Regular Separability of WSTS

Roland Meyer

joint work with Wojciech Czerwiński, Sławomir Lasota, Sebastian Muskalla, K Narayan Kumar, and Prakash Saivasan

IFIP WG 2.2, September 2018, Brno

Given $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from class $\mathcal{F}.$ What is their relationship?

Given $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from class \mathcal{F} .

What is their relationship?

Case 1: $\mathcal{L} \cap \mathcal{K} \neq \emptyset$

 \hookrightarrow Study $\mathcal{L} \cap \mathcal{K}$.

Consider separability.

```
Separability of \mathcal{F} by \mathcal{S}
```

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from \mathcal{F}

Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ from \mathcal{S} such that

 $\mathcal{L} \subseteq \mathcal{R}$, $\mathcal{K} \cap \mathcal{R} = \emptyset$?

Consider separability.

Separability of \mathcal{F} by \mathcal{S}

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from \mathcal{F}

Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ from \mathcal{S} such that

 $\mathcal{L} \subseteq \mathcal{R}$, $\mathcal{K} \cap \mathcal{R} = \emptyset$?

Consider separability.

Separability of \mathcal{F} by \mathcal{S}

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from \mathcal{F}

Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ from \mathcal{S} such that

$$\mathcal{L} \subseteq \mathcal{R}, \quad \mathcal{K} \cap \mathcal{R} = \emptyset$$
?

Commonly studied:

- $S \subseteq F = REG$
 - e.g. S = Star-free languages

[□] Separability is decidable [Place, Zeitoun 2016].

Consider separability.

Separability of \mathcal{F} by \mathcal{S}

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from \mathcal{F}

Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ from \mathcal{S} such that

 $\mathcal{L} \subseteq \mathcal{R}$, $\mathcal{K} \cap \mathcal{R} = \emptyset$?

Commonly studied:

- $S \subsetneq F = REG$
 - e.g. S = Star-free languages
 - Separability is decidable [Place, Zeitoun 2016].
- $S = REG \subsetneq F$ Regular separability.

Regular separability

Regular separability of ${\mathcal F}$

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from \mathcal{F}

Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ regular such that

 $\mathcal{L} \subseteq \mathcal{R}$, $\mathcal{K} \cap \mathcal{R} = \emptyset$?

Observation:

Problem is symmetric in the input:

If
$$\mathcal{L} \subseteq \mathcal{R}$$
, $\mathcal{K} \cap \mathcal{R} = \emptyset$
then $\mathcal{K} \subseteq \overline{\mathcal{R}}$, $\mathcal{L} \cap \overline{\mathcal{R}} = \emptyset$.

Regular separability

Regular separability of ${\mathcal F}$

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from \mathcal{F}

Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ regular such that

 $\mathcal{L} \subseteq \mathcal{R}, \quad \mathcal{K} \cap \mathcal{R} = \emptyset$?

Disjointness is always necessary for (any kind of) separability.

It is not always sufficient:

$$\mathcal{L} = a^n b^n, \quad \mathcal{K} = \overline{\mathcal{L}} .$$

4

Consider labeled version of WSTS:

Consider labeled version of WSTS:

$$W = (S, \leq, T, I, F).$$

 (S, \leq) states well quasi ordering

 $T \subseteq S \times \Sigma \times S$ labeled transitions

 $I \subseteq S$ initial states

 $F \subseteq S$ final states, upward-closed

Consider labeled version of WSTS:

$$W = (S, \leq, T, I, F).$$

 (S, \leq) states well quasi ordering

 $T \subseteq S \times \Sigma \times S$ labeled transitions

 $I \subseteq S$ initial states

 $F \subseteq S$ final states, upward-closed

Monotonicity / Simulation property:

$$s' \xrightarrow{a} r' (\exists)$$

$$\uparrow \downarrow \qquad \qquad \uparrow \downarrow \downarrow$$

$$s \xrightarrow{a} r$$

Consider labeled version of WSTS:

$$W = (S, \leq, T, I, F).$$

 (S, \leq) states well quasi ordering

 $T \subseteq S \times \Sigma \times S$ labeled transitions

 $I \subseteq S$ initial states

 $F \subseteq S$ final states, upward-closed

Coverability language

$$\mathcal{L}(\mathcal{W}) = \Big\{ w \in \Sigma^* \ \Big| \ c_i \xrightarrow{w} c_f \ \text{for some} \ c_i \in I, c_f \in F \Big\}.$$

Consider labeled version of WSTS:

$$W = (S, \leq, T, I, F).$$

Example 1:

Labeled Petri nets with covering acceptance condition yield WSTS

$$\left(\mathbb{N}^P,\leqslant^P,T,M_0,M_f\uparrow\right)\,.$$

Consider labeled version of WSTS:

$$\mathcal{W} = (S, \leqslant, T, I, F).$$

Example 1:

Labeled Petri nets with covering acceptance condition yield WSTS

$$(\mathbb{N}^P, \leqslant^P, T, M_0, M_f \uparrow)$$
.

Example 2:

Labeled lossy channel systems (LCS) [AJ93] yield WSTS.

The result

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

7

Applications and speculation

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Parallel program $P \parallel Q$ safe

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Parallel program
$$P \parallel Q$$
 safe iff Language $\mathcal{L}(P \times Q) = \emptyset$

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Parallel program $P \parallel Q$ safe

iff Language
$$\mathcal{L}(P \times Q) = \emptyset$$

iff Language
$$\mathcal{L}(P) \cap \mathcal{L}(Q) = \emptyset$$

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Parallel program $P \parallel Q$ safe

iff Language $\mathcal{L}(P \times Q) = \emptyset$

iff Language $\mathcal{L}(P) \cap \mathcal{L}(Q) = \emptyset$

(Theorem) iff \exists regular separator of $\mathcal{L}(P)$ and $\mathcal{L}(Q)$

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Parallel program $P \parallel Q$ safe

 $\mathsf{iff} \quad \mathsf{Language} \ \mathcal{L}(P \times Q) = \varnothing$

 $\mathsf{iff} \quad \mathsf{Language} \ \mathcal{L}(P) \cap \mathcal{L}(Q) = \varnothing$

(Theorem) iff \exists regular separator of $\mathcal{L}(P)$ and $\mathcal{L}(Q)$

 $\text{iff} \quad \exists \ \mathcal{L}_1, \mathcal{L}_2 \ \text{regular with} \ \mathcal{L}(P) \subseteq \mathcal{L}_1 \text{,} \ \mathcal{L}(Q) \subseteq \mathcal{L}_2 \text{,}$

and $\mathcal{L}_1 \cap \mathcal{L}_2 = \emptyset$.

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

Corollary

Regular approximations are complete for compositional verification of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

Petri nets seem to have a regular type.

Learning invariants [Madhusudan, Neider et al. since 2014]

Given: Configurations G reachable from init, B leading to bad.

Learn: Separator S of G and B.

Learning invariants [Madhusudan, Neider et al. since 2014]

Given: Configurations G reachable from init, B leading to bad.

Learn: Separator S of G and B. \Rightarrow Candidate for an invariant!

Learning invariants [Madhusudan, Neider et al. since 2014]

Given: Configurations G reachable from init, B leading to bad.

Learn: Separator S of G and B. \Rightarrow Candidate for an invariant!

• B

•

• •

Learning invariants [Madhusudan, Neider et al. since 2014]

Given: Configurations G reachable from init, B leading to bad. Learn: Separator S of G and B. \Rightarrow Candidate for an invariant!

Learning invariants [Madhusudan, Neider et al. since 2014]

Given: Configurations G reachable from init, B leading to bad. Learn: Separator S of G and B. \Rightarrow Candidate for an invariant!

Inductiveness problem: What if $x \in S$ but $y = post(x) \notin S$? Should x be outside S or y be in S?

Learning invariants [Madhusudan, Neider et al. since 2014]

Given: Configurations G reachable from init, B leading to bad. Learn: Separator S of G and B. \Rightarrow Candidate for an invariant!

Inductiveness problem: What if $x \in S$ but $y = post(x) \notin S$? Should x be outside S or y be in S?

Learning invariants [Madhusudan, Neider et al. since 2014]

Given: Configurations G reachable from init, B leading to bad.

Learn: Separator S of G and B. \Rightarrow Candidate for an invariant!

Inductiveness problem: What if $x \in S$ but $y = post(x) \notin S$?

Should x be outside S or y be in S?

Solution [Madhusudan, Neider et al.]:

Generalize learning algorithms to take into account pairs (x, y).

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Idea: Replace configurations by computations.

Learn a regular separator rather than an invariant.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Idea: Replace configurations by computations.

Learn a regular separator rather than an invariant.

Learning-based verification with separators

Given: Computations G feasible in P, B feasible in Q.

Learn: Separator \mathcal{R} of G and B.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Idea: Replace configurations by computations.

Learn a regular separator rather than an invariant.

Learning-based verification with separators

Given: Computations G feasible in P, B feasible in Q.

Learn: Separator \mathcal{R} of G and B. \Rightarrow Candidate for $\mathcal{L}(P), \mathcal{L}(Q)$!

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Idea: Replace configurations by computations.

Learn a regular separator rather than an invariant.

Learning-based verification with separators

Given: Computations G feasible in P, B feasible in Q.

Learn: Separator \mathcal{R} of G and B. \Rightarrow Candidate for $\mathcal{L}(P), \mathcal{L}(Q)$!

Inductiveness problem:

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Idea: Replace configurations by computations.

Learn a regular separator rather than an invariant.

Learning-based verification with separators

Given: Computations G feasible in P, B feasible in Q.

Learn: Separator \mathcal{R} of G and B. \Rightarrow Candidate for $\mathcal{L}(P), \mathcal{L}(Q)$!

Inductiveness problem:

Inclusion of $\mathcal{L}(P)$ and disjointness from $\mathcal{L}(Q)$ have to be checked.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Idea: Replace configurations by computations.

Learn a regular separator rather than an invariant.

Learning-based verification with separators

Given: Computations G feasible in P, B feasible in Q.

Learn: Separator \mathcal{R} of G and B. \Rightarrow Candidate for $\mathcal{L}(P), \mathcal{L}(Q)$!

Inductiveness problem:

Inclusion of $\mathcal{L}(P)$ and disjointness from $\mathcal{L}(Q)$ have to be checked.

But: No new framework needed!

$$G := \emptyset =: B$$

$$G := \varnothing =: B$$

$$\downarrow$$
Learn \mathcal{R}
separating G from B

There is a dual algorithm learning \mathcal{L}_1 and \mathcal{L}_2 from above.

Interpolation-based model checking [McMillan since 2003]

Given: Formulas $F = init \lor post(init)$, $G = pre^{\leqslant k}(bad)$.

Compute: Interpolant of F and G.

Interpolation-based model checking [McMillan since 2003]

Given: Formulas $F = init \lor post(init)$, $G = pre^{\leqslant k}(bad)$.

Compute: Interpolant of F and G. \Rightarrow Candidate for an invariant!

Interpolation-based model checking [McMillan since 2003]

Given: Formulas $F = init \lor post(init)$, $G = pre^{\leqslant k}(bad)$.

Compute: Interpolant of F and G. \Rightarrow Candidate for an invariant!

Needs representation for which interpolants can be computed.

Interpolation-based model checking [McMillan since 2003]

Given: Formulas $F = init \lor post(init)$, $G = pre^{\leqslant k}(bad)$.

Compute: Interpolant of F and G. \Rightarrow Candidate for an invariant!

Needs representation for which interpolants can be computed.

Craig's theorem 1957: First-order logic has interpolants.

Separators are interpolants!

Separators are interpolants!

Regular model checking [Abdulla et al. since 1997]

Analyze programs where configurations are words:

Separators are interpolants!

Regular model checking [Abdulla et al. since 1997]

Analyze programs where configurations are words:

init, bad = regular languages

transitions = regular transductions.

Separators are interpolants!

Regular model checking [Abdulla et al. since 1997]

Analyze programs where configurations are words:

init, bad = regular languages
transitions = regular transductions.

Since post(reg) regular, languages in McMillan's approach regular.

Interpolation-based regular model checking

Separators are interpolants!

Regular model checking [Abdulla et al. since 1997]

Analyze programs where configurations are words:

init, bad = regular languages
transitions = regular transductions.

Since post(reg) regular, languages in McMillan's approach regular. Separators trivially exist!

Interpolation-based regular model checking

Separators are interpolants!

Regular model checking [Abdulla et al. since 1997]

Analyze programs where configurations are words:

init, bad = regular languages

transitions = regular transductions.

Since post(reg) regular, languages in McMillan's approach regular. Separators trivially exist!

Interpolation of string-manipulating programs

Again: Separators may be the right thing!

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

If a language and its complement are finitely branching WSTS languages, they are necessarily regular.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

If a language and its complement are finitely branching WSTS languages, they are necessarily regular.

Generalizes results for Petri nets [Kumar et al. 1998].

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

If a language and its complement are finitely branching WSTS languages, they are necessarily regular.

Generalizes results for Petri nets [Kumar et al. 1998].

Corollary

No subclass of finitely branching WSTS beyond REG is closed under complement.

Expressiveness results:

Languages of finitely branching WSTS

Our result - Recall

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

 \mathcal{W} finitely branching: I finite, $\mathsf{Post}_{\Sigma}(c)$ finite for all c.

Our result - Recall

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

W finitely branching: I finite, $Post_{\Sigma}(c)$ finite for all c.

How much of a restriction is it to assume finite branching?

What do we gain by assuming finite branching?

Expressibility I

Proposition

Languages of ω^2 -WSTS

⊆ Languages of finitely branching WSTS.

$$\begin{array}{ll} (S,\leqslant)\;\omega^2\text{-wqo}\\ \text{iff} & \left(\mathcal{P}^\downarrow(S),\subseteq\right)\;\text{wqo}\\ \text{iff} & (S,\leqslant)\;\text{does not embed the Rado order}. \end{array}$$

Our result applies to all WSTS of practical interest!

Expressibility II

Proposition

Languages of finitely branching WSTS

= Languages of deterministic WSTS.

Sufficient to show:

Theorem

If two WSTS languages, one of them deterministic, are disjoint, then they are regularly separable.

Theorem

If two WSTS languages, one of them deterministic, are disjoint, then they are regularly separable.

Proof approach:

Relate separability to the existence of certain invariants.

Separability talks about the languages, invariants talk about the state space!

Inductive invariant [Manna, Pnueli 1995]

Inductive invariant X

for WSTS \mathcal{W} :

- (1) $X \subseteq S$ downward-closed
- (2) $I \subseteq X$
- (3) $F \cap X = \emptyset$
- (4) $\operatorname{Post}_{\Sigma}(X) \subseteq X$

Inductive invariant [Manna, Pnueli 1995]

Inductive invariant X

for WSTS \mathcal{W} :

- (1) $X \subseteq S$ downward-closed
- (2) $I \subseteq X$
- (3) $F \cap X = \emptyset$
- (4) $\operatorname{Post}_{\Sigma}(X) \subseteq X$

Lemma

 $\mathcal{L}(\mathcal{W}) = \emptyset$ iff inductive invariant for \mathcal{W} exists.

$$\ell$$
 $\mathcal{L}(\mathcal{W}_1), \mathcal{L}(\mathcal{W}_2)$ reg. sep $\Longleftrightarrow \mathcal{L}(\mathcal{W}_1) \cap \mathcal{L}(\mathcal{W}_2) = \mathcal{L}(\mathcal{W}_1 imes \mathcal{W}_2) = \emptyset$

$$\mathcal{L}(\mathcal{W}_1),\mathcal{L}(\mathcal{W}_2)$$
 reg. sep $\Longleftrightarrow \mathcal{L}(\mathcal{W}_1)\cap\mathcal{L}(\mathcal{W}_2)=\mathcal{L}(\mathcal{W}_1 imes\mathcal{W}_2)=arphi$

 $\mathcal{W}_1 imes \mathcal{W}_2$ has inductive invariant

Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if $X = Q \downarrow$ for Q finite.

Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if $X = Q \downarrow$ for Q finite.

Recall:

 (S, \leqslant) well quasi order (wqo)

iff upward-closed sets have finitely many minimal elements.

No such statement for downward-closed sets and maximal elements!

Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if $X = Q \downarrow$ for Q finite.

We can show:

Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals

Definition

For WSTS \mathcal{W} , let $\widehat{\mathcal{W}}$ be its ideal completion [KP92,BFM14,FG12].

Lemma

$$\mathcal{L}(\mathcal{W}) = \mathcal{L}(\widehat{\mathcal{W}}).$$

 $\widehat{\mathcal{W}}$ is deterministic if so is \mathcal{W} .

Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals

Definition

For WSTS \mathcal{W} , let $\widehat{\mathcal{W}}$ be its ideal completion [KP92,BFM14,FG12].

Lemma

$$\mathcal{L}(\mathcal{W}) = \mathcal{L}(\widehat{\mathcal{W}}).$$

 $\widehat{\mathcal{W}}$ is deterministic if so is \mathcal{W} .

Proposition

If X is an inductive invariant for W, then its ideal decomposition $IDEC(X) \downarrow$ is a finitely represented inductive invariant for \widehat{W} .

Proof

Putting everything together:

If W_1, W_2 are disjoint, $W_1 \times W_2$ admits an invariant X.

Then $\widehat{\mathrm{IDEC}(X)}\downarrow$ is a finitely represented invariant for $\widehat{\mathcal{W}_1 \times \mathcal{W}_2} \cong \widehat{\mathcal{W}_1} \times \widehat{\mathcal{W}_2}$.

This finitely represented invariant gives rise to a regular separator.

Proof

Putting everything together:

If W_1, W_2 are disjoint, $W_1 \times W_2$ admits an invariant X.

Then $\overline{\text{IDEC}(X)}\downarrow$ is a finitely represented invariant for $\widehat{\mathcal{W}_1 \times \mathcal{W}_2} \cong \widehat{\mathcal{W}_1} \times \widehat{\mathcal{W}_2}$.

This finitely represented invariant gives rise to a regular separator.

We have shown:

Theorem

If two WSTS languages are disjoint, one of them finitely branching or deterministic or ω^2 , then they are regularly separable.

Proof details: From fin. rep. invariants to regular separators

Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

Assume $Q\downarrow$ is an invariant.

Idea: Construct separating NFA with Q as states.

Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

$$\mathcal{A} = (Q, \rightarrow, Q_I, Q_F)$$
 where

Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

$$\mathcal{A} = (\colon Q,
ightarrow, \colon Q_I, \colon Q_F)$$
 where

$$Q_I = \{(s, s') \in Q \mid (c, c') \leqslant (s, s') \text{ for some } (c, c') \text{ initial}\}$$

Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

$$\mathcal{A}=(Q,
ightarrow,Q_I,Q_F)$$
 where $Q_I=\{(s,s')\in Q\mid (c,c')\leqslant (s,s') ext{ for some } (c,c') ext{ initial}\}$ $Q_F=\{(s,s')\in Q\mid s\in F_1\}$

Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

$$\mathcal{A} = (Q,
ightarrow, Q_I, Q_F)$$
 where $Q_I = \{(s, s') \in Q \mid (c, c') \leqslant (s, s') \text{ for some } (c, c') \text{ initial}\}$ $Q_F = \{(s, s') \in Q \mid s \in F_1\}$
$$Q_F = \{(s, s') \in Q \mid s \in F_1\}$$

$$Q_F = \{(s, s') \in Q \mid s \in F_1\}$$

$$Q_F = \{(s, s') \in Q \mid s \in F_1\}$$

Behavior of A

 ${\mathcal A}$ over-approximates the behavior of the product system using the configurations from ${\mathcal Q}$.

 ${\mathcal A}$ over-approximates the behavior of the product system using the configurations from ${\color{red} Q}.$

 ${\mathcal A}$ over-approximates the behavior of the product system using the configurations from ${\mathcal Q}$.

 ${\mathcal A}$ over-approximates the behavior of the product system using the configurations from ${\mathcal Q}$.

 ${\mathcal A}$ over-approximates the behavior of the product system using the configurations from ${\mathcal Q}$.

 ${\mathcal A}$ over-approximates the behavior of the product system using the configurations from ${\mathcal Q}$.

 ${\cal A}$ over-approximates the behavior of the product system using the configurations from ${\cal Q}$.

 ${\mathcal A}$ over-approximates the behavior of the product system using the configurations from ${\mathcal Q}$.

Lemma

$$\mathcal{L}(\mathcal{W}_1)\subseteq\mathcal{L}(\mathcal{A}).$$

Lemma

$$\mathcal{L}(\mathcal{W}_1) \subseteq \mathcal{L}(\mathcal{A})$$
.

Proof.

Any run $c \xrightarrow{w} d$ of \mathcal{W}_1

synchronizes with the run of \mathcal{W}_2 for w

in the run $(c,c') \xrightarrow{w} (d,d')$ of $\mathcal{W}_1 \times \mathcal{W}_2$.

Lemma

$$\mathcal{L}(\mathcal{W}_1) \subseteq \mathcal{L}(\mathcal{A})$$
.

Proof.

Any run $c \xrightarrow{w} d$ of \mathcal{W}_1

synchronizes with the run of \mathcal{W}_2 for w

in the run $(c,c') \xrightarrow{w} (d,d')$ of $\mathcal{W}_1 \times \mathcal{W}_2$.

This run can be over-approximated in A.

Lemma

$$\mathcal{L}(\mathcal{W}_1) \subseteq \mathcal{L}(\mathcal{A})$$
.

Proof.

Any run $c \xrightarrow{w} d$ of \mathcal{W}_1

synchronizes with $\it the$ run of $\it W_2$ for $\it w$

in the run $(c,c') \xrightarrow{w} (d,d')$ of $\mathcal{W}_1 \times \mathcal{W}_2$.

This run can be over-approximated in A.

If d is final in \mathcal{W}_1 ,

the over-approximation of (d, d') is final in A.

Lemma

$$\mathcal{L}(\mathcal{W}_2)\cap\mathcal{L}(\mathcal{A})=\varnothing.$$

Lemma

$$\mathcal{L}(\mathcal{W}_2) \cap \mathcal{L}(\mathcal{A}) = \emptyset$$
.

Proof.

Any run of A for w over-approximates

in the second component the unique run of W_2 for w.

Lemma

$$\mathcal{L}(\mathcal{W}_2) \cap \mathcal{L}(\mathcal{A}) = \emptyset$$
.

Proof.

Any run of A for w over-approximates

in the second component the unique run of \mathcal{W}_2 for w.

If
$$w \in \mathcal{L}(\mathcal{W}_2) \cap \mathcal{L}(\mathcal{A})$$

then some run of ${\mathcal A}$ reaches a state (q,q') with

- q final in \mathcal{W}_1 (def. of Q_F)
- q' final in \mathcal{W}_2 ($w \in \mathcal{L}(\mathcal{W}_2)$ + argument above).

Lemma

$$\mathcal{L}(\mathcal{W}_2)\cap\mathcal{L}(\mathcal{A})=\varnothing.$$

Proof.

Any run of A for w over-approximates

in the second component the unique run of \mathcal{W}_2 for w.

If
$$w \in \mathcal{L}(\mathcal{W}_2) \cap \mathcal{L}(\mathcal{A})$$

then some run of ${\mathcal A}$ reaches a state (q,q') with

- q final in \mathcal{W}_1 (def. of Q_F)
- q' final in \mathcal{W}_2 ($w \in \mathcal{L}(\mathcal{W}_2)$ + argument above).

Contradiction to $(F_1 \times F_2) \cap Q \downarrow = \emptyset$!

Proof details:
The ideal completion and fin. rep. invariants

Finitely represented invariants

Lemma

Let $U \subseteq S$ be an upward-closed set in a wqo.

There is a finite set U_{min} such that $U = U_{min} \uparrow$.

A similar result for downward-closed subsets and maximal elements does not hold.

Finitely represented invariants

Lemma

Let $U \subseteq S$ be an upward-closed set in a wqo.

There is a finite set U_{min} such that $U = U_{min} \uparrow$.

A similar result for downward-closed subsets and maximal elements does not hold.

Example:

Consider \mathbb{N} in (\mathbb{N}, \leqslant)

Intuitively, $\mathbb{N} = \omega \downarrow$.

Finitely represented invariants

Lemma

Let $U \subseteq S$ be an upward-closed set in a wqo.

There is a finite set U_{min} such that $U = U_{min} \uparrow$.

A similar result for downward-closed subsets and maximal elements does not hold.

Consequence:

Finitely represented invariants may not exist!

Solution:

Move to a language-equivalent system for which they always exist.

Let (S, \leqslant) be a wqo An ideal $\mathcal{I} \subseteq S$ is a set that is

- non-empty
- downward-closed

Let (S,\leqslant) be a wqo An ideal $\mathcal{I}\subseteq S$ is a set that is

- non-empty
- downward-closed
- directed: $\forall x, y \in \mathcal{I} \exists z \in \mathcal{I} : x \leqslant z, y \leqslant z$.

Let (S, \leqslant) be a wqo An ideal $\mathcal{I} \subseteq S$ is a set that is

- non-empty
- downward-closed
- directed: $\forall x, y \in \mathcal{I} \exists z \in \mathcal{I} : x \leqslant z, y \leqslant z$.

Example 1:

For each $c \in S$, $c \downarrow$ is an ideal.

Let (S, \leqslant) be a wqo

An ideal $\mathcal{I} \subseteq S$ is a set that is

- non-empty
- downward-closed
- directed: $\forall x, y \in \mathcal{I} \exists z \in \mathcal{I} : x \leqslant z, y \leqslant z$.

Example 2:

Consider $(\mathbb{N}^k, \leqslant)$

The ideals are the sets $u \downarrow$ for $u \in (\mathbb{N} \cup \{\omega\})^k$.

Ideal decomposition

Lemma ([Kabil, Pouzet 1992])

Let (S, \leqslant) be a wqo.

For $D \subseteq S$ downward closed, let $\overline{IDEC(D)}$ be the set of inclusion-maximal ideals in D.

IDEC(D) is unique, finite, and we have

$$D = \bigcup \mathrm{IDEC}(D) \ .$$

Definition ([FG12,BFM14])

Let
$$W = (S, \leq, T, I, F)$$
 WSTS.

Its ideal completion is

$$\widehat{\mathcal{W}} = \big(\{ \mathcal{I} \subseteq S \mid \mathcal{I} \text{ ideal} \}, \subseteq, \widehat{\mathcal{T}}, \mathrm{IDEC}(I \downarrow), \widehat{F} \big) \text{ with }$$

Definition ([FG12,BFM14])

Let
$$W = (S, \leq, T, I, F)$$
 WSTS.

Its ideal completion is

$$\widehat{\mathcal{W}} = \big(\{ \mathcal{I} \subseteq S \mid \mathcal{I} \text{ ideal} \}, \subseteq, \widehat{\mathcal{T}}, \mathrm{IDEC}(I \!\downarrow), \widehat{F} \big) \text{ with }$$

$$\widehat{F} = \{ \mathcal{I} \mid \mathcal{I} \cap F \neq \emptyset \}$$

Definition ([FG12,BFM14])

Let
$$W = (S, \leq, T, I, F)$$
 WSTS.

Its ideal completion is

$$\widehat{\mathcal{W}} = \big(\{ \mathcal{I} \subseteq S \mid \mathcal{I} \text{ ideal} \}, \subseteq, \widehat{\mathcal{T}}, \mathrm{IDEC}(I \!\downarrow), \widehat{F} \big) \text{ with }$$

$$\begin{split} \widehat{F} &= \{ \mathcal{I} \mid \mathcal{I} \cap F \neq \varnothing \} \\ \widehat{\mathcal{T}} \text{ defined by } \mathsf{Post}_{a}^{\widehat{\mathcal{W}}}(\mathcal{I}) &= \mathsf{IDEC}\big(\mathsf{Post}_{a}^{\mathcal{W}}(\mathcal{I}) \!\downarrow \big). \end{split}$$

Definition ([FG12,BFM14])

Let
$$W = (S, \leq, T, I, F)$$
 WSTS.

Its ideal completion is

$$\widehat{\mathcal{W}} = \big(\{ \mathcal{I} \subseteq S \mid \mathcal{I} \text{ ideal} \}, \subseteq, \widehat{\mathcal{T}}, \mathrm{IDEC}(I \!\downarrow), \widehat{F} \big) \text{ with }$$

$$\begin{split} \widehat{F} &= \{ \mathcal{I} \mid \mathcal{I} \cap F \neq \varnothing \} \\ \widehat{\mathcal{T}} \text{ defined by } \mathsf{Post}_{a}^{\widehat{\mathcal{W}}}(\mathcal{I}) &= \mathsf{IDEC}\big(\mathsf{Post}_{a}^{\mathcal{W}}(\mathcal{I}) \!\downarrow \big). \end{split}$$

Lemma

ullet $\widehat{\mathcal{W}}$ finitely branching.

Definition ([FG12,BFM14])

Let
$$W = (S, \leq, T, I, F)$$
 WSTS.

Its ideal completion is

$$\widehat{\mathcal{W}} = \big(\{ \mathcal{I} \subseteq \mathcal{S} \mid \mathcal{I} \text{ ideal} \}, \subseteq, \widehat{\mathcal{T}}, \text{IDEC}(I \!\downarrow), \widehat{\mathcal{F}} \big) \text{ with }$$

$$\begin{split} \widehat{F} &= \{ \mathcal{I} \mid \mathcal{I} \cap F \neq \varnothing \} \\ \widehat{\mathcal{T}} \text{ defined by } \mathsf{Post}_{a}^{\widehat{\mathcal{W}}}(\mathcal{I}) &= \mathsf{IDEC}\big(\mathsf{Post}_{a}^{\mathcal{W}}(\mathcal{I}) \!\downarrow \big). \end{split}$$

Lemma

- ullet $\widehat{\mathcal{W}}$ finitely branching.
- ullet ${\mathcal W}$ deterministic $\Longrightarrow \widehat{{\mathcal W}}$ deterministic.

Definition ([FG12,BFM14])

Let
$$W = (S, \leq, T, I, F)$$
 WSTS.

Its ideal completion is

$$\widehat{\mathcal{W}} = (\{\mathcal{I} \subseteq S \mid \mathcal{I} \text{ ideal}\}, \subseteq, \widehat{\mathcal{T}}, \mathrm{IDEC}(I \downarrow), \widehat{F})$$
 with

$$\begin{split} \widehat{F} &= \{ \mathcal{I} \mid \mathcal{I} \cap F \neq \varnothing \} \\ \widehat{\mathcal{T}} \text{ defined by } \mathsf{Post}_{a}^{\widehat{\mathcal{W}}}(\mathcal{I}) &= \mathsf{IDEC}\big(\mathsf{Post}_{a}^{\mathcal{W}}(\mathcal{I}) \! \downarrow \big). \end{split}$$

Lemma

- ullet $\widehat{\mathcal{W}}$ finitely branching.
- ullet $\mathcal W$ deterministic $\Longrightarrow \widehat{\mathcal W}$ deterministic.
- $\mathcal{L}(\widehat{\mathcal{W}}) = \mathcal{L}(\mathcal{W})$.

Proposition

```
If X is an inductive invariant for \mathcal{W},
then its ideal decomposition IDEC(X)\downarrow
is a finitely represented inductive invariant for \widehat{\mathcal{W}}.
```

Proposition

If X is an inductive invariant for \mathcal{W} , then its ideal decomposition $IDEC(X)\downarrow$ is a finitely represented inductive invariant for $\widehat{\mathcal{W}}$.

Proof.

Property of being an inductive invariant carries over.

Any set of the shape $IDEC(Y)\downarrow$ is finitely-represented in $\widehat{\mathcal{W}}$.

Proposition

If X is an inductive invariant for \mathcal{W} , then its ideal decomposition $IDEC(X)\downarrow$ is a finitely represented inductive invariant for $\widehat{\mathcal{W}}$.

Proof.

Property of being an inductive invariant carries over.

Any set of the shape $\mathrm{IDEC}(Y)\!\downarrow$ is finitely-represented in $\widehat{\mathcal{W}}$.

Result in particular applies to $Cover = Post^*(I_1 \times I_2) \downarrow$.

Proposition

If X is an inductive invariant for \mathcal{W} , then its ideal decomposition $IDEC(X)\downarrow$ is a finitely represented inductive invariant for $\widehat{\mathcal{W}}$.

Proof.

Property of being an inductive invariant carries over.

Any set of the shape $\mathrm{IDEC}(Y)\!\downarrow$ is finitely-represented in $\widehat{\mathcal{W}}$.

Result in particular applies to $Cover = Post^*(I_1 \times I_2) \downarrow$.

Remark: $\widehat{\mathcal{W}}$ is not necessarily a WSTS.

Separator size: The case of Petri nets

Separator size

Question:

Number of states of the separating automaton?

Separator size

Question:

Number of states of the separating automaton?

Consider Petri nets.

Separator size

Question:

Number of states of the separating automaton?

Consider Petri nets.

Problems:

1. Determinism.

Separator size

Question:

Number of states of the separating automaton?

Consider Petri nets.

Problems:

- 1. Determinism.
- 2. Size estimation on the ideal decomposition of an invariant.

Given: Labeled Petri nets over Σ

$$N_A = (P_A, T_A, \lambda_A, in_A, out_A, M_{0A}, M_{fA})$$

$$N_B = (P_B, T_B, \lambda, \mathsf{in}_B, \mathsf{out}_B, M_{0B}, M_{fB})$$
.

See board.

Given: Labeled Petri nets over ∑

$$N_A = (P_A, T_A, \lambda_A, in_A, out_A, M_{0A}, M_{fA})$$

$$N_B = (P_B, T_B, \lambda, \text{in}_B, \text{out}_B, M_{0B}, M_{fB})$$
.

Construct: Labeled Petri nets over T_B

$$N_A^{-\lambda} = (P_A, T_A^{-\lambda}, \ell, \operatorname{in}_A^{-\lambda}, \operatorname{out}_A^{-\lambda}, M_{0A}, M_{fA})$$

$$N_B^{det} = (P_B, T_B, id, in_B, out_B, M_{0B}, M_{fB})$$
.

See board.

Given: Labeled Petri nets over Σ

$$N_A = (P_A, T_A, \lambda_A, in_A, out_A, M_{0A}, M_{fA})$$

$$N_B = (P_B, T_B, \lambda, \text{in}_B, \text{out}_B, M_{0B}, M_{fB})$$
.

Construct: Labeled Petri nets over TB

$$N_A^{-\lambda} = (P_A, T_A^{-\lambda}, \ell, \operatorname{in}_A^{-\lambda}, \operatorname{out}_A^{-\lambda}, M_{0A}, M_{fA})$$

$$N_B^{det} = (P_B, T_B, id, in_B, out_B, M_{0B}, M_{fB})$$
.

$$\mathcal{L}(N_A \times N_B) = \lambda \Big(\mathcal{L} \Big(N_A^{-\lambda} \times N_B^{det} \Big) \Big)$$

Given: Labeled Petri nets over ∑

$$N_A = (P_A, T_A, \lambda_A, \text{in}_A, \text{out}_A, M_{0A}, M_{fA})$$

$$N_B = (P_B, T_B, \lambda, \text{in}_B, \text{out}_B, M_{0B}, M_{fB})$$
.

Construct: Labeled Petri nets over TB

$$N_A^{-\lambda} = (P_A, T_A^{-\lambda}, \ell, \operatorname{in}_A^{-\lambda}, \operatorname{out}_A^{-\lambda}, M_{0A}, M_{fA})$$

$$N_B^{det} = (P_B, T_B, id, in_B, out_B, M_{0B}, M_{fB})$$
.

If
$$\mathcal{R}$$
 separates $\mathcal{L}\left(N_A^{-\lambda}\right)$ and $\mathcal{L}\left(N_B^{det}\right)$, then $\lambda(\overline{\mathcal{R}})$ separates $\mathcal{L}(N_A)$ and $\mathcal{L}(N_B)$.

First idea:

Coverability graph provides ideal decomposition of Cover.

First idea:

Coverability graph provides ideal decomposition of Cover.

Problem:

It may be Ackermann-large.

First idea:

Coverability graph provides ideal decomposition of Cover.

Problem:

It may be Ackermann-large.

Better idea:

Use ideal decomposition of $\mathbb{N}^k \setminus \operatorname{Pre}^*(M_{fA} \uparrow \times M_{fB} \uparrow)$.

First idea:

Coverability graph provides ideal decomposition of Cover.

Problem:

It may be Ackermann-large.

Better idea:

Use ideal decomposition of $\mathbb{N}^k \setminus \operatorname{Pre}^*(M_{fA} \uparrow \times M_{fB} \uparrow)$.

Theorem ([Bozzelli, Ganty 2011])

 $Pre^*(M_f \uparrow) = \{v_1, \dots, v_k\}$ with k and $||v_i||_{\infty}$ doubly exponential.

The upper bound

Theorem (BG11)

 $\mathit{Pre}^*(\mathit{M}_f \uparrow) = \{\mathit{v}_1, \ldots, \mathit{v}_k\}$ with k and $||\mathit{v}_i||_{\infty}$ doubly exponential.

Theorem (Upper bound)

Given two disjoint Petri nets, we can construct an NFA separating their coverability languages of triply-exponential size.

Upper vs. lower bound

Theorem (Upper bound)

Given two disjoint Petri nets, we can construct an NFA separating their coverability languages of triply-exponential size.

Theorem (Lower bound)

The disjoint Petri net coverability languages

$$\mathcal{L}_{0@2^{2^k}}$$
 and $\mathcal{L}_{1@2^{2^k}}$ over $\{0,1\}$

cannot be separated by a DFA of less than triply-exponential size.

Regular separability for WSTS languages

Theorem

If two WSTS languages are disjoint, one of them finitely branching or deterministic or ω^2 , then they are regularly separable.

Non-Determinism:

Does non-determinism add to the expressiveness of WSTS:

Non-Determinism:

Does non-determinism add to the expressiveness of WSTS:

deterministic WSTS languages ♀ all WSTS languages ?

Non-Determinism:

Does non-determinism add to the expressiveness of WSTS:

deterministic WSTS languages \subseteq all WSTS languages ?

Open: Infinitely branching WSTS over Rado order.

Non-Determinism:

Does non-determinism add to the expressiveness of WSTS:

 $\mathsf{deterministic}\;\mathsf{WSTS}\;\mathsf{languages}\quad\subsetneq\quad\mathsf{all}\;\mathsf{WSTS}\;\mathsf{languages}\quad?$

Open: Infinitely branching WSTS over Rado order.

Related problem:

 ω^2 -WSTS languages \subsetneq deterministic WSTS languages ?

Non-Determinism:

Does non-determinism add to the expressiveness of WSTS:

 $\mathsf{deterministic}\;\mathsf{WSTS}\;\mathsf{languages}\quad\subsetneq\quad\mathsf{all}\;\mathsf{WSTS}\;\mathsf{languages}\quad?$

Open: Infinitely branching WSTS over Rado order.

Related problem:

 ω^2 -WSTS languages \subsetneq deterministic WSTS languages ?

Complexity:

Tight bound on the separator size for Petri nets.

Non-Determinism:

Does non-determinism add to the expressiveness of WSTS:

 $\mathsf{deterministic}\;\mathsf{WSTS}\;\mathsf{languages}\quad\subsetneq\quad\mathsf{all}\;\mathsf{WSTS}\;\mathsf{languages}\quad?$

Open: Infinitely branching WSTS over Rado order.

Related problem:

 ω^2 -WSTS languages \subsetneq deterministic WSTS languages ?

Complexity:

Tight bound on the separator size for Petri nets.

Replace homomorphism trick or show combinatorial magic.

Regular separability result:

Are disjoint WSTS languages always regularly separable?

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness.

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness. Fails for WBTS [Finkel et al. 2017], strictly larger class.

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness. Fails for WBTS [Finkel et al. 2017], strictly larger class.

Myhill-Nerode-like characterization of regular separability:

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness. Fails for WBTS [Finkel et al. 2017], strictly larger class.

Myhill-Nerode-like characterization of regular separability: Should explain existing (un)decidability results.

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness. Fails for WBTS [Finkel et al. 2017], strictly larger class.

Myhill-Nerode-like characterization of regular separability: Should explain existing (un)decidability results. An equivalence will not do (not one separator).

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness. Fails for WBTS [Finkel et al. 2017], strictly larger class.

Myhill-Nerode-like characterization of regular separability: Should explain existing (un)decidability results. An equivalence will not do (not one separator).

 ω -regular separability of WSTS?

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness. Fails for WBTS [Finkel et al. 2017], strictly larger class.

Myhill-Nerode-like characterization of regular separability: Should explain existing (un)decidability results. An equivalence will not do (not one separator).

 ω -regular separability of WSTS? Regular separability is for safety verification.

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness. Fails for WBTS [Finkel et al. 2017], strictly larger class.

Myhill-Nerode-like characterization of regular separability: Should explain existing (un)decidability results. An equivalence will not do (not one separator).

 ω -regular separability of WSTS?

Regular separability is for safety verification.

Is there an ω -regular separability result for liveness verification?

Regular separability result:

Are disjoint WSTS languages always regularly separable? Solved if non-determinism does not add expressiveness. Fails for WBTS [Finkel et al. 2017], strictly larger class.

Myhill-Nerode-like characterization of regular separability: Should explain existing (un)decidability results. An equivalence will not do (not one separator).

 ω -regular separability of WSTS?

Regular separability is for safety verification. Is there an ω -regular separability result for liveness verification? A similarly general result would be surprising given the negative results for LCS [Abdulla, Jonsson 1996].

There are not yet practical algorithms for and based on separability:)

There are not yet practical algorithms for and based on separability:)

Computing regular separators:

Compute separators from automata or WMSO formulas.

There are not yet practical algorithms for and based on separability:)

Computing regular separators:

Compute separators from automata or WMSO formulas.

Interpolation algorithms rely on resolution proofs.

There are not yet practical algorithms for and based on separability:)

Computing regular separators:

- Compute separators from automata or WMSO formulas.
- Interpolation algorithms rely on resolution proofs.
- Proof systems for WSMO under development [Vojnar et al. 2017].

There are not yet practical algorithms for and based on separability:)

Computing regular separators:

Compute separators from automata or WMSO formulas.

Interpolation algorithms rely on resolution proofs.

Proof systems for WSMO under development [Vojnar et al. 2017].

Verification:

Try out ideas for verification algorithms.

There are not yet practical algorithms for and based on separability:)

Computing regular separators:

Compute separators from automata or WMSO formulas.

Interpolation algorithms rely on resolution proofs.

Proof systems for WSMO under development [Vojnar et al. 2017].

Verification:

Try out ideas for verification algorithms.

Iterated decomposition in the Petri net case open.

There are not yet practical algorithms for and based on separability:)

Computing regular separators:

Compute separators from automata or WMSO formulas.

Interpolation algorithms rely on resolution proofs.

Proof systems for WSMO under development [Vojnar et al. 2017].

Verification:

Try out ideas for verification algorithms.

Iterated decomposition in the Petri net case open.

Learning would benefit from extrapolation.

Open problems

 $Beyond\ regular\ separability?$

Open problems

Beyond regular separability?

Beyond WSTS?

