
Generalising Mazurkiewicz Traces

Maciej Koutny

Newcastle University, UK

with

Ryszard Janicki (McMaster University, Canada)

Jetty Kleijn (Leiden University, The Netherlands)

Łukasz Mikulski (Nicolaus Copernicus University, Poland)

IFIP WG 2.2 meeting, Munich, September 2014

Outline

• Mazurkiewicz traces

• Traces consisting of step sequences

• Order structures for generalised traces

2

• Order structures for generalised traces

• Axiomatisation

• Saturation and closure

• Consistency results

Mazurkiewicz traces
• Basic ingredients

concurrency alphabet (Σ,ind)

alphabet of actions Σ finite

independence relation irreflexive
on actions ind symmetric

3

ind

equations ab = ba if (a,b)∈∈∈∈ind

• Equivalent sequences of actions
wabu ≈ wbau if ab = ba

x ≡ y if x ≈ z ≈ … ≈ v ≈ y

• (Mazurkiewicz) trace
equivalence class [x] of ≡

Traces and orders
• Traces can be represented by (causal) partial orders

• Extracting dependencies from a sequence ...x...y...

x y (x,y)∉∉∉∉ind

4

b a c a

• Example acyclic dependence graphs
(a,b)∈∈∈∈ind [abca] = {abca,baca}

a b c a

the same

Observations

• Acyclic relations are fundamental as they can represent:

execution orders as well as causal orders

• Execution orders are saturated acyclic relations:

all execution orderings are determined

5

• Causal orders are saturation closed:

all direct and indirect dependencies are present

nothing can be added without excluding some executions

• Execution orders = total partial orders

• Causal orders = partial orders

Facts

Any acyclic relation can be linearised

Any acyclic relation can be extended to a unique partial order

which has the same total order extensions, through transitive

6

Partial orders are exactly those acyclic relations which can be

derived from their total order extensions, through intersection

[Szpilrajn 1935]

closure

Traces and orders

a

b

c a

• Causal partial order is obtained through transitive closure

7

a

b

c a

a

b

c a

• Sequences of actions correspond to total orders

• Total orders = saturated partial orders

Saturation

a

a

b

c a

8

b

c a

a

b

c a

Intersection

a

a

b

c a

9

b

c a

a

b

c a

Consistency

dependence

graphs

dependency extraction transitive closure

10

traces partial

orders

intersection

saturation

Extending traces

• (sequences of) actions → (sequences of) sets of actions

• Steps can be swapped → AB = BA

11

• Not interesting enough (essentially no change)!

• Introduce serialisation equations

• Steps can be split → C = DE

Extending traces
• Three irreflexive relations on actions

sim inl ser

• simultaneity (symmetric) sim defines legal steps
A ∈∈∈∈ SSSS if A×A-id

Σ
⊆⊆⊆⊆ sim

• interleaving (symmetric) inl defines equations
⊆⊆⊆⊆

12

inl

AB = BA if A×B ⊆⊆⊆⊆ inl

• serialisability ser defines equations
C = DE if D×E ⊆⊆⊆⊆ ser C = D ∪∪∪∪ E

Assumed: inl ∩ sim = ∅∅∅∅ ser ⊆⊆⊆⊆ sim

Extending traces
• Take

A×B ⊆⊆⊆⊆ ser and B×A ⊆⊆⊆⊆ ser

• Then
A ∪∪∪∪ B = AB and B ∪∪∪∪ A = BA

• Leading to interleaving equation

13

AB = BA

• Hence, more generally (motivation: Petri nets)
AB = BA

whenever for all a ∈∈∈∈ A and b ∈∈∈∈ B

(a,b) ∈∈∈∈ inl or

(a,b) ∈∈∈∈ ser and (b,a) ∈∈∈∈ ser

Concurrency alphabets
• Fundamental concurrency alphabet:

(Σ,sim,inl,ser)

• Two relations suffice!

• Generalised concurrency alphabet:
(Σ,sim,seq)

14

(Σ,sim,seq)

• Sequentialisability seq defines equations over SSSS

AB = BA if A×B ⊆⊆⊆⊆ seq ∩ seq-1

A ∪∪∪∪ B = AB if A×B ⊆⊆⊆⊆ seq ∩ sim

System derived relationships

• How to define fundamental concurrency alphabet ?

(Σ,sim,inl,ser)

15

(Σ,sim,inl,ser)

• For transitions in elementary net systems (a priori semantics):

sim disjointness of input/output places

ser read arcs allowing concurrent access

inl mutex arcs disallowing concurrent access

Mazurkiewicz alphabets

How to model (Σ,ind) ?

16

• Fundamental concurrency alphabet:
(Σ,∅∅∅∅,ind,∅∅∅∅)

• Generalised concurrency alphabet:
(Σ,∅∅∅∅,ind)

Concurrency alphabets

Going between two types of extension:

seq = inl ∪∪∪∪ ser

17

inl = (seq ∩ seq-1) - sim

ser = seq ∩ sim

leads to the same equations and traces

Derived relationships
• strong simultaneity

ssi = sim - (seq ∪∪∪∪ seq-1) = sim - (ser ∪∪∪∪ ser-1)

• concurrency

con = seq ∩ seq-1∩ sim = ser ∩ ser-1

• semi-serialisability

sse = (seq - seq-1) ∩ sim = ser - ser-1

18

sse = (seq - seq) ∩ sim = ser - ser

• weak dependence

wdp = (seq -1- seq) ∩ sim = ser -1- ser

• rigid ordering

rig = Σ×Σ – ((seq ∩ seq-1) ∪∪∪∪ sim)

= Σ×Σ – (sim ∪∪∪∪ inl)

Together with inl they partition Σ×Σ

Orderings for generalised traces
• What relationships fit generalised traces ?

• Two relations:

weak causality

x before or together with y (not after)

yx

19

x y

mutex

x before or after y (not together)

• Causality / execution precedence (derived):

yx

yx yx yx= &

Order structures (“acyclic relations”)

Separability: weak causality cycles and mutex do not mix

disallowed

20

a

a

a

a

Label linearity: similarly labelled events are totally ordered

required

Saturated order structures

L1

L2
x

21

aa

L3

L4

x

x x

Saturated order structures

Saturated order structures consist of simultaneus layers

a

b

cb {a,b}bc

22

b

and are in one-to-one correspondence with step sequences

Invariant order structures

G1

Both relations are irreflexive, and mutex is also symmetric

23

G2

G3

aa

G5G4

Invariant closure

24

Facts

Any acyclic relation can be linearised

Any acyclic relation can be extended to a unique partial order

which has the same total order extensions, through transitive

25

Partial orders are exactly those acyclic relations which can be

derived from their total order extensions, through intersection

[Szpilrajn 1935]

closure

Facts

Any order structure can be saturated

Any order structure can be extended to a unique invariant order

structure which has the same saturations, through invariant

26

Invariant order structures are exactly those order structures

which can be derived from their saturations, through

intersection

closure

Dependencies in step sequences

(a,b)∉∉∉∉sim ∩ seq

a b a

b

27

(a,b)∉∉∉∉sim ∩ seq

a b

(a,b)∉∉∉∉seq ∩ seq-1

(b,a)∈∈∈∈sim-seq

Consistency

order

structures

dependency extraction invariant closure

28

generalised

traces

Invariant

structures

saturation

intersection

Do we need order structures?

YES

Every order structure with injective labelling

is generated by a step sequence over some

generalised concurrency alphabet

BUT

29

BUT

Not every order structure can be generated

by a step sequence over some generalised

concurrency alphabet

a

a

b

Conclusion

• We obtained the following:

sequences step sequences

acyclic relations order structures

total orders saturated order structures

30

total orders saturated order structures

partial orders invariant order structures

transitive closure invariant closure

• Open problem: strengthen label linearity to filter out order

structures which are not generated by generalised traces

Thank You!Thank You!Thank You!Thank You!

31

Thank You!Thank You!Thank You!Thank You!

