
Temporal Team Semantics Revisited
Our LICS 2022 paper

Jens Oliver Gutsfeld1 Arne Meier2 Christoph Ohrem1 Jonni Virtema3

1 Universität Münster, Germany
2 Leibniz Universität Hannover, Germany
3 University of Sheffield, United Kingdom

21.09.2022 — IFIP Meeting

2/17

Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.

2/17

Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.

3/17

Team semantics for temporal logics

I A trace over AP is an infinite sequence from (2AP)ω.

I Trace can be seen to model an execution of a system over time.
I Important logics for trace properties are, e.g., LTL, CTL, µ-calculus.

I The system will terminate eventually.
I Every request is eventually granted.
I The system will terminate in bounded time.

I A trace property is a property of traces (the set of satisfying traces) vs.
a hyperproperty is a property of sets of traces (analogous to a set of teams).

I Logics for hyperproperties: HyperLTL, HyperCTL, TeamLTL, etc.
I Termination in bounded time is in TeamLTL, but not in HyperLTL.

3/17

Team semantics for temporal logics

I A trace over AP is an infinite sequence from (2AP)ω.

I Trace can be seen to model an execution of a system over time.
I Important logics for trace properties are, e.g., LTL, CTL, µ-calculus.

I The system will terminate eventually.
I Every request is eventually granted.
I The system will terminate in bounded time.

I A trace property is a property of traces (the set of satisfying traces) vs.
a hyperproperty is a property of sets of traces (analogous to a set of teams).

I Logics for hyperproperties: HyperLTL, HyperCTL, TeamLTL, etc.
I Termination in bounded time is in TeamLTL, but not in HyperLTL.

4/17

LTL, HyperLTL, and TeamLTL

I In LTL the satisfying object is a trace.

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | ϕUϕ

I In HyperLTL the satisfying object is a set of traces and a trace assignment.

ϕ ::= ∃πϕ | ∀πϕ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

I In TeamLTL the satisfying object is a set of traces. We use team semantics.

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | Xϕ | ϕU | ϕWϕ

+ atomic statements of dependence (dependence and inclusion atoms etc.)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

5/17

Team Semantics Atoms

I An atomic formula dep(ϕ1, . . . , ϕn, ψ) expresses that the value of the formulae ϕi

functionally determines the value of ψ

I An atomic formula ϕ1, . . . , ϕn ⊆ ψ1 . . . ψn states that every truth value
combination of the formulae ϕi must also occur as a truth value combination of
the formulae ψi

6/17

Examples: HyperLTL vs. synchronous TeamLTL

I There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but in HyperQPTL (with quantification over atomic
propositions).

∃p ∀π Fp ∧ G(p → G¬aπ)

Expressible in synchronous TeamLTL: FG¬a

I Depending on an unknown input, execution traces either agree on a or on b.
Expressible in HyperLTL with three trace quantifiers:

∃π1 ∃π2 ∀π G(aπ1 ↔ aπ) ∨ G(bπ2 ↔ bπ).

Expressible in synchronous TeamLTL: G(a 6 ¬a) ∨ G(b 6 ¬b).

6/17

Examples: HyperLTL vs. synchronous TeamLTL

I There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but in HyperQPTL (with quantification over atomic
propositions).

∃p ∀π Fp ∧ G(p → G¬aπ)

Expressible in synchronous TeamLTL: FG¬a
I Depending on an unknown input, execution traces either agree on a or on b.

Expressible in HyperLTL with three trace quantifiers:

∃π1 ∃π2 ∀π G(aπ1 ↔ aπ) ∨ G(bπ2 ↔ bπ).

Expressible in synchronous TeamLTL: G(a 6 ¬a) ∨ G(b 6 ¬b).

7/17

Kripke structures and traces

A rooted Kripke structure is 4-tuple (W ,R,V , r), where

I W is a (finite) set of states of the structure.

I the element r ∈W is the root of the structure.

I R is a right-total binary relation on W (i.e, ∀x ∈W ∃y ∈W s.t. xRy).

I V : W → 2AP is an evaluation function.

A trace t over K is an infinite sequence s.t t[0] = r and t[i]Rt[i + 1], for i ∈ N.
(t[i] is the ith element of the sequence t.)

8/17

Time evaluation functions

Definition
Given a (possibly infinite) set of traces T over some common Kripke structure, a time
evaluation function (tef for short) for T is a function

τ : N× T → N

that given a trace t ∈ T and a value of a the global clock i ∈ N outputs the value
τ(i , t) of the local clock of trace t at global time i .

If τ is a tef and k ∈ N a natural number, then τ [k ,∞] is the k-shifted tef defined by
putting τ [k,∞](i , t) := τ(i + k, t), for everty t ∈ T and i ∈ N.

9/17

Temporal teams

Definition
A temporal team is a tuple (T , τ), where T is a set of traces over some common
Kripke structure and τ is a time evaluation function for T .

10/17

Temporal Semantics of TeamLTL

Definition
Let (T , τ) be a temporal team over a Kripke structure (W ,R,V , r).

(T , τ) |= p iff ∀t ∈ T : p ∈ t|[τ(0, t)]) (T , τ) |= ¬p iff ∀t ∈ T : p /∈ t|[τ(0, t)]

(T , τ) |= φ ∧ ψ iff (T , τ) |= φ and (T , τ) |= ψ (T , i) |= Xϕ iff (T , τ [1,∞]) |= ϕ

(T , τ) |= φ ∨ ψ iff (T1, τ) |= φ and (T2, τ) |= ψ, for some T1,T2 s.t. T1 ∪ T2 = T

(T , τ) |= φUψ iff ∃k ∈ N s.t. (T , τ [k ,∞]) |= ψ and ∀m : 0 ≤ m < k ⇒ (T , τ [m,∞]) |= φ

(T , τ) |= φWψ iff ∀k ∈ N : (T , τ [k ,∞]) |= φ or ∃m s.t. m ≤ k and (T , τ [m,∞]) |= ψ

Note: If τ is the synchronous time evaluation function (i.e., ∀t∀i : τ(t, i) = i), then
the above is exactly the semantics for synchronous TeamLTL as defined in [KMVZ18].

11/17

Properties of tefs

* marks optional properties

Strict Monotonicity: ∀i : τ(i) < τ(i + 1) (wrt. canonical order of tuples)

Stepwise: ∀i ∀t : τ(i + 1, t) ∈ {τ(i , t), τ(i , t) + 1}.
Whenever a local clock ticks it ticks exactly one step.
Important to differentiate neXt operator from Future.

*Fairness: ∀i ∀t∃j : τ(j , t) ≥ i .

*Non-Parallelism: ∀i : i =
∑

t τ(i , t)

*Synchronousity: τ(i , t) = τ(i , t ′) for all i , t, t ′.

12/17

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamLTL (over AP) is
generated by the following grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕWϕ

where p ∈ AP.
The logical constants >,⊥ and connectives →,↔ are defined as usual (e.g.,
⊥ := p ∧ ¬p), and Fφ := >Uφ and Gφ := φW⊥.

12/17

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamCTL* (over AP) is
generated by the following grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕWϕ | ∃φ | ∀φ

where p ∈ AP and ∃,∀ are tef quantifiers.
The logical constants >,⊥ and connectives →,↔ are defined as usual (e.g.,
⊥ := p ∧ ¬p), and Fφ := >Uφ and Gφ := φW⊥.

12/17

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamCTL (over AP) is
generated by the following grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃Xϕ | ∃ϕUϕ | ∃ϕWϕ | ∀Xϕ | ∀ϕUϕ | ∀ϕWϕ

where p ∈ AP.
The logical constants >,⊥ and connectives →,↔ are defined as usual (e.g.,
⊥ := p ∧ ¬p), and Fφ := >Uφ and Gφ := φW⊥.

13/17

TeamCTL(6) is highly undecidable

Theorem
Model checking for TeamCTL(6) is Σ1

1-hard.

Proof Idea: reduce existence of b-recurring computation of given 2-counter machine M
and instruction label b to model checking problem of TeamCTL(6).

14/17

Deciding the Logic Using Alternating Asynchronous Büchi Automata
(AABA)

I AABA are like standard ABA, but operate over multiple input words which can be
read asynchronously

I In detail: AABA read tuples ω-words over an alphabet Σ, each single step
advances only one of these words and the automaton can use disjunctive (∨) and
conjunctive (∧) alternation, with a Büchi acceptance condition

I Restricted sets of tefs are used to consider restricted sets of runs of AABA since
all problems of interest are highly undecidable

15/17

Deciding the Logic Using Alternating Asynchronous Büchi Automata
(AABA)

I The emptiness problem of AABA is decidable for some sets of tefs, e.g
k-synchronous and k-context-bounded tefs

I For k-synchronous tefs, the problem is EXPSPACE-complete

I For k-context-bounded tefs, it is (k − 2)-EXPSPACE-complete

I Path checking and fixed size satisfiability of our logic can be reduced to the
emptiness problem of AABA

16/17

Deciding the Logic Using Alternating Asynchronous Büchi Automata
(AABA)

I Path checking is to decide whether a formula ϕ holds for a finite multiset T of
ultimately periodic traces

I The finite satisfiability problem is to decide whether there is a multiset T of size n
such that ϕ holds for an input formula ϕ and natural number n

I The translation of formulae to AABA is based on the classical Fischer-Ladner
construction for LTL

I Asynchronicity is handled using alternation

17/17

Summary

I General framework for temporal team semantics

I We can combine asynchronous and synchronous tefs

I We can embed synchronous TeamLTL

I Highly undecidable model-checking problem

I For certain sets of tefs, the path checking and fixed satisfiability problems become
decidable by reduction to AABA

Current and future directions

I Identification of decidable fragments and variants

I Consider tefs also as inputs given in some finite way

I Lift decision algorithms for our logics to new models (Pushdown, VASS, etc.)

Thank you!

17/17

Summary

I General framework for temporal team semantics

I We can combine asynchronous and synchronous tefs

I We can embed synchronous TeamLTL

I Highly undecidable model-checking problem

I For certain sets of tefs, the path checking and fixed satisfiability problems become
decidable by reduction to AABA

Current and future directions

I Identification of decidable fragments and variants

I Consider tefs also as inputs given in some finite way

I Lift decision algorithms for our logics to new models (Pushdown, VASS, etc.)

Thank you!

17/17

Summary

I General framework for temporal team semantics

I We can combine asynchronous and synchronous tefs

I We can embed synchronous TeamLTL

I Highly undecidable model-checking problem

I For certain sets of tefs, the path checking and fixed satisfiability problems become
decidable by reduction to AABA

Current and future directions

I Identification of decidable fragments and variants

I Consider tefs also as inputs given in some finite way

I Lift decision algorithms for our logics to new models (Pushdown, VASS, etc.)

Thank you!

