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But this is not just state explosion problem that makes it hard.

It is complex interactions between components that make verification hard.

We will see examples of systems where many (but not all) problems become easy. 
(NP or PTIME)



Verification of concurrent systems is PSPACE-complete
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Reachability for the synchronous product of finite automata is PSPACE-complete. 

What can we do about this?

• symbolic methods: SAT, BDD


• partial-order methods, stateless exploration

A1 A2 A3



Maybe there are concurrent systems for which verification is easier?

Two examples:

Negotiations: a restricted form of an asynchronous automaton or a Petri net.

Systems with 2-locks: 2 locks per process, no shared variables.

It is not the case that the standard algorithms are faster for these systems.



Systems with locks: dinning philosophers
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Deadlock avoidance



Verification (no deadlock)



Systems with locks: definition
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Systems with locks: definition

Deadlock: no process can do a transition

Deadlock avoidance problem:
given a lock system decide if it cannot reach a deadlock
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Systems with locks verification

Fact: Deadlock avoidance problem is PSPACE-complete.

2-lock systems:  every process has access  to at most 2 locks.

Thm: For 2-lock systems the problem is coNP-complete.

Thm: For 2-lock locally live systems the problem is in PTIME.



Patterns

A pattern of a run: we look at last operations on locks rel1, rel2 
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Every run is resumed by one pattern
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Patterns

A pattern of a run: we look at last operations on locks rel1, rel2 

acq1, acq2 

rel2, acq1 

acq1, rel2 

There are 8 possible patterns (for 2 given locks).

Main idea: given a pattern for each local run we can decide if they can form a global run.

(total order on locks compatible with patterns)
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Synthesis for distributed systems is seldom decidable
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Synthesis for distributed systems is seldom decidable

Pnueli-Rosner setting

Specification is a relation 
between inputs and outputs

Thm [Madhusudan, Thiagarajan]: Synthesis in this setting is decidable only for 
pipeline architectures.
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Synthesis for distributed systems is seldom decidable

Pnueli-Rosner setting

Thm [Madhusudan, Thiagarajan]: Synthesis in this setting is decidable only for 
pipeline architectures.

Thm [Gimbert]: In general synthesis in causal memory settings is undecidable.
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Systems with locks: synthesis

Actions are split into system and environment actions.

Local paths of N : sequences over ⌃ = {ap : a 2 ⌃, p 2 Proc}.

Thm: Let A the minimal deterministic automaton for Paths(N ).

One can construct NA from A such that L(NA) = L(N ), and there is h : N ! NA.

Cor: Language equivalence of two sound negotiations can be computed in Ptime.

Thm: This algorithm learns sound negotiations of size s using O(s(s2 + log(m))) membership queries,

and s equivalence queries.
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Synthesis problem: given a system decide if there is a distributed strategy s.t.

no run respecting this strategy reaches a deadlock.
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Synthesis for 2-lock systems

2-lock systems:  every process has access to 2 locks
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Synthesis for 2-lock systems: locally-live strategies

2-lock systems:  every process has access to 2 locks
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Locally live strategies + exclusive systems

Exclusive systems: if there is an acquire action then there are no other actions
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Conclusions

Classes of concurrent systems for which some problems can be decided efficiently,
but by specialized algorithms.

Is it worth it, or a Swiss knife of SAT/BDD is always enough?

Lock-systems: some other restrictions on lock usage?

Perspectives:

Find other contexts where this phenomenon appears. 

Applications?

[A Compositional Deadlock Detector for Android Java, 

Brotherson, Brunet, Gorogiannis, Kanovich, 2021]


