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Outline

• Mazurkiewicz traces

• Traces consisting of step sequences

• Order structures for generalised traces
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• Order structures for generalised traces

• Axiomatisation

• Saturation and closure  

• Consistency results



Mazurkiewicz traces
• Basic ingredients

concurrency alphabet (Σ,ind)

alphabet of actions Σ finite

independence relation irreflexive 
on actions ind symmetric 
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ind

equations ab = ba if (a,b)∈∈∈∈ind 

• Equivalent sequences of actions
wabu ≈ wbau if ab = ba

x ≡ y if x ≈ z ≈ … ≈ v ≈ y

• (Mazurkiewicz) trace
equivalence class [x] of ≡



Traces and orders
• Traces can be represented by (causal) partial orders

• Extracting dependencies from a sequence        ...x...y...

x y (x,y)∉∉∉∉ind
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b a c a

• Example acyclic dependence graphs
(a,b)∈∈∈∈ind [abca] = {abca,baca}

a b c a

the same



Observations

• Acyclic relations are fundamental as they can represent:

execution orders as well as causal orders 

• Execution orders are saturated acyclic relations:

all execution orderings are determined
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• Causal orders are saturation closed:

all direct and indirect dependencies are present

nothing can be added without excluding some executions 

• Execution orders = total partial orders

• Causal orders = partial orders 



Facts

Any acyclic relation can be linearised 

Any acyclic relation can be extended to a unique partial order 

which has the same total order extensions, through transitive 
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Partial orders are exactly those acyclic relations which can be 

derived from their total order extensions, through intersection

[Szpilrajn 1935]

closure 



Traces and orders

a

b

c a

• Causal partial order is obtained through transitive closure
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a

b

c a

a

b

c a

• Sequences of actions correspond to total orders

• Total orders = saturated partial orders



Saturation

a

a

b

c a
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b

c a

a

b

c a



Intersection

a

a

b

c a
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b

c a

a

b

c a



Consistency

dependence 

graphs

dependency extraction transitive closure
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traces partial

orders

intersection

saturation



Extending traces

• (sequences of) actions → (sequences of) sets of actions

• Steps can be swapped →  AB = BA
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• Not interesting enough (essentially no change)!

• Introduce serialisation equations

• Steps can be split  → C = DE



Extending traces
• Three irreflexive relations on actions

sim inl ser

• simultaneity (symmetric) sim defines legal steps 
A ∈∈∈∈ SSSS if A×A-id

Σ
⊆⊆⊆⊆ sim

• interleaving (symmetric) inl defines equations 
⊆⊆⊆⊆
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inl

AB = BA if A×B ⊆⊆⊆⊆ inl

• serialisability ser defines equations 
C = DE if D×E ⊆⊆⊆⊆ ser  C = D ∪∪∪∪ E

Assumed: inl ∩ sim = ∅∅∅∅ ser ⊆⊆⊆⊆ sim



Extending traces
• Take 

A×B ⊆⊆⊆⊆ ser and  B×A ⊆⊆⊆⊆ ser

• Then 
A ∪∪∪∪ B = AB and B ∪∪∪∪ A = BA 

• Leading to interleaving equation
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AB = BA 

• Hence, more generally (motivation: Petri nets)
AB = BA  

whenever for all a ∈∈∈∈ A and b ∈∈∈∈ B 

(a,b) ∈∈∈∈ inl or 

(a,b) ∈∈∈∈ ser and (b,a) ∈∈∈∈ ser



Concurrency alphabets
• Fundamental concurrency alphabet: 

(Σ,sim,inl,ser) 

• Two relations suffice! 

• Generalised concurrency alphabet: 
(Σ,sim,seq)
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(Σ,sim,seq)

• Sequentialisability seq defines equations over SSSS

AB = BA if A×B ⊆⊆⊆⊆ seq ∩ seq-1

A ∪∪∪∪ B = AB if A×B ⊆⊆⊆⊆ seq ∩ sim



System derived relationships

• How to define fundamental concurrency alphabet ? 

(Σ,sim,inl,ser) 
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(Σ,sim,inl,ser) 

• For transitions in elementary net systems (a priori semantics):

sim disjointness of input/output places

ser read arcs allowing concurrent access

inl mutex arcs disallowing concurrent access



Mazurkiewicz alphabets

How to model (Σ,ind) ? 
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• Fundamental concurrency alphabet: 
(Σ,∅∅∅∅,ind,∅∅∅∅) 

• Generalised concurrency alphabet: 
(Σ,∅∅∅∅,ind)



Concurrency alphabets

Going between two types of extension: 

seq = inl ∪∪∪∪ ser 
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inl = (seq ∩ seq-1) - sim

ser = seq ∩ sim

leads to the same equations and traces



Derived relationships
• strong simultaneity 

ssi = sim - (seq ∪∪∪∪ seq-1) = sim - (ser ∪∪∪∪ ser-1)

• concurrency 

con = seq ∩ seq-1∩ sim = ser ∩ ser-1

• semi-serialisability

sse = (seq - seq-1) ∩ sim = ser - ser-1

18

sse = (seq - seq ) ∩ sim = ser - ser

• weak dependence 

wdp = (seq -1- seq) ∩ sim = ser -1- ser

• rigid ordering

rig = Σ×Σ – ((seq ∩ seq-1) ∪∪∪∪ sim) 

= Σ×Σ – (sim ∪∪∪∪ inl)

Together with inl they partition Σ×Σ



Orderings for generalised traces
• What relationships fit generalised traces ?

• Two relations:

weak causality

x before or together with y (not after)

yx
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x y

mutex

x before or after y (not together)

• Causality / execution precedence (derived):

yx

yx yx yx= &



Order structures (“acyclic relations”)

Separability: weak causality cycles and mutex do not mix  

disallowed
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a

a

a

a

Label linearity: similarly labelled events are totally ordered

required



Saturated order structures

L1

L2
x
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aa

L3

L4

x

x x



Saturated order structures

Saturated order structures consist of simultaneus layers

a

b

cb {a,b}bc
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b

and are in one-to-one correspondence with step sequences



Invariant order structures

G1

Both relations are irreflexive, and mutex is also symmetric
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G2

G3

aa

G5G4



Invariant closure
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Facts

Any acyclic relation can be linearised

Any acyclic relation can be extended to a unique partial order 

which has the same total order extensions, through transitive 
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Partial orders are exactly those acyclic relations which can be 

derived from their total order extensions, through intersection

[Szpilrajn 1935]

closure 



Facts

Any order structure can be saturated

Any order structure can be extended to a unique invariant order 

structure which has the same saturations, through invariant 
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Invariant order structures are exactly those order structures 

which can be derived from their saturations, through 

intersection

closure 



Dependencies in step sequences

(a,b)∉∉∉∉sim ∩ seq

a b a

b
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(a,b)∉∉∉∉sim ∩ seq

a b

(a,b)∉∉∉∉seq ∩ seq-1

(b,a)∈∈∈∈sim-seq



Consistency

order 

structures

dependency extraction invariant closure
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generalised

traces 

Invariant

structures

saturation

intersection



Do we need order structures?

YES

Every order structure with injective labelling 

is generated by a step sequence over some 

generalised concurrency alphabet

BUT
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BUT

Not every order structure can be generated 

by a step sequence over some generalised 

concurrency alphabet

a

a

b



Conclusion

• We obtained the following:

sequences step sequences

acyclic relations order structures

total orders saturated order structures

30

total orders saturated order structures

partial orders invariant order structures

transitive closure invariant closure

• Open problem: strengthen label linearity to filter out order 

structures which are not generated by generalised traces 



Thank You!Thank You!Thank You!Thank You!
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Thank You!Thank You!Thank You!Thank You!


