
Funcons for threads and
processes

Peter D. Mosses

Swansea University (emeritus)
TU Delft (visitor)

WG 2.2 meeting, September 2018
Brno, Czech Republic

CBS: Component-Based Semantics

Main goal:

Make formal semantics as popular as BNF !

Encourage language developers to use formal semantics:

‣ documentation of language features, design decisions

‣ generation of (prototype) implementations

 2

Component-based semantics

 3

programming
languages …

translation

funcons

stable reusable components

evolving

…

open-ended repository

Conjecture

 4

Using component-based semantics  
can significantly reduce the effort of

language specification

… leading to improved
programming languages

CBS beta-release
plancomps.github.io/CBS-beta

Funcons-beta currently under review

‣ those funcons will then be fixed (more can be added)

Languages-beta illustrates CBS and use of Funcons-beta

‣ simple languages: IMP, SIMPLE, SL

‣ sub-languages: MiniJava, OCaml Light

‣ language specifications may evolve

 5

https://plancomps.github.io/CBS-beta/

Concurrency concepts

Threads: shared state

‣ synchronisation (mutexes, condition variables, barriers),
scheduling, weak/strong atomicity, POSIX/OpenMP, …

Processes: separate state

‣ asynchrony, message-passing, channels, rendezvous,
MPI, …

‣ heavyweight (most OS) or lightweight (e.g., Erlang)

 6

Logical Methods in Computer Science
Vol. 6 (4:2) 2010, pp. 1–39
www.lmcs-online.org

Submitted Sep. 17, 2010
Published Oct. 20, 2010

A MODEL OF COOPERATIVE THREADS ∗

MARTÍN ABADI a AND GORDON D. PLOTKIN b

a Microsoft Research, Silicon Valley; University of California, Santa Cruz
e-mail address: abadi@microsoft.com

b Microsoft Research, Silicon Valley; LFCS, University of Edinburgh
e-mail address: gdp@inf.ed.ac.uk

Abstract. We develop a model of concurrent imperative programming with threads. We
focus on a small imperative language with cooperative threads which execute without inter-
ruption until they terminate or explicitly yield control. We define and study a trace-based
denotational semantics for this language; this semantics is fully abstract but mathemat-
ically elementary. We also give an equational theory for the computational effects that
underlie the language, including thread spawning. We then analyze threads in terms of
the free algebra monad for this theory.

1. Introduction

In the realm of sequential programming, semantics, whether operational or denota-
tional, provides a rich understanding of programming constructs and languages, and serves
a broad range of purposes. These include, for instance, the study of verification techniques
and the reconciliation of effects with functional programming via monads. With notorious
difficulties, these two styles of semantics have been explored for concurrent programming,
and, by now, a substantial body of work provides various semantic accounts of concurrency.
Typically, that work develops semantics for languages with parallel-composition constructs
and various communication mechanisms.

Surprisingly, however, that work provides only a limited understanding of threads. It
includes several operational semantics of languages with threads, sometimes with opera-
tional notions of equivalence, e.g., [BMT92, PR97, Jef97, JR05]; denotational semantics of
those languages seem to be much rarer, and to address message passing rather than shared-
memory concurrency, e.g., [FH99, Jef95]. Yet threads are in widespread use, often in the
context of elaborate shared-memory systems and languages for which a clear semantics
would be beneficial.

In this paper, we investigate a model of concurrent imperative programming with
threads. We focus on cooperative threads which execute, without interruption, until they
either terminate or else explicitly yield control. Non-cooperative threads, that is, threads

1998 ACM Subject Classification: D.1.3, F.3.2.
Key words and phrases: denotational semantics, monad, operational semantics, transaction.

∗ A conference version of this paper has appeared as [AP09].

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (4:2) 2010

c⃝ M. Abadi and G. D. Plotkin
CC⃝ Creative Commons

Syntax for threads [Abadi & Plotkin]

 8

A MODEL OF COOPERATIVE THREADS 3

b ∈ BExp = . . .
e ∈ NExp = . . .

C,D ∈ Com = skip

| x := e (x ∈ Vars)
| C;D
| if b then C else D
| while b do C
| async C
| yield

| block

Figure 1: Syntax.

• A construct for executing a command in an asynchronous thread. Informally, async C
forks off the execution of C. This execution is asynchronous, and will not happen if the
present thread keeps running without ever yielding control, or if the present thread blocks
without first yielding control.

• A construct for yielding control. Informally, yield indicates that any pending thread
may execute next, as may the current thread.

• A construct for blocking. Informally, block halts the execution of the entire program,
even if there are pending threads that could otherwise make progress.

We define the syntax of the language in Figure 1. We do not detail the constructs on
numerical and boolean expressions, which are as usual.

Figure 2 gives an illustrative example. It shows a piece of code that spawns the asyn-
chronous execution of x := 0, then executes x := 1 and yields, then resumes but blocks
unless the predicate x = 0 holds, then executes x := 2. The execution of x := 0 may hap-

async x := 0;
x := 1;
yield;
if x = 0 then skip else block;
x := 2

Figure 2: Example command.

pen once the yield statement is reached. With respect to safety properties, the conditional
blocking amounts to waiting for x = 0 to hold. More generally, AME’s blockUntil b can
be written if b then skip else block.

More elaborate uses of blocking are possible too, and supported by lower-level seman-
tics and actual transactional implementations [IB07, ABH08]. In those implementations,
blocking may cause a roll-back and a later retry at an appropriate time. We regard roll-back
as an interesting aspect of some possible implementations, but not as part of the high-level
semantics of our language, which is the subject of this work.

A MODEL OF COOPERATIVE THREADS 3

b ∈ BExp = . . .
e ∈ NExp = . . .

C,D ∈ Com = skip

| x := e (x ∈ Vars)
| C;D
| if b then C else D
| while b do C
| async C
| yield

| block

Figure 1: Syntax.

• A construct for executing a command in an asynchronous thread. Informally, async C
forks off the execution of C. This execution is asynchronous, and will not happen if the
present thread keeps running without ever yielding control, or if the present thread blocks
without first yielding control.

• A construct for yielding control. Informally, yield indicates that any pending thread
may execute next, as may the current thread.

• A construct for blocking. Informally, block halts the execution of the entire program,
even if there are pending threads that could otherwise make progress.

We define the syntax of the language in Figure 1. We do not detail the constructs on
numerical and boolean expressions, which are as usual.

Figure 2 gives an illustrative example. It shows a piece of code that spawns the asyn-
chronous execution of x := 0, then executes x := 1 and yields, then resumes but blocks
unless the predicate x = 0 holds, then executes x := 2. The execution of x := 0 may hap-

async x := 0;
x := 1;
yield;
if x = 0 then skip else block;
x := 2

Figure 2: Example command.

pen once the yield statement is reached. With respect to safety properties, the conditional
blocking amounts to waiting for x = 0 to hold. More generally, AME’s blockUntil b can
be written if b then skip else block.

More elaborate uses of blocking are possible too, and supported by lower-level seman-
tics and actual transactional implementations [IB07, ABH08]. In those implementations,
blocking may cause a roll-back and a later retry at an appropriate time. We regard roll-back
as an interesting aspect of some possible implementations, but not as part of the high-level
semantics of our language, which is the subject of this work.

Reduction semantics [Abadi & Plotkin]

 9

A MODEL OF COOPERATIVE THREADS 5

⟨σ, T, E [x := e]⟩ −→ ⟨σ[x %→ n], T, E [skip]⟩ (if σ(e) = n)

⟨σ, T, E [skip;C]⟩ −→ ⟨σ, T, E [C]⟩

⟨σ, T, E [if b then C else D]⟩ −→ ⟨σ, T, E [C]⟩ (if σ(b) = true)

⟨σ, T, E [if b then C else D]⟩ −→ ⟨σ, T, E [D]⟩ (if σ(b) = false)

⟨σ, T, E [while b do C]⟩ −→ ⟨σ, T, E [if b then (C; while b do C) else skip]⟩

⟨σ, T, E [async C]⟩ −→ ⟨σ, T.C, E [skip]⟩

⟨σ, T, E [yield]⟩ −→ ⟨σ, T.E [skip], skip⟩

⟨σ, T.C.T ′, skip⟩ −→ ⟨σ, T.T ′, C⟩

Figure 4: Transition rules of the abstract machine.

3.3. Steps. A transition Γ−→ Γ′ takes an execution from one state to the next. Figure 4
gives rules that specify the transition relation. According to these rules, when the active
command is skip, a command from the pool becomes the active command. It is then eval-
uated as such until it produces skip, yields, or blocks. No other computation is interleaved
with this evaluation. Each evaluation step produces a new state, determined by decompos-
ing the active command into an evaluation context and a subexpression that describes a
computation step (for instance, a yield or a conditional).

In all cases at most one rule applies. In two cases, no rule applies. The first is when
the active command is skip and the pool is empty; this situation corresponds to normal
termination. The second is when the active command is blocked, in the sense that it has
the form E [block]; this situation is an abnormal termination.

We write Γ−→c Γ′ when Γ−→Γ′ via the last rule, and call this a choice transition. We
write Γ−→a Γ′ when Γ−→ Γ′ via the other rules, and call this an active transition. Active
transitions are deterministic, i.e., if Γ−→a Γ′ and Γ−→a Γ′′ then Γ′ = Γ′′.

4. Denotational Semantics

Next we give a compositional denotational semantics for the same language. Here, the
meaning of a command is a prefix-closed set of traces, where each trace is roughly a sequence
of transitions, and each transition is a pair of stores.

The use of sequences of transitions goes back at least to Abrahamson’s work [Abr79]
and appears in various studies of parallel composition [AP93, HdeBR94, Bro96, Bro02].
However, the treatment of threads requires some new non-trivial choices. For instance,
transition sequences, as we define them, include markers to indicate not only normal termi-
nation but also the return of the main thread of control. Moreover, although these markers
are similar, they are attached to traces in different ways, one inside pairs of stores, the other
not. Such details are crucial for adequacy and full abstraction.

4 M. ABADI AND G. D. PLOTKIN

Γ ∈ State = Store× ComSeq× Com
σ ∈ Store = Vars → Value
n ∈ Value = N

T ∈ ComSeq = Com∗

Figure 3: State space.

Thus, our language is basically a fragment of the AME calculus [ABH08]. It omits
higher-order functions and references. It also omits “unprotected sections” for non-cooper-
ative code, particularly legacy code. Non-cooperative code can however be modeled as code
with pervasive calls to yield (at least with respect to the simple, strong memory models
that we use throughout this paper; cf. [GMP06]). See Section 7 for further discussion of
possible extensions to our language.

3. Operational Semantics

We give an operational semantics for our language. Despite some subtleties, this se-
mantics is not meant to be challenging. It is given in terms of small-step transitions between
states. Accordingly, we define states, evaluation contexts, and the transition relation.

3.1. States. As described in Figure 3, a state Γ = ⟨σ, T, C⟩ consists of the following com-
ponents:

• a store σ which is a mapping of the given finite set Vars of variables to a set Value of
values, which we take to be the set of natural numbers;

• a finite sequence of commands T which we call the thread pool ;
• a distinguished active command C.

We write σ[x &→ n] for the store that agrees with σ except at x, which is mapped to n. We
write σ(b) for the boolean denoted by b in σ, and σ(e) for the natural number denoted by
e in σ, similarly. We write T.T ′ for the concatenation of two thread pools T and T ′.

3.2. Evaluation Contexts. As usual, a context is an expression with a hole [], and an
evaluation context is a context of a particular kind. Given a context C and an expression
C, we write C[C] for the result of placing C in the hole in C. We use the evaluation contexts
defined by the grammar:

E = [] | E ;C

4 M. ABADI AND G. D. PLOTKIN

Γ ∈ State = Store× ComSeq× Com
σ ∈ Store = Vars → Value
n ∈ Value = N

T ∈ ComSeq = Com∗

Figure 3: State space.

Thus, our language is basically a fragment of the AME calculus [ABH08]. It omits
higher-order functions and references. It also omits “unprotected sections” for non-cooper-
ative code, particularly legacy code. Non-cooperative code can however be modeled as code
with pervasive calls to yield (at least with respect to the simple, strong memory models
that we use throughout this paper; cf. [GMP06]). See Section 7 for further discussion of
possible extensions to our language.

3. Operational Semantics

We give an operational semantics for our language. Despite some subtleties, this se-
mantics is not meant to be challenging. It is given in terms of small-step transitions between
states. Accordingly, we define states, evaluation contexts, and the transition relation.

3.1. States. As described in Figure 3, a state Γ = ⟨σ, T, C⟩ consists of the following com-
ponents:

• a store σ which is a mapping of the given finite set Vars of variables to a set Value of
values, which we take to be the set of natural numbers;

• a finite sequence of commands T which we call the thread pool ;
• a distinguished active command C.

We write σ[x &→ n] for the store that agrees with σ except at x, which is mapped to n. We
write σ(b) for the boolean denoted by b in σ, and σ(e) for the natural number denoted by
e in σ, similarly. We write T.T ′ for the concatenation of two thread pools T and T ′.

3.2. Evaluation Contexts. As usual, a context is an expression with a hole [], and an
evaluation context is a context of a particular kind. Given a context C and an expression
C, we write C[C] for the result of placing C in the hole in C. We use the evaluation contexts
defined by the grammar:

E = [] | E ;C

Reduction semantics [Abadi & Plotkin]
“Despite some subtleties, this semantics is not meant to be challenging.”

Implicit:

‣ initial state:

‣ stuck states:

- implications of “normal” and “abnormal” termination!

‣ no scheduling: arbitrary choice of thread on yield

 10

h �, T, E [block] ih �, (), skip i

h �, (), C i

2

Semantics of Transactional Memory
and Automatic Mutual Exclusion

MARTÍN ABADI
Microsoft Research, University of California, Santa Cruz, and Collège de France
and
ANDREW BIRRELL, TIM HARRIS, and MICHAEL ISARD
Microsoft Research

Software Transactional Memory (STM) is an attractive basis for the development of language
features for concurrent programming. However, the semantics of these features can be delicate
and problematic. In this article we explore the trade-offs semantic simplicity, the viability of
efficient implementation strategies, and the flexibility of language constructs. Specifically, we
develop semantics and type systems for the constructs of the Automatic Mutual Exclusion (AME)
programming model; our results apply also to other constructs, such as atomic blocks. With this
semantics as a point of reference, we study several implementation strategies. We model STM
systems that use in-place update, optimistic concurrency, lazy conflict detection, and rollback.
These strategies are correct only under nontrivial assumptions that we identify and analyze.
One important source of errors is that some efficient implementations create dangerous “zombie”
computations where a transaction keeps running after experiencing a conflict; the assumptions
confine the effects of these computations.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms: Languages, Theory

Additional Key Words and Phrases: Atomicity, correctness

ACM Reference Format:
Abadi, M., Birrell, A., Harris, T., and Isard, M. 2010. Semantics of transactional memory and
automatic mutual exclusion. ACM Trans. Program. Lang. Syst. 33, 1, Article 2 (January 2011),
50 pages. DOI = 10.1145/1889997.1889999 http://doi.acm.org/10.1145/1889997.1889999

A preliminary version of this article was presented at the 35th Annual ACM-SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’08).
Authors’ addresses: M. Abadi, Microsoft Research, Silicon Valley, University of California, Santa
Cruz: email: abadi@cs.ucsc.edu; A. Birrell, Microsoft Research, Silicon Valley; T. Harris, Microsoft
Research, Cambridge; M. Isard, Microsoft Research, Silicon Valley.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C⃝ 2011 ACM 0164-0925/2011/01-ART2 $10.00
DOI 10.1145/1889997.1889999 http://doi.acm.org/10.1145/1889997.1889999

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 1, Article 2, Pub. date: January 2011.

Syntax for IMP+threads in CBS

 12

Syntax	
C,	D	:	com	
		::=	'skip'	
				|	var	':='	nexp	
				|	com	';'	com	
				|	'if'	bexp	'then'	com	'else'	com	
				|	'while'	bexp	'do'	com	
				|	'async'	com	
				|	'yield'	
				|	'block'

B	:	bexp	
		::=	'true'	|	'false'	|	nexp	'='	nexp	

E	:	nexp	
		::=	nat	|	var

Semantics for IMP in CBS

 13

Semantics	
		exec[[_:com]]	:	=>null-type	
Rule	
		exec[['skip']]	=	null-value	
Rule	
		exec[[X	':='	E]]	=	assign(bound	\"X\",	eval[[E]])	
Rule	
		exec[[C	';'	D]]	=	sequential(exec[[C]],	exec[[D]])	
Rule	
		exec[['if'	B	'then'	C	'else'	D]]	=	
	 if-true-else(bval[[B]],	exec[[C]],	exec[[D]])	
Rule	
		exec[['while'	B	'do'	C]]	=	while-true(bval[[B]],	
exec[[C]])	

Fundamental constructs for threads

Aims

‣ abstract from POSIX (Pthreads) details

- efficiency, scheduling, real time, resource limits, …

‣ exhibit required behaviour

- forks, shared data, atomicity, synchronisation, …

‣ allow encoding of OpenMP constructs

 14

Fundamental constructs for threads

Means

‣ labels on steps (using Modular SOS)

- indicate yielding, waiting, …

‣ atomic synchronisation operations on variables

- locking mutexes, signalling conditions, barriers, …

‣ data-race-freedom implies sequential consistency

 15

Semantics for threads in CBS

 16

Rule	
		exec[['async'	C]]	=	
				effect(thread-fork(
						thread({cooperative|->true},	closure	exec[[C]])))	
Rule	
		exec[['yield']]	=	thread-yield	
Rule	
		exec[['block']]	=	fail	//	???

Semantics for threads in CBS

 17

Syntax	
		START:	start	::=	com	
Semantics	
		start[[_:start]]	:	=>null-type	
Rule	
		start[[C]]	=		
				initialise-binding		
				initialise-storing		
				initialise-threading		
				finalise-failing	
				scope(declare-vars,	
						thread-schedule(thread-fork(
								thread({cooperative|->true},	closure	exec[[C]]))))	

Funcon	
		declare-vars	:	=>environments	
			~>	bind("x",	allocate-variable(natural-numbers))	

Funcons for processes

Aims

‣ abstract from MPI details

- efficiency, scheduling, real time, resource limits, …

‣ exhibit required behaviour

- spawning, messaging, asynchrony, blocking, …

‣ allow encoding of channels, rendezvous, etc.

 18

Funcons for processes

Means

‣ Erlang-like process model (similar to Action Semantics)

- non-blocking message send

- received message buffer

- interleaving

 19

Component-based semantics

 20

programming
languages …

translation

funcons

stable reusable components

evolving

…

open-ended repository

Conjecture

 21

Using component-based semantics  
can significantly reduce the effort of

language specification

… leading to improved
programming languages

CBS beta-release
plancomps.github.io/CBS-beta

Funcons-beta currently under review

‣ those funcons will then be fixed (more can be added)

Languages-beta illustrates CBS and use of Funcons-beta

‣ simple languages: IMP, SIMPLE, SL

‣ sub-languages: MiniJava, OCaml Light

‣ language specifications may evolve

 22

https://plancomps.github.io/CBS-beta/

