Funcons for threads and
DroOCEeSsSses

Peter D. Mosses

Swansea University (emeritus)
TU Delft (visitor)

WG 2.2 meeting, September 2018
Brno, Czech Republic

CBS: Component-Based Semantics

Main goal:
Make formal semantics as popular as BNF !
Encourage language developers to use formal semantics:
» documentation of language features, design decisions

» generation of (prototype) implementations

Component-based semantics

evolving

programming

languages
translation ‘ ‘ ‘
stable reusable components
funcons QOOO0OO0O00O0OOO- -

open-ended repository

Conjecture

Using component-based semantics
can significantly reduce the etfort of
language specification

... leading to improved
programming languages

CBS beta-release

plancomps.qgithub.io/CBS-beta

Funcons-beta currently under review
» those funcons will then be fixed (more can be added)
Languages-beta illustrates CBS and use of Funcons-beta
» simple languages: IMF, SIMPLE, SL
» Ssub-languages: Minidava, OCaml Light

» language specifications may evolve

5

https://plancomps.github.io/CBS-beta/

Concurrency concepts

Threads: shared state

» synchronisation (mutexes, condition variables, barriers),
scheduling, weak/strong atomicity, POSIX/OpenMP, ...

Processes: separate state

» asynchrony, message-passing, channels, rendezvous,
MPI, ...

» heavyweight (most OS) or lightweight (e.g., Erlang)

6

Logical Methods in Computer Science
Vol. 6 (4:2) 2010, pp. 1-39 Submitted Sep. 17, 2010
www.Imcs-online.org Published Oct. 20, 2010

A MODEL OF COOPERATIVE THREADS"*

MARTIN ABADI® AND GORDON D. PLOTKIN®

“ Microsoft Research, Silicon Valley; University of California, Santa Cruz
e-mail address: abadi@microsoft.com

® Microsoft Research, Silicon Valley; LECS, University of Edinburgh
e-mail address: gdpQinf.ed.ac.uk

ABSTRACT. We develop a model of concurrent imperative programming with threads. We
focus on a small imperative language with cooperative threads which execute without inter-
ruption until they terminate or explicitly yield control. We define and study a trace-based
denotational semantics for this language; this semantics is fully abstract but mathemat-
ically elementary. We also give an equational theory for the computational effects that
underlie the language, including thread spawning. We then analyze threads in terms of
the free algebra monad for this theory.

Syntax for threads [Abadi & Plotkin]

b € BExp =
e € NExp = ...
C,.D € Com = skip
r=c¢ (x € Vars)
C:D

if b then C else D
while b do C

async C

yield

block

async x := 0;

xr = 1;

yield;

if x =0 then skip else block;
T = 2

Reduction semantics [Abadi & Plotkin]

I' e State = Store x ComSeq x Com

SR e = iec
T € ComSeq = Com”

(o, T, E|x :=¢]) — (olx — nl],T,E[skip|) (if o(e) =n)
(0,T,E|skip; C]) — (0, T,E[C])

(0, T,E]if b then C else D|) — (o0,T,E|C]) (if o(b) = true)
(0, T,E|if b then C else D|) — (o0,T,&|D]) (if o(b) = false)
(0,T,Elwhile b do C]) — (o, T,E[if b then (C;while b do (') else skip])
(0,T,Elasync C) — {0, T.C,E[skip])

(o, T, Elyield]) — (0,T.E|skip], skip)

(o, T.C. T, skip) — (o, T.T",C)

9

Reduction semantics [Abadi & Plotkin]

“Despite some subtleties, this semantics is not meant to be challenging.”

Impilicit:
» initial state: (o,(),C)
» stuck states: (o,(),skip) (0,T,Eblock])
- Implications of "normal” and "abnormal” termination!

» no scheduling: arbitrary choice of thread on yield

10

Semantics of Transactional Memory
and Automatic Mutual Exclusion

MARTIN ABADI
Microsoft Research, University of California, Santa Cruz, and College de France

and
ANDREW BIRRELL, TIM HARRIS, and MICHAEL ISARD
Microsoft Research

Software Transactional Memory (STM) is an attractive basis for the development of language
features for concurrent programming. However, the semantics of these features can be delicate
and problematic. In this article we explore the trade-offs semantic simplicity, the viability of
efficient implementation strategies, and the flexibility of language constructs. Specifically, we
develop semantics and type systems for the constructs of the Automatic Mutual Exclusion (AME)
programming model; our results apply also to other constructs, such as atomic blocks. With this
semantics as a point of reference, we study several implementation strategies. We model STM
systems that use in-place update, optimistic concurrency, lazy conflict detection, and rollback.
These strategies are correct only under nontrivial assumptions that we identify and analyze.
One important source of errors is that some efficient implementations create dangerous “zombie”
computations where a transaction keeps running after experiencing a conflict; the assumptions
confine the effects of these computations.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—~Parallel programming

General Terms: Languages, Theory
Additional Key Words and Phrases: Atomicity, correctness

ACM Reference Format:

Abadi, M., Birrell, A., Harris, T., and Isard, M. 2010. Semantics of transactional memory and
automatic mutual exclusion. ACM Trans. Program. Lang. Syst. 33, 1, Article 2 (January 2011),
50 pages. DOI = 10.1145/1889997.1889999 http://doi.acm.org/10.1145/1889997.1889999

Syntax for IMP+threads in CBS

C, D : com
::= 'skip'
var ':=" nexp
com ';" com
"if' bexp 'then' com 'else' com
‘'while' bexp 'do' com
‘async' com

'yield'
"block’
B : bexp
::= "true' | 'false' | nexp '=' nexp
E : nexp

::= nat | var

12

Semantics for IMP in CBS

Semantics

exec[[_:com]] : =>null-type
Rule

exec[['skip']] = null-value
Rule

exec[[X ':=" E]] = assign(bound \"X\", eval[[E]])
Rule

exec[[C ';' D]] = sequential(exec[[C]], exec[[D]])
Rule

exec[['"if"' B 'then' C 'else' D]|] =

if-true-else(bval[[B]], exec[[C]], exec[[D]])
Rule

exec[['while' B 'do' C]] = while-true(bval[[B]],
exec[[C]])

13

Fundamental constructs for threads

Aims
» apbstract from POSIX (Pthreads) details
» exhibit required behaviour
- forks, shared data, atomicity, synchronisation, ...

» allow encoding of OpenMP constructs

14

Fundamental constructs for threads

Means
» |labels on steps (using Modular SOS)
- Indicate yielding, waiting, ...
» atomic synchronisation operations on variables
- locking mutexes, signalling conditions, barriers, ...

» data-race-freedom implies seqguential consistency

15

Semantics for threads in CBS

Rule

exec[["async' C]] =

effect(thread-fork(
thread({cooperative|->true}, closure exec[[C]1])))

Rule

exec[['yield']] = thread-yield
Rule

exec[['block®']] = fail // ???

16

Semantics for threads in CBS

Syntax

START: start ::= com
Semantics

start[[_ :start]] : =>null-type
Rule

start[[C]] =

scope(declare-vars,
thread-schedule(thread-fork(
thread({cooperative|->true}, closure exec[[C]1]))))

Funcon
declare-vars : =>environments
~> bind("x", allocate-variable(natural-numbers))

17

Funcons for processes

Aims
» abstract from MPI details
» exhibit required behaviour
- spawning, messaging, asynchrony, blocking, ...

» allow encoding of channels, rendezvous, etc.

18

Funcons for processes

Means
» Erlang-like process model (similar to Action Semantics)
- non-blocking message send
- received message buffer

- Interleaving

19

Component-based semantics

evolving

programming

languages
translation ‘ ‘ ‘
stable reusable components
funcons QOOO0OO0O00O0OOO- -

open-ended repository

20

Conjecture

Using component-based semantics
can significantly reduce the etfort of
language specification

... leading to improved
programming languages

21

CBS beta-release

plancomps.qgithub.io/CBS-beta

Funcons-beta currently under review
» those funcons will then be fixed (more can be added)
Languages-beta illustrates CBS and use of Funcons-beta
» simple languages: IMF, SIMPLE, SL
» Ssub-languages: Minidava, OCaml Light

» language specifications may evolve

22

https://plancomps.github.io/CBS-beta/

