

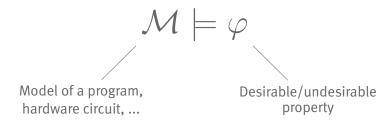
Our current work on the asynchronous hyperlogic mumbling ${\cal H}_{\mu}$ Christoph Ohrem

AG Softwareentwicklung und Verifikation Institut für Informatik

wissen.leben

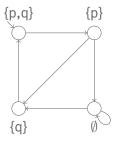
Verification by Model Checking

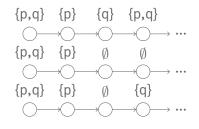
Model Checking problem: Given a model \mathcal{M} and a property φ , check whether



Models - Kripke Structures

Kipke Structure ${\cal K}$



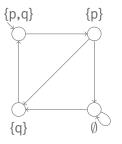


. . .

p,q: atomic propositions from a set AP

Models - Kripke Structures

Kipke Structure \mathcal{K}



Traces

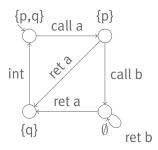
 ${p,q} {p} {q} {p,q} ...$

. . .

p,q: atomic propositions from a set AP

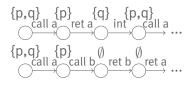
Models - Pushdown Systems

Pushdown System \mathcal{P}



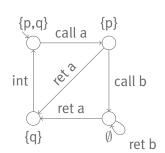
a,b: stack symbols from a set Θ

Paths



Models - Pushdown Systems

Pushdown System \mathcal{P}



{p,q}c {p} r {q} i{p,q}c …

Traces

{p,q}c {p} c \emptyset r \emptyset r \cdots

...

a,b: stack symbols from a set Θ

Properties - Linear Temporal Logics (LTL)¹

"p or q always holds" $\mathcal{G}(p \lor q)$

- {p,q} {p} {q} {p,q} ··· ✓
- {p,q} {p} \emptyset {q} \cdots X

LTL formulae are satisfied by traces; Properties are sets of traces

¹[Pnueli, SFCS 1977]

Properties - CaRet²

"q holds when the currently called procedure is returned from" $\bigcirc^a q$ (assuming the next transition is a call)

{p,q} c {p} r {q} i {p,q} c
$$\cdots$$

{p,q} c {p} c \emptyset r \emptyset r {q} \cdots

"procedure f is in the call stack"

 $\mathcal{F}^{c}f$

(assuming each state is labelled with the current top of stack symbol)

²[Alur et al., TACAS 2004]

Model Checking LTL

Main Idea for Automata based LTL Model Checking

Kripke Structure \mathcal{K} $\xrightarrow{\text{linear}}_{\text{translation}}$ $\operatorname{NBA^{3}}\mathcal{A}_{\mathcal{K}}$ $\mathcal{L}(\mathcal{A}_{\mathcal{K}}) = \operatorname{Traces}(\mathcal{K})$

LTL Formula
$$\varphi \xrightarrow[\text{translation}]{\text{translation}} ABA \mathcal{A}_{\neg \varphi} \xrightarrow[\text{dealternation}]{\text{exponential}} NBA \mathcal{A}_{\neg \varphi}$$

$$\xrightarrow[\text{dealternation}]{\mathcal{L}} (\mathcal{A}_{\neg \varphi}) = \{tr \mid tr \not\models \varphi\}$$

 $\mathcal{K} \models \varphi \text{ iff } \mathcal{L}(\mathcal{A}_{\mathcal{K}}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \emptyset$; Model Checking is in PSPACE

³NBA = Nondeterministic Büchi Automaton, ABA = Alternating Büchi Automaton

Synchronous Hyperproperties - HyperLTL⁴

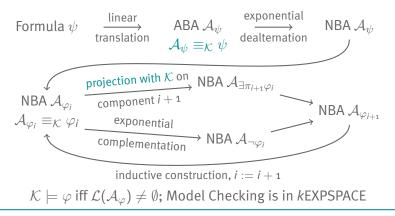
"The system seems to be deterministic to a low security user" $\varphi_{OD} = \forall \pi_1. \forall \pi_2. (i_{\pi_1} \leftrightarrow i_{\pi_2}) \rightarrow \mathcal{G}(o_{\pi_1} \leftrightarrow o_{\pi_2})$

Inner HyperLTL formulae are satisfied by trace assignments; Closed HyperLTL formulae are satisfied by sets of traces; Hyperproperties are sets of sets of traces

⁴[Clarkcon et al., POST 2014], Model Checking in [Finkbeiner et al., CAV 2015]

Model Checking HyperLTL

Formula $\varphi = Q_n \pi_n \dots Q_1 \pi_1 \psi$ with $\varphi_i = Q_i \pi_i \dots Q_1 \pi_1 \psi$, Structure \mathcal{K}



Asynchronous Hyperproperties - ${\rm H}_{\mu}{}^{\rm 5}$

Asynchronicity arises naturally in many programs:

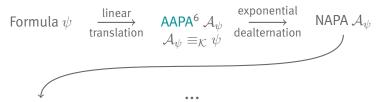
 H_{μ} generally captures asynchronous hyperproperties like "The traces π_1 and π_2 repeatedly agree on a, but one step on π_1 is matched by two on π_2 "

$$\nu X.((a_{\pi_1} \leftrightarrow a_{\pi_2}) \land \bigcirc_{\pi_1} \bigcirc_{\pi_2} \bigcirc_{\pi_2} X)$$

⁵[Gutsfeld et al., POPL 2021]

Model Checking \mathbf{H}_{μ}

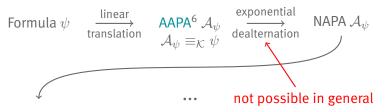
Formula $\varphi = Q_n \pi_n \dots Q_1 \pi_1 \psi$ with $\varphi_i = Q_i \pi_i \dots Q_1 \pi_1 \psi$, Structure \mathcal{K}



⁶Alternating Asynchronous Parity Automaton [Gutsfeld et al., POPL 2021]

Model Checking \mathbf{H}_{μ}

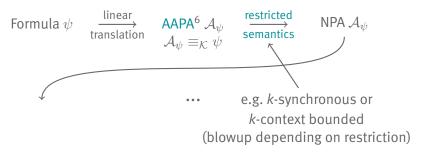
Formula $\varphi = Q_n \pi_n \dots Q_1 \pi_1 \psi$ with $\varphi_i = Q_i \pi_i \dots Q_1 \pi_1 \psi$, Structure \mathcal{K}



⁶Alternating Asynchronous Parity Automaton [Gutsfeld et al., POPL 2021]

Model Checking \mathbf{H}_{μ}

Formula $\varphi = Q_n \pi_n \dots Q_1 \pi_1 \psi$ with $\varphi_i = Q_i \pi_i \dots Q_1 \pi_1 \psi$, Structure \mathcal{K}



⁶Alternating Asynchronous Parity Automaton [Gutsfeld et al., POPL 2021]

Asynchronous Hyperproperties - Stuttering HyperLTL⁷ Define a stuttering criterion, inspect only one copy of the suttered states Stuttering with $\Gamma = \{p\}$: $\{p\}$ $\{p\}$ \emptyset \emptyset \emptyset $\{p\}$ \emptyset ...

Captures a specific kind of asynchronicity, subsumed by H_{μ}

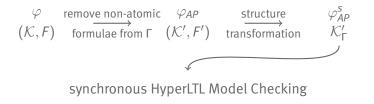
Observational determinism with equivalence up to stuttering: $\forall \pi_1. \forall \pi_2. \bigwedge_{p \in I} (p_{\pi_1} \leftrightarrow p_{\pi_2}) \rightarrow \mathcal{G}^L \bigwedge_{p \in O} (p_{\pi_1} \leftrightarrow p_{\pi_2})$

Decidable Model Checking for a very interesting subset of the logic: Use only one stuttering criterion Γ

⁷[Bozzelli et al., LICS 2021]

(Fair) Model Checking Stuttering HyperLTL

Formula φ with single stuttering criterion Γ , fair Structure (\mathcal{K}, \mathcal{F})



Model Checking still in *k*EXPSPACE

Asynchronous Hyperproperties - Mumbling $H_{\mu}^{\ 8}$

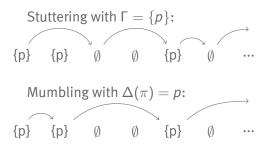
Inspired by stuttering HyperLTL, but brings several additions:

- fixpoints
- non-atomic tests
- CaRet like modalities
- simpler jump mechanism
- different jump criteria for different traces

"The traces of the system are indistinguishable with respect to f being in the call stack" $\forall \pi_1. \forall \pi_2. \nu X. (([\mathcal{F}^c f]_{\pi_1} \leftrightarrow [\mathcal{F}^c f]_{\pi_2}) \land \bigcirc^{\Delta:\pi_1 \mapsto obs, \pi_2 \mapsto obs} X)$

⁸Current work under review at POPL 2023

Stuttering vs. Mumbling



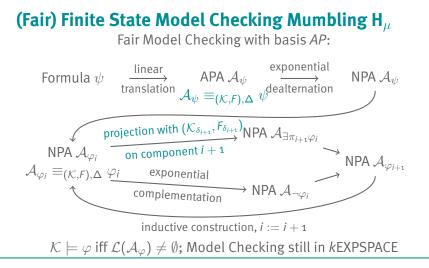
Mumbling seems more expressive: "all traces have the same number of occurrences of p" is expressible with an atomic mumbling criterion but not expressible with an LTL stuttering criterion

(Fair) Finite State Model Checking Mumbling $\mathbf{H}_{\!\mu}$

Formula φ with single mumbling criterion Δ , fair Structure (\mathcal{K}, \mathcal{F})

$$\begin{array}{ccc} \varphi & \text{remove non-atomic} & \varphi_{AP} \\ (\mathcal{K}, F) & \text{formulae from } \Delta \text{ and tests } (\mathcal{K}', F') & \longrightarrow \end{array} \begin{array}{c} \text{Model Checking} \\ \text{with basis } AP \end{array}$$

Idea is very similar to stuttering HyperLTL Model Checking Works for non-atomic tests, Pushdown Model Checking and CaRet-like modalities as well



Pushdown Model Checking - Undecidability

Reduction from emptiness problem for the intersection of contextfree languages; input model contains the two pushdown automata Formula for the reduction:

$$\varphi = \exists \pi_1. \exists \pi_2. [a_1]_{\pi_1} \land [a_2]_{\pi_2} \land \mathcal{G} \bigwedge_{\sigma \in \Sigma} [\sigma]_{\pi_1} \leftrightarrow [\sigma]_{\pi_2}$$

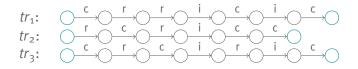
A reduction is also possible for formulae of interest:

$$\varphi_{GNI} = \forall \pi_1. \forall \pi_2. \exists \pi_3. \mathcal{G}(\bigwedge_{a \in L} [a]_{\pi_1} \leftrightarrow [a]_{\pi_3}) \land \mathcal{G}(\bigwedge_{a \in H} [a]_{\pi_2} \leftrightarrow [a]_{\pi_3})$$

Pushdown Model Checking - Well-alignedness

Idea: align the stack actions and use visibly pushdown automata (VPA)

Full alignment on all positions is too restrictive; well-alignedness: synchronise on observation points, allow some divergence in between

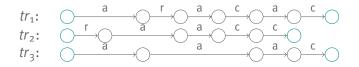


subtraces between blue positions on tr_1 and tr_2 are well-aligned \checkmark subtraces between blue positions on tr_1 and tr_3 are not well-aligned $\cancel{\times}$

Pushdown Model Checking - Well-alignedness

Idea: align the stack actions and use visibly pushdown automata (VPA)

Full alignment on all positions is too restrictive; well-alignedness: synchronise on observation points, allow some divergence in between

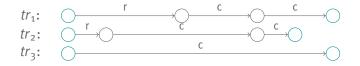


subtraces between blue positions on tr_1 and tr_2 are well-aligned \checkmark subtraces between blue positions on tr_1 and tr_3 are not well-aligned $\cancel{\times}$

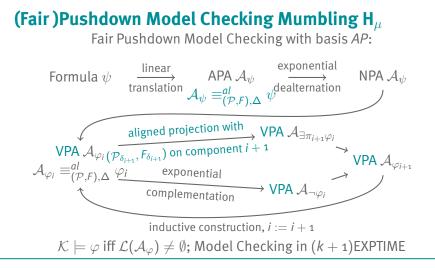
Pushdown Model Checking - Well-alignedness

Idea: align the stack actions and use visibly pushdown automata (VPA)

Full alignment on all positions is too restrictive; well-alignedness: synchronise on observation points, allow some divergence in between



subtraces between blue positions on tr_1 and tr_2 are well-aligned \checkmark subtraces between blue positions on tr_1 and tr_3 are not well-aligned $\cancel{\times}$



Conclusion

We explored different specification logics for the use in Model Checking:

- LTL and CaRet for single trace properties
- HyperLTL for synchronous hyperproperties
- $-H_{\mu}$ for general asynchronous hyperproperties
- Stuttering H_{μ} for asynchronous hyperproperties with known stuttering criteria
- Mumbling H_{μ} for asynchronous hyperproperties with known observation criteria and pushdown models