
On formally bounding information leakage
in deterministic programs

Michele Boreale

DiSIA - Università di Firenze

IFIP WG 2.2, TUM - Münich
September 15-18, 2014

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 1

/ 23



Storyline

Quantitative Information Flow (QIF)

Computing approximate QIF

White-box: Abstract Interpretation

Black-Box: Statistical estimators

Sampling from 'good' distributions

Experiments

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 2

/ 23



QIF: motivation

Example (Agat & Sands, SSP'01): cache behaviour

Neither x nor y are initially cached.

if ( h>0 )

z = x;

else

z = y;

z = x;

short exec. time implies h> 0; long exec. time implies h≤ 0: 1 bit is revealed!

Very serious threat, underlies practical attacks to crypto-software (AES, RSA,...).
Type systems can be used to detect potential leaks (Noninterference violations),
but in general not to quantify them .
QIF: models and methods to detect and quantify leakage.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 3

/ 23



QIF: motivation

Example (Agat & Sands, SSP'01): cache behaviour

Neither x nor y are initially cached.

if ( h>0 )

z = x;

else

z = y;

z = x;

short exec. time implies h> 0; long exec. time implies h≤ 0: 1 bit is revealed!

Very serious threat, underlies practical attacks to crypto-software (AES, RSA,...).
Type systems can be used to detect potential leaks (Noninterference violations),
but in general not to quantify them .
QIF: models and methods to detect and quantify leakage.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 3

/ 23



QIF: motivation

Example (Agat & Sands, SSP'01): cache behaviour

Neither x nor y are initially cached.

if ( h>0 )

z = x;

else

z = y;

z = x;

short exec. time implies h> 0; long exec. time implies h≤ 0: 1 bit is revealed!

Very serious threat, underlies practical attacks to crypto-software (AES, RSA,...).
Type systems can be used to detect potential leaks (Noninterference violations),
but in general not to quantify them .
QIF: models and methods to detect and quantify leakage.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 3

/ 23



QIF in a nutshell

p(y |x)X Y

Programs seen as channels.

X = input = sensitive information

Y = observable information

p(y |x) = conditional probability matrix.

Attacker will try a guess X̂ at X after observing Y . (Min-entropy) leakage is

L
def
= log2(

Pr[correct guess after observ.]

Pr[correct guess before observ. ]
) = log2

( Pr[X̂ = X ]

maxx Pr[X = x ]
)

≤ log2 |ran(Y )|

|ran(Y )| = number possible distinct observables. Equality can be achieved, e.g.
if program is deterministic and X is uniform. So, modulo the log2

maximum leakage is |ran(Y )| = program capacity

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 4

/ 23



QIF in a nutshell

p(y |x)X Y

Programs seen as channels.

X = input = sensitive information

Y = observable information

p(y |x) = conditional probability matrix.

Attacker will try a guess X̂ at X after observing Y . (Min-entropy) leakage is

L
def
= log2(

Pr[correct guess after observ.]

Pr[correct guess before observ. ]
) = log2

( Pr[X̂ = X ]

maxx Pr[X = x ]
)

≤ log2 |ran(Y )|

|ran(Y )| = number possible distinct observables. Equality can be achieved, e.g.
if program is deterministic and X is uniform. So, modulo the log2

maximum leakage is |ran(Y )| = program capacity

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 4

/ 23



QIF in a nutshell

p(y |x)X Y

Programs seen as channels.

X = input = sensitive information

Y = observable information

p(y |x) = conditional probability matrix.

Attacker will try a guess X̂ at X after observing Y . (Min-entropy) leakage is

L
def
= log2(

Pr[correct guess after observ.]

Pr[correct guess before observ. ]
) = log2

( Pr[X̂ = X ]

maxx Pr[X = x ]
)

≤ log2 |ran(Y )|

|ran(Y )| = number possible distinct observables. Equality can be achieved, e.g.
if program is deterministic and X is uniform. So, modulo the log2

maximum leakage is |ran(Y )| = program capacity

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 4

/ 23



An example � easy

if ( h>0 )

z = x;

else

z = y;

z = x;

Assume attacker can detect sequences of cache miss (M) or hit (H). Here:

X = h chosen at random in −231 + 1..231;

ran(Y ) = {MM,MH} ⇒ L = 1 bit

Indeed, with X̂ : if Y = MM then any integer in −231 + 1..0, else any integer in 1..231

Pr[X = X̂ ]

maxx Pr[X = x ]
=

Pr[X = X̂ |Y = MM]Pr(MM) + Pr[X = X̂ |Y = MH]Pr(MH)

maxx Pr[X = x ]

=
(2−31) 1

2
+ (2−31) 1

2

2−32
=

2−31

2−32
= 2

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 5

/ 23



An example � easy

if ( h>0 )

z = x;

else

z = y;

z = x;

Assume attacker can detect sequences of cache miss (M) or hit (H). Here:

X = h chosen at random in −231 + 1..231;

ran(Y ) = {MM,MH} ⇒ L = 1 bit

Indeed, with X̂ : if Y = MM then any integer in −231 + 1..0, else any integer in 1..231

Pr[X = X̂ ]

maxx Pr[X = x ]
=

Pr[X = X̂ |Y = MM]Pr(MM) + Pr[X = X̂ |Y = MH]Pr(MH)

maxx Pr[X = x ]

=
(2−31) 1

2
+ (2−31) 1

2

2−32
=

2−31

2−32
= 2

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 5

/ 23



Another example � less easy

Say v[] is contains wages, listed by employees' alphabetical order. Initial ordering
of v[] is a sensitive info. Same attacker model: Y = {M,H}∗.
How many bits can be recovered?

public static int BubbleSort(int[] v){

int n = v.length; int swap;

for(int i=0; i<n-1; i++){

for(int j=0; j<n-i-1; j++){

if(v[j]>v[j+1]){

swap = v[j];

v[j] = v[j+1];

v[j+1] = swap;

}

}

}

}

For large n, computing |ran(Y )| can be very complex.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 6

/ 23



Computing approximate QIF

Why approximate? Just deciding whether |ran(Y )| > 1 is NP-hard.
Given a boolean formula phi(x1,...,xn), build the program

if phi(x1,...,xn)

z = x;

else

z = y;

z = x;

See (Yasuoka & Terauchi, JCS 2011) for more precise results.

We must give up something.

White box analysis: statically derive bounds on program capacity. They will
be necessarily loose or vacuous in a number of cases.

Black box analysis: by simulation, derive bounds that hold with high
con�dence. They may be wrong, but only with negligible probability.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 7

/ 23



Computing approximate QIF

Why approximate? Just deciding whether |ran(Y )| > 1 is NP-hard.
Given a boolean formula phi(x1,...,xn), build the program

if phi(x1,...,xn)

z = x;

else

z = y;

z = x;

See (Yasuoka & Terauchi, JCS 2011) for more precise results.

We must give up something.

White box analysis: statically derive bounds on program capacity. They will
be necessarily loose or vacuous in a number of cases.

Black box analysis: by simulation, derive bounds that hold with high
con�dence. They may be wrong, but only with negligible probability.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 7

/ 23



Abstract interpretation for cache side channels (Köpf et al.,

CAV'12)

Overapproximation: Traces](P) ⊇ Traces(P) can be easy to compute.
Then |ran(Y )| = |Traces(P)| ≤ |Traces](P)|.
Basic idea of cache AI from (Ferdinand et al., SAS'06).

P: if .. e .. then .. a .. else .. b ..

Possible �nal cache states (4-blocks cache, LRU)

c1 = [a, e,⊥,⊥]
c2 = [b, e,⊥,⊥]

Abstract state cache c] = [{a, b}, {e},⊥,⊥]

E�ects of block access on abstract cache

e� ([{a, b}, {e},⊥,⊥], e) = {H}
e� ([{a, b}, {e},⊥,⊥], a) = {M,H}

From abstract semantics and e� (easily) compute and count

Traces
](P) = {H} · {M,H} = {HM,HH}

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 8

/ 23



Abstract interpretation for cache side channels (Köpf et al.,

CAV'12)

Overapproximation: Traces](P) ⊇ Traces(P) can be easy to compute.
Then |ran(Y )| = |Traces(P)| ≤ |Traces](P)|.
Basic idea of cache AI from (Ferdinand et al., SAS'06).

P: if .. e .. then .. a .. else .. b ..

Possible �nal cache states (4-blocks cache, LRU)

c1 = [a, e,⊥,⊥]
c2 = [b, e,⊥,⊥]

Abstract state cache c] = [{a, b}, {e},⊥,⊥]
E�ects of block access on abstract cache

e� ([{a, b}, {e},⊥,⊥], e) = {H}
e� ([{a, b}, {e},⊥,⊥], a) = {M,H}

From abstract semantics and e� (easily) compute and count

Traces
](P) = {H} · {M,H} = {HM,HH}

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 8

/ 23



Imprecision

Analysis can be imprecise mostly due to variable index lookup A[i]

(Köpf et al. CAV'12, USENIX'13) present ways to mitigate this, e.g. partitioning:
replace

A[i];

...

with

if (i >= 8) {

A[i];

...

} else if (i >= 16) {

A[i]

...

}

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 9

/ 23



Abstract interpretation for cache side channels (Köpf et al.,

USENIX'13)

Idea: compute overapproximation of concrete traces, Taces](P) ⊇ Traces(P).
Then |ran(Y )| = |Traces(P)| ≤ |Traces](P)|.

Concrete states = cache set C = B → {0, ..., k − 1, k}
Concrete update when accessing block b

next(c, b) = λb′ ∈ B.


0 : b = b′

c(b′) + 1 : c(b′) < c(b)
c(b′) : c(b′) > c(b)

Abstract states = abstract cache set C] = B → P({0, ..., k − 1, k})
Abstract update when accessing block b

next(c], b) = λb′ ∈ B.

{
{0} : b = b′⋃

a∈c](b)
(
c](b′)>a∪c](b′)<a+1

)

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 10

/ 23



Abstract interpretation for cache side channels (2)

e�ect

e� (c], b) =


{H} : c](b) ⊆ {0, ..., k − 1}
{M} : c](b) = {k}
{M,H} : otherwise

P's sequence of block accesses b1b2 · · · gives rise to
Traces](P) = {H} · {H,M} · · · via next] and e� ]. Easy to compute
(�xpoint) and to count.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 11

/ 23



CacheAudit (Köpf et al. USENIX'13)

A tool based on this approach

Successful in proving bounds on leakage for AES and Salsa20 software

Alas, no meaningful upper bounds for e.g. sorting algorithms under
trace-based adversaries � yields vacuous bounds ≥ log(n!). This is where loss
of precision due to AI shows up

One reason may be presence of nested iterations with variable indeces

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 12

/ 23



CacheAudit (Köpf et al. USENIX'13)

A tool based on this approach

Successful in proving bounds on leakage for AES and Salsa20 software

Alas, no meaningful upper bounds for e.g. sorting algorithms under
trace-based adversaries � yields vacuous bounds ≥ log(n!). This is where loss
of precision due to AI shows up

One reason may be presence of nested iterations with variable indeces

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 12

/ 23



Black-box statistical analysis (Boreale & Paolini, ISC'14)

p(y |x)X1,X2, ... Y1,Y2, ...

We, the analyst

1 ignore P's code and internal working p(y |x)
2 ignore P's input distribution X (to be relaxed later!)

3 obtain a sample of i.i.d. observations S = Y1, ...,Ym (m� |X|)
4 want to estimate |ran(Y )|, hence leakage

Analyst needs a function, whatever the program P and the distribution X , given
sample yields an estimation of |ran(Y )|.

Estimator

Let γ > 1 and 1/2 > δ > 0. A (γ, δ) estimator is a function f : Ym → R+ s.t. for
every X and P and Y = P(X )

Pr
(
|ran(Y )| ∈ [f (S)/γ, f (S) · γ]

)
≥ 1− δ

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 13

/ 23



Black-box statistical analysis (Boreale & Paolini, ISC'14)

p(y |x)X1,X2, ... Y1,Y2, ...

We, the analyst

1 ignore P's code and internal working p(y |x)
2 ignore P's input distribution X (to be relaxed later!)

3 obtain a sample of i.i.d. observations S = Y1, ...,Ym (m� |X|)
4 want to estimate |ran(Y )|, hence leakage

Analyst needs a function, whatever the program P and the distribution X , given
sample yields an estimation of |ran(Y )|.

Estimator

Let γ > 1 and 1/2 > δ > 0. A (γ, δ) estimator is a function f : Ym → R+ s.t. for
every X and P and Y = P(X )

Pr
(
|ran(Y )| ∈ [f (S)/γ, f (S) · γ]

)
≥ 1− δ

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 13

/ 23



Bad news

Negative result 1

There is no such thing as an estimator for |ran(Y )|.

Proof intuition. A small fraction ε of Y 's probability mass could be spread
among a lot of observables. Before any one of them shows up in the sample, an
average of 1/ε extractions are necessary. Let ε→ 0.

Negative result 2

If we �x X uniform, ≈ |X |/γ2 extractions are still necessary: no signi�cantly
better than input enumeration!
Proof intuition. Say γ <

√
2 and try to tell these two apart (x n-bit variable).

P: y = 0;

Q: if x == 42 then y=1 else y=0;

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 14

/ 23



Bad news

Negative result 1

There is no such thing as an estimator for |ran(Y )|.
Proof intuition. A small fraction ε of Y 's probability mass could be spread
among a lot of observables. Before any one of them shows up in the sample, an
average of 1/ε extractions are necessary. Let ε→ 0.

Negative result 2

If we �x X uniform, ≈ |X |/γ2 extractions are still necessary: no signi�cantly
better than input enumeration!
Proof intuition. Say γ <

√
2 and try to tell these two apart (x n-bit variable).

P: y = 0;

Q: if x == 42 then y=1 else y=0;

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 14

/ 23



Bad news

Negative result 1

There is no such thing as an estimator for |ran(Y )|.
Proof intuition. A small fraction ε of Y 's probability mass could be spread
among a lot of observables. Before any one of them shows up in the sample, an
average of 1/ε extractions are necessary. Let ε→ 0.

Negative result 2

If we �x X uniform, ≈ |X |/γ2 extractions are still necessary: no signi�cantly
better than input enumeration!
Proof intuition. Say γ <

√
2 and try to tell these two apart (x n-bit variable).

P: y = 0;

Q: if x == 42 then y=1 else y=0;

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 14

/ 23



Discussion

As a function P : X → Y, program P partitions the input space X into
equivalence classes (inverse images). The analyst wants to count how many
classes are there:

|ran(Y )| = |Y/ ∼ | def= k

Another way of looking at the negative results is that, if the analyst has no
control over the input distribution, small classes will be very di�cult to detect;
and there may be a lot of them.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 15

/ 23



Assume analyst controls input X

p(y |x)X1,X2, ... Y1,Y2, ...

Analyst can choose X so that Y is (nearly) uniform. Then he

1 generates S = Y1, ...,Ym i.i.d. and counts how many distinct elements occur
in S , say D (e.g. S = a, b, a, c, a, b ⇒ D = 3)

2 if m is large enough, he expects D ≈ E [D] = k(1− (1− 1/k)m)
def
= g(k)

3 he lets g−1(D) be his estimation of k.

Positive result

Let Y be uniform and
Jt

def
= g−1(D − t)

Then
Pr

(
k ∈ [Jt , J−t ]

)
≥ 1− δ

provided t ≥
√
m ln(1/δ)/2. (NB: can be extended to nearly uniform Y .)

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 16

/ 23



Assume analyst controls input X

p(y |x)X1,X2, ... Y1,Y2, ...

Analyst can choose X so that Y is (nearly) uniform. Then he

1 generates S = Y1, ...,Ym i.i.d. and counts how many distinct elements occur
in S , say D (e.g. S = a, b, a, c, a, b ⇒ D = 3)

2 if m is large enough, he expects D ≈ E [D] = k(1− (1− 1/k)m)
def
= g(k)

3 he lets g−1(D) be his estimation of k.

Positive result

Let Y be uniform and
Jt

def
= g−1(D − t)

Then
Pr

(
k ∈ [Jt , J−t ]

)
≥ 1− δ

provided t ≥
√
m ln(1/δ)/2. (NB: can be extended to nearly uniform Y .)

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 16

/ 23



Relative error bounds

We �x δ = 0.001 (99.99% con�dence)

0.2×m 0.4×m 0.6×m 0.8×m

0.025
0.05

0.1

0.15

0.2

0.25

D

re
la
ti
v
e
e
rr
o
r
(J
−
t
−

J
t
)/
J
t

m = 104

m = 105

m = 106

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 17

/ 23



How to sample from a good input distribution X?

An optimal input distribution assigns the same probability mass, 1/k, to all
classes. E.g. p∗(x) = 1

k·|[x]| . We consider two sampling algorithms.

1. Markov Chain Monte Carlo. De�ne a random walk {Xt}t≥0 on the state
space X that �keeps o�� the big classes:

1 pick up x according to a �xed proposal distribution Q(x |Xt)
2 accept x (Xt+1 = x) with probability min{1, |Xt |/|[x ]|} else reject it

(Xt+1 = Xt)

2. Accept-Reject.
1 pick up random x
2 pick up random u ∈ [0, 1]

3 if u < min
x
′ |[x′]|
|[x]| then accept X = x else reject x and goto 1

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 18

/ 23



How to sample from a good input distribution X?

An optimal input distribution assigns the same probability mass, 1/k, to all
classes. E.g. p∗(x) = 1

k·|[x]| . We consider two sampling algorithms.

1. Markov Chain Monte Carlo. De�ne a random walk {Xt}t≥0 on the state
space X that �keeps o�� the big classes:

1 pick up x according to a �xed proposal distribution Q(x |Xt)
2 accept x (Xt+1 = x) with probability min{1, |Xt |/|[x ]|} else reject it

(Xt+1 = Xt)

2. Accept-Reject.
1 pick up random x
2 pick up random u ∈ [0, 1]

3 if u < min
x
′ |[x′]|
|[x]| then accept X = x else reject x and goto 1

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 18

/ 23



How to sample from a good input distribution? (2)

Note:

1 both algorithms converge to p∗, but require knowledge of the (relative) size
of equivalence classes

2 in practice, |[x ]| is approximated in a pre-computation phase

3 MCMC only converges in the limit

4 A-R can be extremely expensive in unbalanced situations and must be tuned

Due to approximations, sampled X is only �good� rather an optimal, and Y not
necessarily uniform.
Yet, obtained lower bounds on k = |ran(Y )| are still formally valid and often
quite good!

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 19

/ 23



Experiment 1: unbalanced classes

z=mod(x,2^l);

if mod(z,2^r)==0

y=z;

else

y=mod(z,2^r);

return y;

n-bit input, 2r−1 large classes and 2l−r small classes

l − r large ⇒ unbalanced

con�dence δ = 0.001 and m = 5× 105 (note
m� 2n)

we report (log Jt)/ log k

n l r k CMC MCMC AR

22 22 4.9143× 106 0.98 0.96 0.98

24 22 20 1.0486× 106 0.99 0.98 0.99

22 2 2.0972× 106 0.80 0.88 0.95

22 1 2.0972× 106 0.86 0.93 0.99

23 23 8.3886× 106 0.99 0.96 0.99

28 23 20 1.0486× 106 0.99 0.98 0.99

23 2 2.0972× 106 0.80 0.89 0.99

23 1 4.1943× 106 0.82 0.90 0.99

26 26 6.7108× 107 0.96 0.91 0.96

32 26 23 8.3886× 106 0.99 0.96 0.99

26 2 1.6777× 107 0.70 0.79 0.98

26 1 3.3554× 107 0.72 0.80 0.98

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 20

/ 23



Experiment 2: sorting algorithms

Recall that (upper) bounds obtained with static analysis (CacheAudit) are
vacuous on these algorithms.
We consider trace-based cache leaks in Java implementations of BubbleSort and
InsertionSort. Here

cache replacement policy: LRU

varying cache block size (in words): 2,4,8

preload yes/no

con�dence δ = 0.001 and n = vector length

2 4 8

5

10

15

20

cache block size (words)

le
ak
ag
e
(b
it
s)

n = 32

n = 16

n = 8

preload, all n

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 21

/ 23



Conclusion

Obtaining formal bounds on quantitative information leaks of programs is
di�cult

Static analysis presupposes access to the source code and depends on
precision of underlying abstract domains. E�ective at �nding good upper
bounds in speci�c domains (cache analysis)

Statistical estimation does not require source code, but cannot give in
general (tight) upper bounds. If input can be controlled by analyst, e�ective
at �nding good lower bounds, independently of domain of application

It looks obvious that the approaches two should be used in conjunction.
Further experiments and tool validation are called for.

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 22

/ 23



References

M. Alt, C. Ferdinand, F. Martin, R. Wilhelm. Cache Behavior Prediction by
Abstract Interpretation. Proceedings of the Third International Symposium
on Static Analysis (SAS), 2006

M. Boreale, M. Paolini. On formally bounding information leakage by
statistical estimation. ISC 2014

G. Doychev, D. Feld, B. Köpf, L. Mauborgne, J. Reineke. CacheAudit: A
Tool for the Static Analysis of Cache Side Channels. USENIX Security 2013

B. Köpf, L. Mauborgne, M. Ochoa. Automatic Quanti�cation of Cache
Side-Channels. CAV 2012

H. Yasuoka, T. Terauchi. On bounding problems of quantitative information
�ow. Journal of Computer Security 19(6): 1029-1082, 2011

M. Boreale (DiSIA - Università di Firenze) On formally bounding information leakage in deterministic programs
IFIP WG 2.2, TUM - Münich September 15-18, 2014 23

/ 23


