Hennessy-Milner Theorems via Galois Connections

Barbara König
Universität Duisburg-Essen

Based on joint work with Harsh Beohar, Sebastian Gurke,
Karla Messing
(1) Motivation
(2) General Framework
(3) Bisimilarity
(4) (Decorated) Trace Equivalences
(5) Trace Metrics
(6) Conclusion

Motivation

Hennessy-Milner theorems connect behavioural equivalences with modal logics. Given two states $x_{1}, x_{2} \in X$ and formulas φ :

$$
x_{1} \sim x_{2} \Longleftrightarrow \forall \varphi:\left(x_{1} \models \varphi \Leftrightarrow x_{2} \models \varphi\right)
$$

There is a metric analogue, where d is a pseudo-metric on the state space and formulas φ evaluate to real-valued predicates $\llbracket \varphi \rrbracket: X \rightarrow[0,1]$

$$
d\left(x_{1}, x_{2}\right)=\bigvee_{\varphi}\left|\llbracket \varphi \rrbracket\left(x_{1}\right)-\llbracket \varphi \rrbracket\left(x_{2}\right)\right|
$$

Given a behavioural equivalence, the aim is typically to determine a modal logic that characterizes this equivalence \sim linear-time/branching-time spectrum [van Glabbeek], coalgebraic modal logics

Motivation

Example

x, y are not bisimilar $(x \nsim y)$
They are distinguished by $\varphi=\diamond_{a}\left(\diamond_{b}\right.$ true $\wedge \diamond_{c}$ true $)$ where $x \neq \varphi, y \not \vDash \varphi$.

Motivation

Our contributions:

- Hennessy-Milner theorems can be obtained from the fact that least fixpoints are preserved by left adjoints (of a Galois connection).
- Rather than starting with the definition of a behavioural equivalence, we go the other way and derive fixpoint equations for behavioural equivalences/metrics from the modal logics. (Including compositionality results.)
- We obtain (new) fixpoint equations for decorated trace metrics.

Galois Connection

Definition

Let \mathbb{L}, \mathbb{B} be two complete lattices with order \sqsubseteq. A Galois connection from \mathbb{L} to \mathbb{B} is a pair $\alpha \dashv \gamma$ of monotone functions such that

$$
\alpha(\ell) \sqsubseteq m \Longleftrightarrow \ell \sqsubseteq \gamma(m),
$$

for all $\ell \in \mathbb{L}, m \in \mathbb{B}$.

Intuition in our case: \mathbb{L} - logical universe, \mathbb{B} - behaviour universe

General setting

Compatibility

Let $\log , c: \mathbb{L} \rightarrow \mathbb{L}$ be two monotone endo-functions on a lattice \mathbb{L}. We call $\log c$-compatible whenever $\log \circ c \sqsubseteq c \circ \log$.

Compatibility: concept borrowed from up-to techniques

Theorem

Let $\alpha: \mathbb{L} \rightarrow \mathbb{B}, \gamma: \mathbb{B} \rightarrow \mathbb{L}$ be a Galois connection and let $\log : \mathbb{L} \rightarrow \mathbb{L}$, beh: $\mathbb{B} \rightarrow \mathbb{B}$ (both monotone).
(1) Then $\alpha \circ \log =$ beh $\circ \alpha$ implies $\alpha(\mu \log)=\mu$ beh.
(2) Let $c=\gamma \circ \alpha$ be the closure operator of the Galois connection and let beh $=\alpha \circ \log \circ \gamma$.
Then c-compatibility of log implies $\alpha(\mu \log)=\mu$ beh.
μ : least fixpoint operator
This theorem is well-known and goes back to work of Cousot \& Cousot on abstract interpretation.

Bisimilarity

We instantiate this framework and start with the simplest case: bisimilarity on labelled transition systems (with state space X).

Bisimilarity

$E q(X)$: set of all equivalences on X, ordered by \supseteq

$$
\begin{aligned}
\alpha(\mathcal{S}) & =\left\{\left(x_{1}, x_{2}\right) \in X \times X \mid \forall S \in \mathcal{S}:\left(x_{1} \in S \Leftrightarrow x_{2} \in S\right)\right\} \\
\gamma(R) & =\left\{S \subseteq X \mid \forall\left(x_{1}, x_{2}\right) \in R:\left(x_{1} \in S \Leftrightarrow x_{2} \in S\right)\right\}
\end{aligned}
$$

If $\log \circ c \subseteq c \circ \log ($ where $c=\gamma \circ \alpha$) and beh $=\alpha \circ \log \circ \gamma$:

$$
\alpha(\mu \log)=\mu \text { beh }
$$

(μ : least fixpoint. Contravariance!) This is the Hennessy-Milner theorem (logical equivalence $=$ behavioural equivalence).

Bisimilarity

Obtaining $\alpha\left(\left\{S_{1}, S_{2}\right\}\right)$ for $S_{1}, S_{2} \subseteq X=\{a, b, c, d, e, f, g\}$

Bisimilarity

- Logic function:

$$
\log (\mathcal{S})=\bigcup_{a \in A} \diamond_{a}\left[c l_{f}(\mathcal{S})\right]
$$

- $c l_{f}$ closes a set of sets under all finite boolean operations (empty conjunction: true, empty disjunction: false)
- $\diamond_{a}(S)=\{x \in X \mid \exists y \in S: x \xrightarrow{a} y\}$
- Closure: $\boldsymbol{c}=\alpha \circ \gamma$ closes a set of sets under all boolean operators
\log is compatible with c if transition system is finitely branching
- Behaviour function: for $R \in E q(X)$

$$
\begin{aligned}
& \operatorname{beh}(R)=\alpha(\log (\gamma(R)))= \\
& \left\{\left(x_{1}, x_{2}\right) \mid \forall y_{1}: x_{1} \xrightarrow{a} y_{1} \exists y_{2}: x_{2} \xrightarrow{a} y_{2} \wedge\left(y_{1}, y_{2}\right) \in R \wedge\right. \\
& \left.\forall y_{2}: x_{2} \xrightarrow{a} y_{2} \exists y_{1}: x_{1} \xrightarrow{a} y_{1} \wedge\left(y_{1}, y_{2}\right) \in R\right\}
\end{aligned}
$$

(Decorated) Trace Equivalences

Recipe

(1) Define logic function log and Galois connection $\alpha \dashv \gamma$.
(2) Check compatibility with closure $\boldsymbol{c}=\gamma \circ \alpha$ induced by Galois connection, i.e., $\log \circ c \subseteq c \circ \log$.
(3) Define behaviour function beh $=\alpha \circ \log \circ \gamma$.

We obtain: $\alpha(\mu \log)=\mu$ beh

The recipe seems to work fine for bisimilarity. What about (decorated) trace equivalences?

(Decorated) Trace Equivalences

We have to make the following modifications:

- Galois connection:

$$
\begin{aligned}
\alpha(\mathcal{S})= & \left\{\left(X_{1}, X_{2}\right) \in \mathcal{P}(X) \times \mathcal{P}(X) \mid\right. \\
& \left.\forall S \in \mathcal{S}:\left(X_{1} \cap S \neq \emptyset \Longleftrightarrow X_{2} \cap S \neq \emptyset\right)\right\} \\
\gamma(R)= & \left\{S \subseteq X \mid \forall\left(X_{1}, X_{2}\right) \in R:\left(X_{1} \cap S \neq \emptyset \Longleftrightarrow X_{2} \cap S \neq \emptyset\right)\right\}
\end{aligned}
$$

(Decorated) Trace Equivalences

- Induced closure $\boldsymbol{c}=\gamma \circ \alpha$: closure under arbitrary unions.
- Logic function for trace equivalence (uses only \diamond and true):

$$
\log (\mathcal{S})=\bigcup_{a \in A} \diamond_{a}[\mathcal{S}] \cup\{X\}
$$

Alternatively: $\log ^{\prime}=\log \cup \log _{0}$ where $\log _{0}$ provides predicates for characterizing completed traces, failures, readiness. (Compatibility follows by compositionality results.)

- For equivalences R that are congruences (wrt. union): derived behaviour function corresponds to the usual bisimilarity check on the determinization.

Trace Metrics

Trace equivalence can be generalized to trace metrics [de Alfaro, Faella, Stoelinga] [Fahrenberg, Legay] that measures the distance between the sets of traces originating from two states.
Useful for systems with quantitative information (probabilities, weights, etc.) where behavioural equivalence is too strict.

Here: we generalize the trace inclusion preorder to a directed trace metrics.

First step: Extend transition systems with a metric $d_{A}: A \times A \rightarrow[0,1]$ on the label set A.

Trace Metrics

Preliminaries on metrics

- $\operatorname{DPMet}(Y)$: set of all directed pseudo-metrics on Y, i.e., functions $d: Y \times Y \rightarrow[0,1]$ such that
- $d(y, y)=0$ for all $y \in Y$
- $d\left(y_{1}, y_{3}\right) \leq d\left(y_{1}, y_{2}\right)+d\left(y_{2}, y_{3}\right)$ (triangle inequality) for all $y_{1}, y_{2}, y_{3} \in Y$.
- not necessarily symmetric $\left(d\left(y_{1}, y_{2}\right)=d\left(y_{2}, y_{1}\right)\right)$
- Directed pseudometric space: set Y with a directed pseudo-metric d
- Non-expansive functions between pseudometric spaces $\left(Y, d_{Y}\right),\left(Z, d_{Z}\right):$ mapping $f: Y \rightarrow Z$ with $d_{Z}\left(f\left(y_{1}\right), f\left(y_{2}\right)\right) \leq d_{Y}\left(y_{1}, y_{2}\right)$ for all $y_{1}, y_{2} \in Y$.

Addition and subtraction are modified to stay within $[0,1]$

Trace Metrics

Directed Hausdorff metric

Lifting a directed metric space (X, d) to $\left(\mathcal{P}(X), d^{H}\right)$: let $X_{1}, X_{2} \subseteq X$:

$$
d^{H}\left(X_{1}, X_{2}\right)=\max _{x_{1} \in X_{1} x_{2} \in X_{2}} d\left(x_{1}, x_{2}\right)
$$

- For each element $x_{1} \in X_{1}$ take the closest element $x_{2} \in X_{2}$ and measure the distance $d\left(x_{1}, x_{2}\right)$
- Take the maximum of all such distances.

Trace Metrics

Example: Directed Hausdorff metric

Trace Metrics

Example: Directed Hausdorff metric

Trace Metrics

Example: Directed Hausdorff metric

Trace Metrics

Trace Distance of two states x, y

- Let $\operatorname{Tr}(x) \subseteq A^{*}$ be the set of finite traces of x.
- The distance of two traces σ_{1}, σ_{2} is defined as
- $d_{\mathrm{Tr}}\left(\sigma_{1}, \sigma_{2}\right)=1$ if $\left|\sigma_{1}\right| \neq\left|\sigma_{2}\right|$
- $d_{T_{r}}(\varepsilon, \varepsilon)=0$
- $d_{\mathrm{Tr}}\left(a_{1} \sigma_{1}^{\prime}, a_{2} \sigma_{2}^{\prime}\right)=\max \left\{d_{A}\left(a_{1}, a_{2}\right), d_{\mathrm{Tr}_{\mathrm{r}}}\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right\}$ (sup-metric)
- Given two states x, y :

$$
d(x, y)=\left(d_{\operatorname{Tr}}\right)^{H}(\operatorname{Tr}(x), \operatorname{Tr}(y))
$$

Trace Metrics

Hence: $d(x, y)=\frac{1}{2}$.

Trace Metrics

We apply our receipe and use the following Galois connection:

$$
\begin{gathered}
\left.\log \left(\mathcal{P}\left([0,1]^{X}\right), \subseteq\right) \frac{\alpha}{\gamma} \frac{(\operatorname{D}}{\sim} P M e t(\mathcal{P}(X)), \leq\right) \text { beh } \\
\alpha(\mathcal{F})\left(X_{1}, X_{2}\right)=\bigvee_{f \in \mathcal{F}}\left(\tilde{f}\left(X_{1}\right)-\tilde{f}\left(X_{2}\right)\right) \\
\gamma(d)=\left\{f \in[0,1]^{X} \mid \tilde{f} \text { is non-expansive wrt. } d\right\}
\end{gathered}
$$

where $\tilde{f}: \mathcal{P}(X) \rightarrow[0,1] \quad \tilde{f}\left(X^{\prime}\right)=\bigvee_{x \in X^{\prime}} f(x)$

$$
(f: X \rightarrow[0,1])
$$

Trace Metrics

Logic function:
Modality: $\quad \bigcirc_{a} f(x)=\bigvee\left\{\overline{D_{a}}(b) \wedge f\left(x^{\prime}\right) \mid x \xrightarrow{b} x^{\prime}\right\}$
where $a \in A, f: X \rightarrow[0,1], \overline{D_{a}}(b)=1-d_{A}(b, a)$.

$$
\log (\mathcal{F})=\bigcup_{a \in A} \bigcirc_{a}\left[c^{\text {sh }}(\mathcal{F})\right] \cup\{1\}
$$

where $c l^{\text {sh }}$ closes a set of functions under constant shifts $(f \mapsto f+c, f-c, c \in[0,1])$.

The logic function is compatible with the closure of the Galois connection (shifts are needed for compatibility).

Trace Metrics

Completeness:

In order to convince ourselves that the logic is complete, we construct a distinguishing formula φ.
To obtain the trace distance of states x, y, take the trace $a_{1} \ldots a_{n} \in \operatorname{Tr}(x)$ of x that is farthest from any trace in $\operatorname{Tr}(y)$.

Define $\varphi=\bigcirc_{a_{1}} \cdots \bigcirc_{a_{n}} 1$

Trace Metrics

Fixpoint function/equation (special case): beh $=\alpha \circ \log \circ \gamma$

$$
\begin{aligned}
& \operatorname{beh}(d)\left(\{x\},\left\{y_{1}, y_{2}\right\}\right) \\
= & \left(d_{A}\left(a, b_{1}\right) \wedge d_{A}\left(a, b_{2}\right)\right) \vee\left(d_{A}\left(a, b_{1}\right) \wedge d\left(\left\{x^{\prime}\right\},\left\{y_{2}^{\prime}\right\}\right)\right) \\
& \vee\left(d_{A}\left(a, b_{2}\right) \wedge d\left(\left\{x^{\prime}\right\},\left\{y_{2}^{\prime}\right\}\right)\right) \vee d\left(\left\{x^{\prime}\right\},\left\{y_{1}^{\prime}, y_{2}^{\prime}\right\}\right)
\end{aligned}
$$

This result depends on the fact that $([0,1], \leq)$ is a distributive lattice.

Further Results

We can also handle

- Preorders
- Behavioural metrics
- Decorated trace metrics (completed traces, readiness, failure, etc.)
on labelled transition systems respectively metric transition systems.

Coalgebra \& Fibrations

Future work: coalgebraic generalization in a fibrational setting.

Fibrations

- sets of (real-valued) predicates on X
- equivalences, preorders, (directed) metrics on X

Galois connection \sim fibred adjunction

Conclusion

Related Work

- Fahrenberg, Legay, Thrane: Characterization of the metric linear-time/branching-time spectrum via games. Does not treat logics and fixpoint equations for trace metrics are different.
- Klin (e.g. in Klin's PhD thesis): different handling of the closure, does not treat behavioural metrics.
- Dual adjunction: functor on the "logic universe" characterizes the syntax of the logics rather than the semantics. Fibrational setup deviates from [Kupke, Rot].
- Approximating family [Komorida, Katsumata, Kupke, Rot, Hasuo]: related to our notion of compatibility.

Conclusion

Link to the paper
https://arxiv.org/abs/2207.05407

