
A Theory of Substitutions for Separation Logic

Frank de Boer

Trigger

Assignment axiom in Hoare logic:

{p[x := e]} x := e {p}

Reynolds:
Expressions do not contain notations, ..., that refer to the
heap. It follows that none of the new heap manipulating
instructions are instances of the simple assignment instruc-
tion. In fact, they will not obey Hoare’s inference rule for
assignment.

Contribution

A theory of substitutions for separation logic which

▶ describes the effect of the basic heap manipulating
instructions compositionally in terms of the logical structure
of the given pre/postcondition,

▶ provides a direct account of aliasing in terms of basic
equational predicate logic, and

▶ does not generate additional complexity measured by the
maximal depth of nested separating conjunction/implication
connectives, e.g., as in the backwards mutation axiom

{(∃y(x 7→ y)) ∗ ((x 7→ e) −∗ p)} [x] := e {p}

The Basic Instructions

Basic assignment ⟨x := e, h, s⟩ ⇒ (h, s[x := s(e)]),
Look-up ⟨x := [e], h, s⟩ ⇒ (h, s[x := h(s(e))]) if s(e) ∈ dom(h),

⟨x := [e], h, s⟩ ⇒ fail if s(e) ̸∈ dom(h),
Mutation ⟨[x] := e, h, s⟩ ⇒ (h[s(x) := s(e)], s) if s(x) ∈ dom(h),

⟨[x] := e, h, s⟩ ⇒ fail if s(x) ̸∈ dom(h),
Allocation ⟨x := new(e), h, s⟩ ⇒ (h[n := s(e)], s[x := n]) if
n ̸∈ dom(h).
Dispose ⟨[x] := ⊥, h, s⟩ ⇒ (h[s(x) := ⊥], s) if s(x) ∈ dom(h),

⟨[x] := ⊥, h, s⟩ ⇒ fail if s(x) ̸∈ dom(h)

Separation Logic

h, s |= b iff s(b) = true,
h, s |= emp iff dom(h) = ∅,
h, s |= (e 7→ e ′) iff dom(h) = {s(e)} and h(s(e)) = s(e ′),
h, s |= (e ↪→ e ′) iff s(e) ∈ dom(h) and h(s(e)) = s(e ′),
h, s |= (p ∧ q) iff h, s |= p and h, s |= q,
h, s |= (p ∨ q) iff h, s |= p or h, s |= q,
h, s |= (p → q) iff h, s |= p implies h, s |= q,
h, s |= ∃xp iff h, s[x := n] |= p for some n,
h, s |= ∀xp iff h, s[x := n] |= p for all n,
h, s |= (p ∗ q) iff h1, s |= p and h2, s |= q for some partition
h = h1 ⊎ h2,
h, s |= (p −∗ q) iff for all h′ disjoint from h: h′, s |= p implies
h ⊎ h′, s |= q.

Weakest Precondition Calculus

Basic assignment {p[x := e]} x := e {p}
Look-up {∃y((e ↪→ y) ∧ p[x := y])} x := [e] {p}
where y is fresh
Mutation {(x ↪→ −) ∧ p[⟨x⟩ := e]} [x] := e {p}
Allocation {∀x((x ̸↪→ −) → p[⟨x⟩ := e])} x := new(e) {p}
Dispose {(x ↪→ −) ∧ p[⟨x⟩ := ⊥]} [x] := ⊥ {p}

VS (“OLD SCHOOL”):

Mutation {(x 7→ −) ∗ ((x 7→ e) −∗ p)} [x] := e {p}
Allocation {∀x((x 7→ e) −∗ p)} x := new(e) {p}
Dispose {(x ↪→ −) ∗ p} [x] := ⊥ {p}

Substitution Heap Update

▶ b[⟨x⟩ := e] = b,

▶ (e ′ ↪→ e ′′)[⟨x⟩ := e] = (x = e ′ ∧ e ′′ = e)∨ (x ̸= e ′ ∧ e ′ ↪→ e ′′),

▶ (p ∧ q)[⟨x⟩ := e] = p[⟨x⟩ := e]∧ q[⟨x⟩ := e], and similar for ∨
and →,

▶ (∃yp)[⟨x⟩ := e] = ∃y(p[⟨x⟩ := e]) and similar for ∀,
▶ (p ∗ q)[⟨x⟩ := e] = (p[⟨x⟩ := e] ∗ q′) ∨ (p′ ∗ q[⟨x⟩ := e])

where p′ = p ∧ (x ̸↪→ −) and similarly q′ = q ∧ (x ̸↪→ −),

▶ (p −∗ q)[⟨x⟩ := e] = p′ −∗ q[⟨x⟩ := e]
where as above p′ = p ∧ (x ̸↪→ −).

Lemma (heap update substitution lemma)

h, s |= p[⟨x⟩ := e] iff h[s(x) := s(e)], s |= p.

Example

{(x ↪→ −) ∧ ((y = x ∧ 1 = 0) ∨ (y ̸= x ∧ y ↪→ 1))} [x] := 0 {y ↪→ 1}

Compare this with the standard backwards rule:

{x 7→ − ∗ (x 7→ 0 −∗ y ↪→ 1)} [x] := 0 {y ↪→ 1}

Substitution Heap Clear

▶ b[⟨x⟩ := ⊥] = b

▶ emp[⟨x⟩ := ⊥] = emp ∨ x 7→ −
▶ (e 7→ e ′)[⟨x⟩ := ⊥] =

e ↪→ e ′ ∧ x ̸= e ∧ ∀y((y ↪→ −) → (y = e ∨ y = x))

▶ (e ↪→ e ′)[⟨x⟩ := ⊥] = x ̸= e ∧ e ↪→ e ′

▶ (p ∧ q)[⟨x⟩ := ⊥] = p[⟨x⟩ := ⊥] ∧ q[⟨x⟩ := ⊥], and similar for
∨ and →,

▶ (∃yp)[⟨x⟩ := ⊥] = ∃y(p[⟨x⟩ := ⊥])

▶ (p ∗ q)[⟨x⟩ := ⊥] = (p[⟨x⟩ := ⊥]) ∗ (q[⟨x⟩ := ⊥])

▶ (p −∗ q)[⟨x⟩ := ⊥] =
((p∧x ̸↪→ −) −∗ q[⟨x⟩ := ⊥])∧∀y(p[⟨x⟩ := y] −∗ q[⟨x⟩ := y])
where y is a fresh variable.

Lemma (heap clear substitution lemma)

h, s |= p[⟨x⟩ := ⊥] iff h[s(x) := ⊥], s |= p.

Soundness and Completeness WP calculus

Theorem
For any basic instruction S , we have
|= {p} S {q} if and only if {p} S {q} is derivable from the above
axioms and (a single application of) the rule of consequence.

Strongest Postcondition Calculus

Basic assignment {p} x := e {∃y(p[x := y] ∧ (e[x := y] = x))}
Look-up
{p ∧ e ↪→ −} x := [e] {∃y(p[x := y] ∧ (x ↪→ e[x := y]))}
Mutation {p ∧ x ↪→ −} [x] := e {∃y(p[⟨x⟩ := y]) ∧ x ↪→ e}
Allocation
{p} x := new(e) {(∃y(p[x := y]))[⟨x⟩ := ⊥] ∧ x ↪→ e}

Dispose {p ∧ x ↪→ −} [x] := ⊥ {∃y(p[⟨x⟩ := y]) ∧ x ̸↪→ −}

Conclusion

Substitutions describe the effect of the instructions
in terms of the logical structure of the given
pre/postcondition,

whereas
in the standard approach heap operations are used to de-
scribe the effect of the instructions, abstracting from the
logical structure of the given pre/postcondition.

And What About ...

The Frame Rule
{p} S {q}

{p ∗ r} S {q ∗ r}

▶ Not needed for completeness while programs.

▶ Completeness recursive procedures.
See Completeness for recursive procedures in separation logic
by Mahmudul Faisal Al Ameen and Makoto Tatsuta, TCS,
2016: Also does not use the frame rule!

▶ Modular completeness.
Frame rule applied in thesis Local Reasoning for Stateful
Programs by Hongseok Yang, 2001.

