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Fault tolerant distributed computing

cells large computer networks

MICrOProcessors social interactions

Distributed computing:

understand principles and conceptual tools for design of
distributed systems.

Approach:

Solving a problem in a given model, or showing
Impossibility, establishing lower bounds.



Fault tolerant distributed computing

cells large computer networks

MICrOProcessors social interactions

Distributed computing:

understand principles and conceptual tools for design of
distributed systems.

Models:

» shared memory vs. message passing

» snapshot sheared memory vs. read/write shared memory
* synchronous or asynchronous message passing



Fault tolerant distributed computing

cells large computer networks

MICrOProcessors social interactions

Distributed computing:

understand principles and conceptual tools for design of
distributed systems.

Results:

* Impossibility of consensus in the asynchronous shared-
memory model [Loui Abu-Amara '87]

* Praxos [Lamport '98]



Fault tolerant distributed computing

cells large computer networks

MICrOProcessors social interactions

Distributed computing:

understand principles and conceptual tools for design of
distributed systems.

Challenge:

(Too) big variety of models [Moses, Rajsbaum, 2002]



Fault tolerant distributed computing

cells large computer networks

MICrOProcessors social interactions

Degrees of synchrony

Notion of a faulty component

Consensus problem has received the greatest
amount of attention in this field



Consensus problem

At the beginning every process gets one value

The algorithm should ensure:

e [ermination: every process decides on a value
e Agreement: no two processes decide on different values
e Stability: once a process decides, it cannot change his decision

e Non-triviality: Decided value can only be an initial value of one of the
Processes



What can verification bring to
fault tolerant distributed computing

Understanding under which conditions an algorithm is
correct.

Insights on limitations of a given model.

Why verification is difficult

Unboundedness in many dimensions:

e Numler of processes
e Asynchrony

e Data values

e |dentifiers

¢ [ime-stamps



Heard-off model

Introduced by Bernadette Charron-Bost - André Schiper in 2009
A round based model for non synchronous computing.
Unified treatment of different types of faults through transmission faults.

A model is relatively simple and concise:
a good candidate to develop verification methods

e [Charron-Bost, Stefan Merz,..] Efficient encoding the model in Isabelle, and TLA

e [Dragoi, Henzinger, Zufferey,..] A semi-automatic proof method, a domain-specific
language based on HO-model.

¢ [Ognjen Maric, Christoph Sprenger, David Basin, Cut-off Bounds for Consensus
Algorithms], see later

¢ [R. Bloem, S. Jacobs, A. Khalimoy, |. Konnov, S. Rubin, H. Veith, and J. Widder.
Decidability of Parameterized Verification], a book, 2015
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< HO;i is a multiset of values

mp = vy | |inp = wq| | inp = w1 mp = 'U”I mp = wy| linp = wy,
dec = wy dec = w,,

process can also definitely '
| decide on some value by
setting dec

\Value of inp either stays
ithe same or changes to |
isome received value i_




Program:
send(inp);

f |[HO|>2/3 and (all=) then dec:="any received value”
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Ji0>

mp = Unl

mp = w,

f [HO[>2/3 then inp:="minimal valuge”

Does this program solve the consensus problem?

mp = wy,
dec = w,
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mp = vy | |inp = wq| | tnp = w1 mp = Unl mp = wy| linp = w,

dec = w1 dec = Wy,

Program:
send(inp);
f |[HO|>2/3 and (all=) then dec:="any received value”
f [HO[>2/3 then inp:="minimal valuge”

Communication predicate:

exists round (f-and 62/3) and later exists round 623

6= : says HOp = HOq for all processes p,q

02/3 . says |HOp|>2/3 for all p



mp = vq inp = vy
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mp = vy | |inp = wq| | tnp = w1 mp = Unl mp = wy| linp = w,

dec = w1 dec = Wy,

Program:
send(inp);
f |[HO|>2/3 and (all=) then dec:="any received value”
if [HO|>2/3 then inp:=“smallest most frequent value”

Communication predicate:

At some round (6= and 62,3) and at a later round 02/3

Q: What if we change to “smallest most frequent value”?



mp = vq inp = vy
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o Ji0>

mp = vy | |inp = wq| | tnp = w1 mp = Unl mp = w,y,
dec = wq

Program:
send(inp);
f |[HO|>2/3 and (all=) then dec:="any received value”
if [HO|>2/3 then inp:=“smallest most frequent value”

Communication predicate:

At some round (6= and 62,3) and at a later round 02/3

Q: What if we change the communication predicate?

mp = wy,
dec = w,




Phase: a sequence of rounds

R1
- ® Only inp and dec variables survive between phases

. ® dec can be set only once, and it is not sent
Ri

Every rule is a send followed by a sequence of conditional

assignments
send(x);

If (some property of HO) then inp:=v

HO is a multiset of vﬁ' '\

the property talks about frequencies One of the received values
of values



Algorithm: P1;P; P2; Pe

mp = v

Phase:

NP = Uy

~

mp = v inp = wy| | inp = wy
dec = wy

mp = vﬂl

mp = wy,

Communication predicates

0o (0273 NO=) 65 b2/5 6

6- :says

Oo/3: Says

HOp|>2/3 for all p

HOp, = HOq for all processes p,g

mp = wy,
dec = w,




What do we want

1. Given an algorithm over a fixed set of values,
decide if it solves consensus.

¢ \Vhat tests are allowed?
¢ \\V\hat communication predicates are allowed?

2. Do we have cut-off principle: is it enough to consider
some bounded number of processes?

3. Do we have 0/1 principle: is it enough to consider 2
values?



1. Given an algorithm over a fixed set of values, is it decidable to
establish if the algorithm solves consensus”?

2. Do we have cut-off principle: is it enough to consider some
bounded number of processes?

3. Do we have 0/1 principle: is it enough to consider 2 values?

Results [Ognjen Maric, Christoph Sprenger, David Basin, CAV’17]:

* Properties 2) and 3) hold under some conditions.
e Property 3) does not always hold

Here:

e [-or 2 values the problem is decidable in a quite a general case.
e -or many values, and quite general tests, the problem is undecidable.
e Some cases when the problem is decidable.
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Some observations

mp mp = v,

® \What can be written depends only on T~
frequencies of values

® Processes cannot test their state
® Only inp and dec variables survive between phases :

mp =v1| |inp = w1| | inp = w1 inp = v linp = w,| |inp = w,

® dec can be set only once, and it is not sent dec = wy dec = wy,

Mixing property

Let write(C, P) be the set of sets of values that can be written after phase P
started in C. Ex {{a,b},{a, L}}

Take S € write(C, P).
If L &5 then C — (v,

... v for vl € 8S.
If 1 €S then C' — (vy,...

/ . ! __ _ /
') where either v, = v; or v; € S.

)

U
, U

S determines possible next configurations



Mixing property

Let write(C, P) be the set of sets of values that can be written after phase P
started in C. Ex {{a,b},{a, L}}

Take S € write(C, P).

If _

. & S then C' — (v],

If |

L € S then C — (vy,...,

') for vl € S.
) where either v; = v; or v; € S.

, U
/
Un

S determines possible next configurations

{a,b,c}

Any combination of a,b,c
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Frequencies

A configuration (vq,...,v,) determines a frequency f: D — |0, 1]

An algorithm determines a transition system:

(i, f) = ((i+1) mod k, f)

{a,b,c} > {a,b,c,1}

Q: can we have a finite bisimulation quotient of this TS?



Is there a finite bisimulation quotient?

A configuration (v, ...,v,) determines a frequency f : D — [0, 1]

Fix e € N. Let r ~, ’ when
relife,(i+1)/e]liff v €li/e, (1 +1)/e], and r =i/d iff r' =i/d.

0 1/e 1
— [o—o] |

For two frequencies we put f ~. [’ if f(d) ~. f(d') for all d € D.

We put f~. flifforall SCD, Y , ¢ f(d) ~e ) 4eq f'(d)

Fact: For D of size 3, the relations ~, and ~, are the same and are bisimula-
tions.

For D of bigger sizes, both relations are not bisimulations



Tame algorithms

A configuration C defines a frequency fo : D — [0, 1].

Tame algorithm: For every phase P and every S C DU{ L} we have an exis-
tentially quantified set of linear constraints L(P,.S) s.t. for every configuration

C"
S € write(C, P) iff fo E L(P,S)
Example
If (HO > 2/3) then inp:=smor S=1{b, 1}

dxl al,xl. o <z ANz <z Nz <y
Ty > 2 Ay > xl A\ xy > xy
v 4z, +a+ o, >2/3

Thm: Every tame HO algorithm over 2 values has a cut-off.
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2-counter machine

o

—

Reaches the final state Iii

Thm: It is not decidable if a given HO algorithm solves consensus.

HO-algorithm

Does not solve the
consensus problem




Initial

- conf
Initial

phase

Fat

Same conf
if final

round

P
N

~

No consensus iff there exists a computation
from initial to final.



Fix a 1-counter machine

Values (¢,b), (g,;b,>0,dec), (q,b,dec),
rb s for b=0,1 and L

Invariant

1/2 1/4 1/8 1/8

A
\
A
‘JV

1 Control r0/s0 rl/sl

counter = k if |[r®| = 1/24F

Computation step

1o 3/16 1/16  1/16 1/16 1/8
< > < Pt— > — P> —P> ———————
1 (9p0) Ctr | 70 | sO | 1l | sl
$ (90,=0) -> (q1,inc)
1/2 3/16 1/16 1/8 1/32 3/32
« | <+—r < pg4—pet———>

1 @4,1) Ctr | »0 | sO || I




¢ |nvariant and correct simulation, or
e Not invariant and either consensus in 2 rounds

or only L can increase Same conf
if final
Fat
Initial rouna
. conf
Initial ] -
phase I
f—re— et — e — — - — - > >
—>

P
N

e |f (Ofin,0)<2/16 then consensus

Communication predicate (0172 A 0=)(01/2 A 0=)07 /5(015/16)07 /2



Same conf

Eat if final

Initial round

i

. conf
Initial

= Ty
LN

Communication predicate (0172 N O=)(01/2 N 0=)07 /5(015/16)07 /2

Thm: It is not decidable if a given HO algorithm solves consensus.



Same conf

Eat if final

Initial round

i

. conf
Initial

= Ty
LN

Communication predicate (0172 N O=)(01/2 N 0=)07 /5(015/16)07 /2

Thm: It is not decidable if a given HO algorithm solves consensus.

Two questionable points:
We need 0, /5 saying that |HO| > 1/2 (non-strict inequality)

We need tests x, = 2x
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Decidability via short runs

An algorithm has short run property if there is a bound b s.t.:

: <b
for every run C' —™* C” there is a run C — ("’

(both runs satisfy the communication predicate)

Suppose that the algorithm consists of one phase: it is P*

Sporadic communication predicate: — Jri<--<ry /\ 0i(ri) N Vosry ... 0(7)

Full transition: C; — Cy if val(Cy) C write(Ch).

Shortening rule 1: 2Oy —* 03 >0y to C] — C4

Obs: If C; — (5 then val(Cy) D val(Cs).

Shortening rule 2: C; — Cy — (C3 to C7 — O3

Stability property: if C; — C5 then write(C}) 2 write(Cq).



An algorithm has short run property if there is a bound b s.t.:

: <b
for every run C' —™ C’ there is a run C — "

(both runs satisfy the communication predicate)

Sporadic communication predicate:  Jr;<--<ry /\ 0i(ri) ANVpstry,...r,0(7)

Shortening rule 1: 2Oy —* 03 0y to C] — Oy

Shortening rule 2: C; — Cy — (C3 to C7 — O3

Stability property: if C; — C5 then write(Cy) 2 write(Co).

These rules allow to shorten any run to a run of length < 4k

For tame algorithms existence of a short run can be encoded as
an existentially quantified linear program.

Thm: For tame algorithms with sporadic communication predicates
and stability property it is decidable if an algorithm solves consensus.



Decidability for a syntactic fragment
If (HO=S and |HO|> thr,)) then inp,dec:=min(HO),smor(HO)

Special case:
Only two thresholds, one for singletons and one for other sets.

One can show that the only possible forms of instructions are:

For singletons:

If (HO={a} and |HO|>thr, ) then inp:=smor(HO); dec:=smor(HO)
For other sets:

If (HO=S and |HO|>thr, ) then inp:=smor(HO);

Obs 1: thr, > 1/2

Obs 2: thr,, > 2(1 — thr,)



Decidability for a syntactic fragment

For singletons:

If (HO={a} and |HO|>thr, ) then inp:=smor(HO); dec:=smor(HO)
For other sets:

If (HO=S and |HO|>thr, ) then inp:=smor(HO);

Obs 1: thr, > 1/2

Obs 2: thr,, > 2(1 — thr,)

There must be i<] with:



Decidability for a bigger syntactic fragment

Tame algorithm: For every phase P and every S C DU { L} we have an exis-
tentially quantified set of linear constraints L(P, S) s.t. for every configuration

C:
S € write(C, P) iff  foEL(P,S)

Relative linear constraints
if (HO =S A|HO| > thrg|II|) then

if L1(HQO) then inp = a;

if Li(HO) then inp = ag

Thm: Consensus is decidable for this fragment.
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