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Storyline

Quantitative Information Flow (QIF)

Computing approximate QIF

White-box: Abstract Interpretation

Black-Box: Statistical estimators

Sampling from 'good' distributions
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QIF: motivation

Example (Agat & Sands, SSP'01): cache behaviour

Neither x nor y are initially cached.

if ( h>0 )

z = x;

else

z = y;

z = x;

short exec. time implies h> 0; long exec. time implies h≤ 0: 1 bit is revealed!

Very serious threat, underlies practical attacks to crypto-software (AES, RSA,...).
Type systems can be used to detect potential leaks (Noninterference violations),
but in general not to quantify them .
QIF: models and methods to detect and quantify leakage.
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QIF in a nutshell

p(y |x)X Y

Programs seen as channels.

X = input = sensitive information

Y = observable information

p(y |x) = conditional probability matrix.

Attacker will try a guess X̂ at X after observing Y . (Min-entropy) leakage is

L
def
= log2(

Pr[correct guess after observ.]

Pr[correct guess before observ. ]
) = log2

( Pr[X̂ = X ]

maxx Pr[X = x ]
)

≤ log2 |ran(Y )|

|ran(Y )| = number possible distinct observables. Equality can be achieved, e.g.
if program is deterministic and X is uniform. So, modulo the log2

maximum leakage is |ran(Y )| = program capacity
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An example � easy

if ( h>0 )

z = x;

else

z = y;

z = x;

Assume attacker can detect sequences of cache miss (M) or hit (H). Here:

X = h chosen at random in −231 + 1..231;

ran(Y ) = {MM,MH} ⇒ L = 1 bit

Indeed, with X̂ : if Y = MM then any integer in −231 + 1..0, else any integer in 1..231

Pr[X = X̂ ]

maxx Pr[X = x ]
=

Pr[X = X̂ |Y = MM]Pr(MM) + Pr[X = X̂ |Y = MH]Pr(MH)

maxx Pr[X = x ]

=
(2−31) 1

2
+ (2−31) 1

2

2−32
=

2−31

2−32
= 2

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 5

/ 23



An example � easy

if ( h>0 )

z = x;

else

z = y;

z = x;

Assume attacker can detect sequences of cache miss (M) or hit (H). Here:

X = h chosen at random in −231 + 1..231;

ran(Y ) = {MM,MH} ⇒ L = 1 bit

Indeed, with X̂ : if Y = MM then any integer in −231 + 1..0, else any integer in 1..231

Pr[X = X̂ ]

maxx Pr[X = x ]
=

Pr[X = X̂ |Y = MM]Pr(MM) + Pr[X = X̂ |Y = MH]Pr(MH)

maxx Pr[X = x ]

=
(2−31) 1

2
+ (2−31) 1

2

2−32
=

2−31

2−32
= 2

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 5

/ 23



Another example � less easy

Say v[] is contains wages, listed by employees' alphabetical order. Initial ordering
of v[] is a sensitive info. Same attacker model: Y = {M,H}∗.
How many bits can be recovered?

public static int BubbleSort(int[] v){

int n = v.length; int swap;

for(int i=0; i<n-1; i++){

for(int j=0; j<n-i-1; j++){

if(v[j]>v[j+1]){

swap = v[j];

v[j] = v[j+1];

v[j+1] = swap;

}

}

}

}

For large n, computing |ran(Y )| can be very complex.
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Computing approximate QIF

Why approximate? Just deciding whether |ran(Y )| > 1 is NP-hard.
Given a boolean formula phi(x1,...,xn), build the program

if phi(x1,...,xn)

z = x;

else

z = y;

z = x;

See (Yasuoka & Terauchi, JCS 2011) for more precise results.

We must give up something.

White box analysis: statically derive bounds on program capacity. They will
be necessarily loose or vacuous in a number of cases.

Black box analysis: by simulation, derive bounds that hold with high
con�dence. They may be wrong, but only with negligible probability.
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Abstract interpretation for cache side channels (Köpf et al.,

CAV'12)

Overapproximation: Traces](P) ⊇ Traces(P) can be easy to compute.
Then |ran(Y )| = |Traces(P)| ≤ |Traces](P)|.
Basic idea of cache AI from (Ferdinand et al., SAS'06).

P: if .. e .. then .. a .. else .. b ..

Possible �nal cache states (4-blocks cache, LRU)

c1 = [a, e,⊥,⊥]
c2 = [b, e,⊥,⊥]

Abstract state cache c] = [{a, b}, {e},⊥,⊥]

E�ects of block access on abstract cache

e� ([{a, b}, {e},⊥,⊥], e) = {H}
e� ([{a, b}, {e},⊥,⊥], a) = {M,H}

From abstract semantics and e� (easily) compute and count

Traces
](P) = {H} · {M,H} = {HM,HH}
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Imprecision

Analysis can be imprecise mostly due to variable index lookup A[i]

(Köpf et al. CAV'12, USENIX'13) present ways to mitigate this, e.g. partitioning:
replace

A[i];

...

with

if (i >= 8) {

A[i];

...

} else if (i >= 16) {

A[i]

...

}
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Abstract interpretation for cache side channels (Köpf et al.,

USENIX'13)

Idea: compute overapproximation of concrete traces, Taces](P) ⊇ Traces(P).
Then |ran(Y )| = |Traces(P)| ≤ |Traces](P)|.

Concrete states = cache set C = B → {0, ..., k − 1, k}
Concrete update when accessing block b

next(c, b) = λb′ ∈ B.


0 : b = b′

c(b′) + 1 : c(b′) < c(b)
c(b′) : c(b′) > c(b)

Abstract states = abstract cache set C] = B → P({0, ..., k − 1, k})
Abstract update when accessing block b

next(c], b) = λb′ ∈ B.

{
{0} : b = b′⋃

a∈c](b)
(
c](b′)>a∪c](b′)<a+1

)
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Abstract interpretation for cache side channels (2)

e�ect

e� (c], b) =


{H} : c](b) ⊆ {0, ..., k − 1}
{M} : c](b) = {k}
{M,H} : otherwise

P's sequence of block accesses b1b2 · · · gives rise to
Traces](P) = {H} · {H,M} · · · via next] and e� ]. Easy to compute
(�xpoint) and to count.
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CacheAudit (Köpf et al. USENIX'13)

A tool based on this approach

Successful in proving bounds on leakage for AES and Salsa20 software

Alas, no meaningful upper bounds for e.g. sorting algorithms under
trace-based adversaries � yields vacuous bounds ≥ log(n!). This is where loss
of precision due to AI shows up

One reason may be presence of nested iterations with variable indeces
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Black-box statistical analysis (Boreale & Paolini, ISC'14)

p(y |x)X1,X2, ... Y1,Y2, ...

We, the analyst

1 ignore P's code and internal working p(y |x)
2 ignore P's input distribution X (to be relaxed later!)

3 obtain a sample of i.i.d. observations S = Y1, ...,Ym (m� |X|)
4 want to estimate |ran(Y )|, hence leakage

Analyst needs a function, whatever the program P and the distribution X , given
sample yields an estimation of |ran(Y )|.

Estimator

Let γ > 1 and 1/2 > δ > 0. A (γ, δ) estimator is a function f : Ym → R+ s.t. for
every X and P and Y = P(X )

Pr
(
|ran(Y )| ∈ [f (S)/γ, f (S) · γ]

)
≥ 1− δ
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Bad news

Negative result 1

There is no such thing as an estimator for |ran(Y )|.

Proof intuition. A small fraction ε of Y 's probability mass could be spread
among a lot of observables. Before any one of them shows up in the sample, an
average of 1/ε extractions are necessary. Let ε→ 0.

Negative result 2

If we �x X uniform, ≈ |X |/γ2 extractions are still necessary: no signi�cantly
better than input enumeration!
Proof intuition. Say γ <

√
2 and try to tell these two apart (x n-bit variable).

P: y = 0;

Q: if x == 42 then y=1 else y=0;
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Discussion

As a function P : X → Y, program P partitions the input space X into
equivalence classes (inverse images). The analyst wants to count how many
classes are there:

|ran(Y )| = |Y/ ∼ | def= k

Another way of looking at the negative results is that, if the analyst has no
control over the input distribution, small classes will be very di�cult to detect;
and there may be a lot of them.
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Assume analyst controls input X

p(y |x)X1,X2, ... Y1,Y2, ...

Analyst can choose X so that Y is (nearly) uniform. Then he

1 generates S = Y1, ...,Ym i.i.d. and counts how many distinct elements occur
in S , say D (e.g. S = a, b, a, c, a, b ⇒ D = 3)

2 if m is large enough, he expects D ≈ E [D] = k(1− (1− 1/k)m)
def
= g(k)

3 he lets g−1(D) be his estimation of k.

Positive result

Let Y be uniform and
Jt

def
= g−1(D − t)

Then
Pr

(
k ∈ [Jt , J−t ]

)
≥ 1− δ

provided t ≥
√
m ln(1/δ)/2. (NB: can be extended to nearly uniform Y .)
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Relative error bounds

We �x δ = 0.001 (99.99% con�dence)

0.2×m 0.4×m 0.6×m 0.8×m

0.025
0.05

0.1

0.15

0.2

0.25

D

re
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r
(J
−
t
−

J
t
)/
J
t

m = 104

m = 105

m = 106
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How to sample from a good input distribution X?

An optimal input distribution assigns the same probability mass, 1/k, to all
classes. E.g. p∗(x) = 1

k·|[x]| . We consider two sampling algorithms.

1. Markov Chain Monte Carlo. De�ne a random walk {Xt}t≥0 on the state
space X that �keeps o�� the big classes:

1 pick up x according to a �xed proposal distribution Q(x |Xt)
2 accept x (Xt+1 = x) with probability min{1, |Xt |/|[x ]|} else reject it

(Xt+1 = Xt)

2. Accept-Reject.
1 pick up random x
2 pick up random u ∈ [0, 1]

3 if u < min
x
′ |[x′]|
|[x]| then accept X = x else reject x and goto 1
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How to sample from a good input distribution? (2)

Note:

1 both algorithms converge to p∗, but require knowledge of the (relative) size
of equivalence classes

2 in practice, |[x ]| is approximated in a pre-computation phase

3 MCMC only converges in the limit

4 A-R can be extremely expensive in unbalanced situations and must be tuned

Due to approximations, sampled X is only �good� rather an optimal, and Y not
necessarily uniform.
Yet, obtained lower bounds on k = |ran(Y )| are still formally valid and often
quite good!
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Experiment 1: unbalanced classes

z=mod(x,2^l);

if mod(z,2^r)==0

y=z;

else

y=mod(z,2^r);

return y;

n-bit input, 2r−1 large classes and 2l−r small classes

l − r large ⇒ unbalanced

con�dence δ = 0.001 and m = 5× 105 (note
m� 2n)

we report (log Jt)/ log k

n l r k CMC MCMC AR

22 22 4.9143× 106 0.98 0.96 0.98

24 22 20 1.0486× 106 0.99 0.98 0.99

22 2 2.0972× 106 0.80 0.88 0.95

22 1 2.0972× 106 0.86 0.93 0.99

23 23 8.3886× 106 0.99 0.96 0.99

28 23 20 1.0486× 106 0.99 0.98 0.99

23 2 2.0972× 106 0.80 0.89 0.99

23 1 4.1943× 106 0.82 0.90 0.99

26 26 6.7108× 107 0.96 0.91 0.96

32 26 23 8.3886× 106 0.99 0.96 0.99

26 2 1.6777× 107 0.70 0.79 0.98

26 1 3.3554× 107 0.72 0.80 0.98
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Experiment 2: sorting algorithms

Recall that (upper) bounds obtained with static analysis (CacheAudit) are
vacuous on these algorithms.
We consider trace-based cache leaks in Java implementations of BubbleSort and
InsertionSort. Here

cache replacement policy: LRU

varying cache block size (in words): 2,4,8

preload yes/no

con�dence δ = 0.001 and n = vector length

2 4 8

5

10

15

20

cache block size (words)

le
ak
ag
e
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it
s)

n = 32

n = 16

n = 8

preload, all n
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Conclusion

Obtaining formal bounds on quantitative information leaks of programs is
di�cult

Static analysis presupposes access to the source code and depends on
precision of underlying abstract domains. E�ective at �nding good upper
bounds in speci�c domains (cache analysis)

Statistical estimation does not require source code, but cannot give in
general (tight) upper bounds. If input can be controlled by analyst, e�ective
at �nding good lower bounds, independently of domain of application

It looks obvious that the approaches two should be used in conjunction.
Further experiments and tool validation are called for.
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