let G be a game with signature S. Then

val ≤

 ∑
k∈supp(S)

S(k)

k

−1

where supp(S) is the set of all k ∈ N such that S(k) > 0.
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Compositionality in Patrolling Games (1)

A strategy σ is modular if σ(h) depends only on |h| mod c for
some c ∈ N.

Let G be a game, and let U = U1 ] . . . ] Un.

Let σ1, . . . , σn be modular strategies for G/U1, . . . ,G/Un.

Let µ ∈ ∆{1, . . . , n}. A µ-composition of σ1, . . . , σn is a modular
strategy σ for G defined by σ(h) =

∑n
i=1 µ(i) · σi(h)

Theorem 6
We have that valσ ≥ minn

i=1 µ(i) · valσi
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Compositionality in Patrolling Games (2)

A signature S is well-formed if k divides S(k) for every k ∈ N.

Theorem 7
Let G be a patrolling game with a well-formed signature S where the
graph of G is complete. Then there exist an optimal modular
strategy for the defender constructible in polynomial time.
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Compositionality in Patrolling Games (3)

Theorem 8
For every well formed signature S there exists a graph HS

computable in polynomial time such that for every patrolling game G
with signature S we have the following: the defender has a strategy

achieving the upper bound
(∑

k∈supp(S)
S(k)
k

)−1

iff HS is a subgraph

of G.

The problem whether the defender has a strategy achieving the
bound in a given G is NP-complete.
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Open problems

Classification/construction of optimal strategies for games with
non-well-formed signatures.

Extending the obtained results to more general models.

Meta-theorems for security games.
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