Results about Asymptotic Termination Analysis for VASS Programs

Antonín Kučera

based on a joint work with

Michal Ajdarów, Tomáš Brázdil, Krishnendu Chatterjee, Jérôme Leroux, Petr Novotný, Dominik Velan, Florian Zuleger

IFIP WG 2.2, September 2022

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

VASS Games

- VASS control states are split into angelic and demonic subsets.
 Demon/Angel wants to prolong/shorten a computation initiated in pv.
- Let σ and π be strategies for Angel and Demon, and let Comp^{σ,π}(pv) be the maximal computation initiated in pv determined by σ and π.
- $Tval(p\vec{v}) = \sup_{\pi} \inf_{\sigma} |Comp^{\sigma,\pi}(p\vec{v})| = \inf_{\sigma} \sup_{\pi} |Comp^{\sigma,\pi}(p\vec{v})|$
- Termination complexity: $\mathcal{L} : \mathbb{N} \to \mathbb{N}_{\infty}$ defined by

 $\mathcal{L}(n) = \max \left\{ Tval(p\vec{v}) \mid p \in Q, \ \vec{v} \le \vec{n} \right\}$

3/21

VASS Games

- VASS control states are split into angelic and demonic subsets.
 Demon/Angel wants to prolong/shorten a computation initiated in pv.
- Let σ and π be strategies for Angel and Demon, and let Comp^{σ,π}(pv) be the maximal computation initiated in pv determined by σ and π.
- $Tval(p\vec{v}) = \sup_{\pi} \inf_{\sigma} |Comp^{\sigma,\pi}(p\vec{v})| = \inf_{\sigma} \sup_{\pi} |Comp^{\sigma,\pi}(p\vec{v})|$
- Termination complexity: $\mathcal{L} : \mathbb{N} \to \mathbb{N}_{\infty}$ defined by

$$\mathcal{L}(n) = \max \left\{ Tval(p\vec{v}) \mid p \in Q, \ \vec{v} \leq \vec{n} \right\}$$

- $Cval[c](p\vec{v}) = \sup_{\pi} \inf_{\sigma} \max[c](Comp^{\sigma,\pi}(p\vec{v})) = \inf_{\sigma} \sup_{\pi} \max[c](Comp^{\sigma,\pi}(p\vec{v}))$
- Counter complexity: $C[c] : \mathbb{N} \to \mathbb{N}_{\infty}$ defined by

$$C[c](n) = \max \left\{ Cval[c](p\vec{v}) \mid p \in Q, \ \vec{v} \le \vec{n} \right\}$$

Example I

```
input i
while (i > 0)
i = i-1
j = i
while (j > 0)
j = j-1
```

```
input i
while (i > 0)
   i = i - 1
    i = 0; Aux = 0
   while (i > 0)
        i = i - 1
         i = i + 1
        Aux = Aux+1
   while (Aux>0)
        i = i + 1
        Aux = Aux - 1
   while (j > 0)
        i = i - 1
```


I ∃ ≥

Image: A matrix and a matrix

```
input i;
j:=0; k:=0; z:=0;
if condition // demonic choice //
    then while (i>0) do j++; k:=k+i; i--; done
    else j:=i*i; k:=i;
        while (i>0) do j:=j+k; i--; done
choose: // angelic choice //
    while (j>0) do j--; z++ done
or: while (k>0) do k--; z++ done
```

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

- Can we decide whether $\mathcal{L}(n)$ is finite for all *n*?
 - Demonic VASS: *L*(*n*) = ∞ for some *n* iff there exists a "self-covering" computation *pv* → * *pu* where *v* ≤ *u*. Hence, the problem is in **P**.
 - VASS Games: If Angel has some strategy σ^* such that $\sup_{\pi} |Comp^{\sigma^*,\pi}(p\vec{v})|$ is finite for every $p\vec{v}$, then Angel has a counterless strategy with this property. The problem is **NP**-complete.

Some Basic Questions (2)

• How fast can $\mathcal{L}(n)$ grow?

• $F_1(n) = 2n + 1$, $F_2(n) = n^2$, $F_3(n) = 2^n$,

•
$$F_{k+1}(n) = \underbrace{F_k \circ \cdots \circ F_k}_{n}(n)$$
 for $k \ge 3$
• $\mathcal{G}_k = \{f : \mathbb{N} \to \mathbb{N} \mid f \le \underbrace{F_k \circ \cdots \circ F_k}_{\mu} \text{ for some } \mu \in \mathbb{N}\}$

- For every k, there exists a terminating demonic VASS such that *L*(n) ≥ F_k(n) for all sufficiently large n. [Mayr and Meyer; JACM 1981]
- For every terminating demonic VASS with *d* counters, $\mathcal{L} \in \mathcal{G}_{d+1}$. [Schmitz; Icalp 2018]

Grzegorczyk Complexity of Demonic VASS

Theorem 1 ([K., Leroux, Velan; LICS 2020)

Let $k \in \mathbb{N}$. The problem whether $\mathcal{L} \in \mathcal{G}_k$ for a given demonic VASS is in **P**. Furthermore, if $\mathcal{L} \notin \mathcal{G}_k$, then there is a constant *c* such that $\mathcal{L}(n) \geq F_{k+1}(\lfloor n/c \rfloor)$ for all sufficiently large *n*.

Theorem 2 (Brázdil, Chatterjee, K., Novotný, Velan, Zuleger; LICS 2018)

The problem whether $\mathcal{L} \in O(n)$ for a given demonic VASS is in **P**. Furthermore, if $\mathcal{L} \notin O(n)$, then $\mathcal{L} \in \Omega(n^2)$.

- Assume a strongly connected demonic VASS \mathcal{R} .
- Let *Inc* be the set of effect of all simple cycles.
- Inc is computable in time polynomial in \mathcal{A} and exponential in d.

Linear VASS termination (2)

(-1, 1), (1, -1), (0, -1)

(-1,2),(1,-1),(-1,-1)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Linear VASS termination (2)

(-1, 1), (1, -1), (0, -1)

(-1,2),(1,-1),(-1,-1)

イロト イヨト イヨト イヨト

æ

- Let \mathcal{R} be a VASS of dimension *d* where *Q* is the set of states.
- Every c ∈ ℝ^d and h : Q → ℝ determine the corresponding weighted linear map defined by μ(pv) = c ⋅ v + h_p
- A weighted linear map µ is a weighted linear ranking function for A if c ≥ 0 and there is ε > 0 s.t., for every pv and pv → qu,

 $\mu(p\vec{v}) \geq \mu(q\vec{u}) + \varepsilon$

Theorem 3

Let \mathcal{A} be a VASS. We have that $\mathcal{L}(n) \in O(n)$ iff there exists a weighted linear ranking function for \mathcal{A} . Further, the existence of a weighted linear ranking function for \mathcal{A} can be decided in time polynomial in $||\mathcal{A}||$.

• Establishing the existence of a weighted linear ranking function for \mathcal{R} is a sound and complete method for proving linear VASS termination.

Theorem 4 (Leroux; Icalp 2018)

The problem whether there exist $k \in \mathbb{N}$ such that $\mathcal{L} \in O(n^k)$ for a given demonic VASS is in **P**. Furthermore, if $\mathcal{L} \notin O(n^k)$ for any k, then $\mathcal{L} \in 2^{\Omega(n)}$.

- An iteration scheme of A is a sequence of cycles *ρ*₁,..., *ρ*_m such that every counter *c* decreased by some *ρ*_i is strictly increased by the total effect of the sequence.
- $\mathcal{L}(n)$ is not polynomial iff there is an iteration scheme of \mathcal{R} .
- C[c](n) is not polynomial iff there is an iteration scheme whose total effect increases c.

Theorem 5 (Zuleger, FoSSaCS 2020)

Let \mathcal{A} be a strongly connected demonic VASS with d counters. For every counter *c*, we have that either $C[c] \in \Theta(n^k)$ for some $1 \le k \le 2^d$, or $C[c] \in 2^{\Omega(n)}$. It is decidable in polynomial time which of the two possibilities holds. In the first case, the *k* is computable in polynomial time.

15/21

Theorem 5 (Zuleger, FoSSaCS 2020)

Let \mathcal{A} be a strongly connected demonic VASS with d counters. For every counter c, we have that either $C[c] \in \Theta(n^k)$ for some $1 \le k \le 2^d$, or $C[c] \in 2^{\Omega(n)}$. It is decidable in polynomial time which of the two possibilities holds. In the first case, the k is computable in polynomial time.

15/21

Theorem 6 (Ajdarów, K.; CONCUR 2021)

Let $k \ge 1$. For every demonic VASS \mathcal{R} we have that \mathcal{L} is either in $O(n^k)$ or in $\Omega(n^{k+1})$. Furthermore, the problem whether

- $\mathcal{L} \in O(n^k)$ is in **P** for k = 1, and **coNP**-complete for $k \ge 2$;
- $\mathcal{L} \in \Omega(n^k)$ is in **P** for $k \leq 2$, and **NP**-complete for $k \geq 3$;
- $\mathcal{L} \in \Theta(n^k)$ is in **P** for k = 1, **coNP**-complete for k = 2, and **DP**-complete for $k \ge 3$.

Similar results hold also for C[c].

Classifying Polynomial Demonic VASS (3)

• For every
$$\vec{v} = (k_1, \dots, k_d) \in \mathbb{N}^d$$
, let $C[c, \vec{v}] : \mathbb{N} \to \mathbb{N}_{\infty}$ where

 $C[c, \vec{v}](n) = \max \{ Cval[c](p\vec{u}) \mid p \in Q, \ \vec{u} = (n^{k_1}, \dots, n^{k_d}) \}$

Theorem 7

Let \mathcal{A} be a strongly connected demonic VASS with d counters, and let $\vec{v} \in \mathbb{N}^d$ such that $\vec{v}(i) \leq 2^{j \cdot d}$ for every $i \leq d$, where j < |Q|. For every counter c, we have that either $C[c, \vec{v}] \in \Theta(n^k)$ for some $1 \leq k \leq 2^{(j+1) \cdot d}$, or $C[c, \vec{v}] \in 2^{\Omega(n)}$. It is decidable in polynomial time which of the two possibilities holds. In the first case, the k is computable in polynomial time.

Classifying Polynomial Demonic VASS (4)

Antonín Kučera (FI MU Brno)

IFIP WG2.2, 2022

Image: A matrix

< 3 >

E

18/21

Theorem 8 (Ajdarów, K.; CONCUR 2021)

Let $k \ge 1$. For every VASS game \mathcal{A} we have that \mathcal{L} is either in $O(n^k)$ or in $\Omega(n^{k+1})$. Furthermore, the problem whether

- $\mathcal{L} \in O(n^k)$ is **NP**-complete for k=1 and **PSPACE**-complete for $k \ge 2$;
- *L* ∈ Ω(n^k) is in P for k=1, coNP-complete for k=2, and PSPACE-complete for k≥3;
- $\mathcal{L} \in \Theta(n^k)$ is NP-complete for k=1 and PSPACE-complete for $k \ge 2$.

The same results hold also for C[c].

- Angel must take into account the asymptotic growth of the counters along the computational history.
- Key new concepts:
 - Iocking strategy
 - Iocking decomposition

 The analysis of termination complexity for VASS MDPs (and VASS stochastic games).

A recent summary:

A. Kučera. Algorithmic Analysis of Termination and Counter Complexity in Vector Addition Systems with States: A Survey of Recent Results. ACM SIGLOG News. 8(4):4-21, 2021.