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1



Separability

Case 2: L ∩ K = �
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2



Separability

Consider separability.

Separability of F by S
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ from S such that

L ⊆ R, K ∩R = �?

3



Separability

Consider separability.

Separability of F by S
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ from S such that

L ⊆ R, K ∩R = �?

L K

R

L K

3



Separability

Consider separability.

Separability of F by S
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ from S such that

L ⊆ R, K ∩R = �?

Commonly studied:

• S ( F = REG

e.g. S = Star-free languages�

Separability is decidable [Place, Zeitoun 2016].

• S = REG ( F
Regular separability.

3



Separability

Consider separability.

Separability of F by S
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ from S such that

L ⊆ R, K ∩R = �?

Commonly studied:

• S ( F = REG

e.g. S = Star-free languages�

Separability is decidable [Place, Zeitoun 2016].

• S = REG ( F
Regular separability.

3



Regular separability

Regular separability of F
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ regular such that

L ⊆ R, K ∩R = �?

Observation:

Problem is symmetric in the input:

If L ⊆ R, K ∩R = �
then K ⊆ R, L ∩R = �.

�

Call L,K regularly separable if separator R exists.
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Regular separability

Regular separability of F
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ regular such that

L ⊆ R, K ∩R = �?

Disjointness is always necessary for (any kind of) separability.

It is not always sufficient:

L = anbn, K = L .
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Regular separability — related work

REG

VPL

DCFL

CFL

OCN

OCA

PNCOV

PNREACHWSTS

trivial

[SW76]open, [CCLP17a,CCLP17b]
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Consider labeled version of WSTS:

6



Well-structured transiton systems [F87,AJ93,ACJT96,FS01]

Consider labeled version of WSTS:

W = (S ,6,T , I ,F ).

(S ,6) states well quasi ordering

T ⊆ S × Σ× S labeled transitions

I ⊆ S initial states

F ⊆ S final states, upward-closed

Monotonicity / Simulation property:

6



Well-structured transiton systems [F87,AJ93,ACJT96,FS01]

Consider labeled version of WSTS:

W = (S ,6,T , I ,F ).

(S ,6) states well quasi ordering

T ⊆ S × Σ× S labeled transitions

I ⊆ S initial states

F ⊆ S final states, upward-closed

Monotonicity / Simulation property:

s ′
a // r ′ (∃)

s

�
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Well-structured transiton systems [F87,AJ93,ACJT96,FS01]

Consider labeled version of WSTS:

W = (S ,6,T , I ,F ).

(S ,6) states well quasi ordering

T ⊆ S × Σ× S labeled transitions

I ⊆ S initial states

F ⊆ S final states, upward-closed

Monotonicity / Simulation property:

Coverability language

L(W) =
{
w ∈ Σ∗

∣∣∣ ci w−→ cf for some ci ∈ I , cf ∈ F
}
.
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Well-structured transiton systems [F87,AJ93,ACJT96,FS01]
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Well-structured transiton systems [F87,AJ93,ACJT96,FS01]

Consider labeled version of WSTS:

W = (S ,6,T , I ,F ).

Example 1:

Labeled Petri nets with covering acceptance condition yield WSTS

(NP ,6P ,T ,M0,Mf ↑) .

Example 2:

Labeled lossy channel systems (LCS) [AJ93] yield WSTS.
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The result

Theorem

If two WSTS languages, one of them finitely branching, are

disjoint, then they are regularly separable.
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Applications and speculation



Compositional Safety Verification

Theorem

If two WSTS languages, one of them finitely branching, are

disjoint, then they are regularly separable.

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Parallel program P ‖ Q safe

iff Language L(P × Q) = �

iff Language L(P) ∩ L(Q) = �

(Theorem) iff ∃ regular separator of L(P) and L(Q)

iff ∃ L1,L2 regular with L(P) ⊆ L1, L(Q) ⊆ L2,

and L1 ∩ L2 = �.

(ab + c)∗.a ∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.
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Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:
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(ab + c)∗.a ∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.

8



Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

b a c = b a c ‖ cab

(ab + c)∗.a ∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.

8



Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

b a c =

b a c ‖ cab

(ab + c)∗.a ∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.

8



Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

b a c = b a c ‖

cab

(ab + c)∗.a ∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.

8



Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

b a c = b a c ‖ cab

(ab + c)∗.a ∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.

8



Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

b a c = b a c ‖ cab

(ab + c)∗.a

∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.

8



Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

b a c = b a c ‖ cab

(ab + c)∗.a ∩ (ac)∗� b∗

= �

Petri nets seem to have a regular type.

8



Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

b a c = b a c ‖ cab

(ab + c)∗.a ∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.

8



Compositional Safety Verification

Corollary

Regular approximations are complete for compositional verification

of safety properties for parallel (well-structured) programs.

Applies to Petri net coverability, split set of places arbitrarily:

b a c = b a c ‖ cab

(ab + c)∗.a ∩ (ac)∗� b∗ = �

Petri nets seem to have a regular type.

8



Learning-based verification without ICE

Learning invariants [Madhusudan, Neider et al. since 2014]

Given: Configurations G reachable from init, B leading to bad.

Learn: Separator S of G and B.

⇒ Candidate for an invariant!

S

G •

• •

x

• B

• •

y

Inductiveness problem: What if x ∈ S but y = post(x) /∈ S?

Should x be outside S or y be in S?

Solution [Madhusudan, Neider et al.]:

Generalize learning algorithms to take into account pairs (x , y).

There is a dual algorithm learning L1 and L2 from above.
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Learning-based verification without ICE

Theorem

If two WSTS languages, one of them finitely branching, are

disjoint, then they are regularly separable.

Idea: Replace configurations by computations.

Learn a regular separator rather than an invariant

.

Learning-based verification with separators

Given: Computations G feasible in P, B feasible in Q.

Learn: Separator R of G and B.

⇒ Candidate for L(P),L(Q)!

Inductiveness problem:

Inclusion of L(P) and disjointness from L(Q) have to be checked.

But: No new framework needed!

There is a dual algorithm learning L1 and L2 from above.
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Learning-based verification without ICE

G := � =: B

Learn R
separating G from B

L(P) ⊆ R

R∩ L(Q) = �

X

yes

yes

w ∈ L(P) \ R
G := G ∪ {w}

w ∈ L(Q) ∩R
B := B ∪ {w}

There is a dual algorithm learning L1 and L2 from above.
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Interpolation-based regular model checking

Interpolation-based model checking [McMillan since 2003]

Given: Formulas F = init ∨ post(init), G = pre6k(bad).

Compute: Interpolant of F and G .

⇒ Candidate for an invariant!

Needs representation for which interpolants can be computed.

Craig’s theorem 1957: First-order logic has interpolants.

Separators are interpolants!

Regular model checking [Abdulla et al. since 1997]

Analyze programs where configurations are words:

init, bad = regular languages

transitions = regular transductions.

Since post(reg) regular, languages in McMillan’s approach regular

.

Separators trivially exist!

init post(init) pre6k(bad)

R

10
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Since post(reg) regular, languages in McMillan’s approach regular
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Separators trivially exist!
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R
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Interpolation of string-manipulating programs

Again: Separators may be the right thing!

11



Language-theoretic consequences

Theorem

If two WSTS languages, one of them finitely branching, are

disjoint, then they are regularly separable.
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Language-theoretic consequences

Theorem

If two WSTS languages, one of them finitely branching, are

disjoint, then they are regularly separable.

Corollary

If a language and its complement are finitely branching WSTS

languages, they are necessarily regular.

Generalizes results for Petri nets [Kumar et al. 1998].

Corollary

No subclass of finitely branching WSTS beyond REG is closed

under complement.

12



Expressiveness results:

Languages of finitely branching WSTS



Our result - Recall

Theorem

If two WSTS languages, one of them finitely branching, are

disjoint, then they are regularly separable.

W finitely branching: I finite, PostΣ(c) finite for all c .
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Our result - Recall

Theorem

If two WSTS languages, one of them finitely branching, are

disjoint, then they are regularly separable.

W finitely branching: I finite, PostΣ(c) finite for all c .

How much of a restriction is it to assume finite branching?

What do we gain by assuming finite branching?

13



Expressibility I

Proposition

Languages of ω2-WSTS

⊆ Languages of finitely branching WSTS.

(S ,6) ω2-wqo

iff
(
P↓(S),⊆

)
wqo

iff (S ,6) does not embed the Rado order.

Our result applies to all WSTS of practical interest!

14



Expressibility II

Proposition

Languages of finitely branching WSTS

= Languages of deterministic WSTS.

Sufficient to show:

Theorem

If two WSTS languages, one of them deterministic, are disjoint,

then they are regularly separable.

15



Proof sketch



Proof approach

Theorem

If two WSTS languages, one of them deterministic, are disjoint,

then they are regularly separable.

Proof approach:

Relate separability to the existence of certain invariants.

Separability talks about the languages,

invariants talk about the state space!

16



Inductive invariant [Manna, Pnueli 1995]

Inductive invariant X

for WSTS W:

(1) X ⊆ S downward-closed

(2) I ⊆ X

(3) F ∩ X = �

(4) PostΣ(X ) ⊆ X I

F

Post∗

Pre∗S \ Pre∗

X

17



Inductive invariant [Manna, Pnueli 1995]

Inductive invariant X

for WSTS W:

(1) X ⊆ S downward-closed

(2) I ⊆ X

(3) F ∩ X = �

(4) PostΣ(X ) ⊆ X I

F

Post∗

Pre∗S \ Pre∗

X

Lemma

L(W) = � iff inductive invariant for W exists.

17



Proof approach

L(W1),L(W2) reg. sep L(W1) ∩ L(W2) = L(W1 ×W2) = �

W1 ×W2 has inductive invariant

!

?
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Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if X = Q ↓ for Q finite.
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Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if X = Q ↓ for Q finite.

Recall:
(S ,6) well quasi order (wqo)

iff upward-closed sets have finitely many minimal elements.

No such statement for downward-closed sets and maximal elements!

19



Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if X = Q ↓ for Q finite.

We can show:

Theorem

Let W1,W2 WSTS, W2 deterministic.

If W1 ×W2 admits a finitely represented inductive invariant, then

L(W1) and L(W2) are regularly separable.

19



Proof approach II

L(W1),L(W2) reg. sep L(W1) ∩ L(W2) = L(W1 ×W2) = �

W1 ×W2 has fin. rep. invariant

!

7X
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Proof approach II

L(W1),L(W2) reg. sep L(W1) ∩ L(W2) = L(W1 ×W2) = �

W1 ×W2 has fin. rep. invariant

!

7X

20



Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals

Definition

For WSTS W , let Ŵ be its ideal completion [KP92,BFM14,FG12].

Lemma

L(W) = L(Ŵ).

Ŵ is deterministic if so is W.
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Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals

Definition

For WSTS W , let Ŵ be its ideal completion [KP92,BFM14,FG12].

Lemma

L(W) = L(Ŵ).

Ŵ is deterministic if so is W.

Proposition

If X is an inductive invariant for W,

then its ideal decomposition Idec(X )↓
is a finitely represented inductive invariant for Ŵ.

21



Proof

Putting everything together:

If W1,W2 are disjoint, W1 ×W2 admits an invariant X .

Then Idec(X )↓ is a finitely represented invariant for
̂W1 ×W2

∼= Ŵ1 × Ŵ2.

This finitely represented invariant gives rise to a regular

separator.

22



Proof

Putting everything together:

If W1,W2 are disjoint, W1 ×W2 admits an invariant X .

Then Idec(X )↓ is a finitely represented invariant for
̂W1 ×W2

∼= Ŵ1 × Ŵ2.

This finitely represented invariant gives rise to a regular

separator.

We have shown:

Theorem

If two WSTS languages are disjoint,

one of them finitely branching or deterministic or ω2,

then they are regularly separable.

22



Proof details:

From fin. rep. invariants to regular separators



From invariants to separability

Theorem

Let W1,W2 WSTS, W2 deterministic.

If W1 ×W2 admits a finitely represented inductive invariant, then

L(W1) and L(W2) are regularly separable.
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From invariants to separability

Theorem

Let W1,W2 WSTS, W2 deterministic.

If W1 ×W2 admits a finitely represented inductive invariant, then

L(W1) and L(W2) are regularly separable.

Assume Q ↓ is an invariant.

Idea: Construct separating NFA with Q as states.
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From invariants to separability

Theorem

Let W1,W2 WSTS, W2 deterministic.

If W1 ×W2 admits a finitely represented inductive invariant, then

L(W1) and L(W2) are regularly separable.

Definition

A = (Q,→,QI ,QF ) where

QI = {(s, s ′) ∈ Q | (c , c ′) 6 (s, s ′) for some (c, c ′) initial}
QF = {(s, s ′) ∈ Q | s ∈ F1}
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From invariants to separability

Theorem

Let W1,W2 WSTS, W2 deterministic.

If W1 ×W2 admits a finitely represented inductive invariant, then

L(W1) and L(W2) are regularly separable.

Definition

A = (Q,→,QI ,QF ) where

QI = {(s, s ′) ∈ Q | (c , c ′) 6 (s, s ′) for some (c, c ′) initial}
QF = {(s, s ′) ∈ Q | s ∈ F1}

(r , r ′) ∈ Q

Q 3 (s, s ′)

a

in A

11

a

in W1×W2

// (t, t ′) ∈ S1 × S2

6

23



Behavior of A

•
q0 ↓ •

q1 ↓

•
q2 ↓

•
q3 ↓

•
•

•

•

a

bb

c

a
b c

F1 × S2

A over-approximates the behavior of the product system

using the configurations from Q.
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Proving separability: Inclusion

Lemma

L(W1) ⊆ L(A).
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Any run c
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synchronizes with the run of W2 for w
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w−→ (d , d ′) of W1 ×W2.
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Proving separability: Inclusion

Lemma

L(W1) ⊆ L(A).

Proof.

Any run c
w−→ d of W1

synchronizes with the run of W2 for w

in the run (c , c ′)
w−→ (d , d ′) of W1 ×W2.

This run can be over-approximated in A.

If d is final in W1,

the over-approximation of (d , d ′) is final in A.
25



Proving separability: Disjointness

Lemma

L(W2) ∩ L(A) = �.
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Proving separability: Disjointness

Lemma

L(W2) ∩ L(A) = �.

Proof.

Any run of A for w over-approximates

in the second component the unique run of W2 for w .
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Proving separability: Disjointness

Lemma

L(W2) ∩ L(A) = �.

Proof.

Any run of A for w over-approximates

in the second component the unique run of W2 for w .

If w ∈ L(W2) ∩ L(A)

then some run of A reaches a state (q, q′) with

- q final in W1 (def. of QF )

- q′ final in W2 (w ∈ L(W2) + argument above).
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Proving separability: Disjointness

Lemma

L(W2) ∩ L(A) = �.

Proof.

Any run of A for w over-approximates

in the second component the unique run of W2 for w .

If w ∈ L(W2) ∩ L(A)

then some run of A reaches a state (q, q′) with

- q final in W1 (def. of QF )

- q′ final in W2 (w ∈ L(W2) + argument above).

Contradiction to (F1 × F2) ∩ Q↓ = � ! 26



Proof details:

The ideal completion and fin. rep. invariants



Finitely represented invariants

Lemma

Let U ⊆ S be an upward-closed set in a wqo.

There is a finite set Umin such that U = Umin ↑ .

A similar result for downward-closed subsets and maximal elements

does not hold.
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Finitely represented invariants

Lemma

Let U ⊆ S be an upward-closed set in a wqo.

There is a finite set Umin such that U = Umin ↑ .

A similar result for downward-closed subsets and maximal elements

does not hold.

Example:

Consider N in (N,6)

Intuitively, N = ω↓ .
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Finitely represented invariants

Lemma

Let U ⊆ S be an upward-closed set in a wqo.

There is a finite set Umin such that U = Umin ↑ .

A similar result for downward-closed subsets and maximal elements

does not hold.

Consequence:

Finitely represented invariants may not exist!

Solution:

Move to a language-equivalent system for which they always exist.

27



Ideals

Let (S ,6) be a wqo

An ideal I ⊆ S is a set that is

• non-empty

• downward-closed

• directed: ∀x , y ∈ I ∃z ∈ I : x 6 z , y 6 z .
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Ideals

Let (S ,6) be a wqo

An ideal I ⊆ S is a set that is

• non-empty

• downward-closed

• directed: ∀x , y ∈ I ∃z ∈ I : x 6 z , y 6 z .

Example 1:

For each c ∈ S , c ↓ is an ideal.
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Ideals

Let (S ,6) be a wqo

An ideal I ⊆ S is a set that is

• non-empty

• downward-closed

• directed: ∀x , y ∈ I ∃z ∈ I : x 6 z , y 6 z .

Example 2:

Consider (Nk ,6)

The ideals are the sets u ↓ for u ∈ (N ∪ {ω})k .

28



Ideal decomposition

Lemma ([Kabil, Pouzet 1992])

Let (S ,6) be a wqo.

For D ⊆ S downward closed, let Idec(D) be the set of

inclusion-maximal ideals in D.

Idec(D) is unique, finite, and we have

D =
⋃

Idec(D) .

29



Ideal completion

Definition ([FG12,BFM14])

Let W = (S ,6,T , I ,F ) WSTS.

Its ideal completion is

Ŵ = ({I ⊆ S | I ideal},⊆, T̂ , Idec(I ↓), F̂ ) with

F̂ = {I | I ∩ F 6= �}
T̂ defined by PostŴa (I) = Idec

(
PostWa (I)↓

)
.

30
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Lemma

• Ŵ finitely branching.

• W deterministic =⇒ Ŵ deterministic.

• L(Ŵ) = L(W). 30



Using the ideal completion

Proposition

If X is an inductive invariant for W,

then its ideal decomposition Idec(X )↓
is a finitely represented inductive invariant for Ŵ.
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Proof.

Property of being an inductive invariant carries over.

Any set of the shape Idec(Y )↓ is finitely-represented in Ŵ.
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Using the ideal completion

Proposition

If X is an inductive invariant for W,

then its ideal decomposition Idec(X )↓
is a finitely represented inductive invariant for Ŵ.

Proof.

Property of being an inductive invariant carries over.

Any set of the shape Idec(Y )↓ is finitely-represented in Ŵ.

Result in particular applies to Cover = Post∗(I1 × I2)↓ .

Remark: Ŵ is not necessarily a WSTS.

31



Separator size: The case of Petri nets



Separator size

Question:

Number of states of the separating automaton?
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Question:

Number of states of the separating automaton?

Consider Petri nets.

Problems:

1. Determinism.

2. Size estimation on the ideal decomposition of an invariant.
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Enforcing determinism

Given: Labeled Petri nets over Σ

NA = (PA,TA, λA, inA, outA,M0A,MfA)

NB = (PB ,TB , λ, inB , outB ,M0B ,MfB) .

Construct: Labeled Petri nets over TB

N−λA = (PA,T
−λ
A , `, in−λA , out−λA ,M0A,MfA)

Ndet
B = (PB ,TB , id, inB , outB , ,M0B ,MfB) .

See board.
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Given: Labeled Petri nets over Σ

NA = (PA,TA, λA, inA, outA,M0A,MfA)

NB = (PB ,TB , λ, inB , outB ,M0B ,MfB) .

Construct: Labeled Petri nets over TB

N−λA = (PA,T
−λ
A , `, in−λA , out−λA ,M0A,MfA)

Ndet
B = (PB ,TB , id, inB , outB , ,M0B ,MfB) .

L(NA × NB) = λ
(
L
(
N−λA × Ndet

B

))
33



Enforcing determinism

Given: Labeled Petri nets over Σ

NA = (PA,TA, λA, inA, outA,M0A,MfA)

NB = (PB ,TB , λ, inB , outB ,M0B ,MfB) .

Construct: Labeled Petri nets over TB

N−λA = (PA,T
−λ
A , `, in−λA , out−λA ,M0A,MfA)

Ndet
B = (PB ,TB , id, inB , outB , ,M0B ,MfB) .

If R separates L
(
N−λA

)
and L

(
Ndet
B

)
,

then λ
(
R
)

separates L(NA) and L(NB).
33



Obtaining an ideal decomposition of an invariant

First idea:

Coverability graph provides ideal decomposition of Cover.
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First idea:

Coverability graph provides ideal decomposition of Cover.

Problem:

It may be Ackermann-large.

Better idea:

Use ideal decomposition of Nk \ Pre∗(MfA ↑ ×MfB ↑).

Theorem ([Bozzelli, Ganty 2011])

Pre∗(Mf ↑) = {v1, . . . , vk} with k and ||vi ||∞ doubly exponential.
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The upper bound

Theorem (BG11)

Pre∗(Mf ↑) = {v1, . . . , vk} with k and ||vi ||∞ doubly exponential.

Theorem (Upper bound)

Given two disjoint Petri nets, we can construct an NFA separating

their coverability languages of triply-exponential size.
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Upper vs. lower bound

Theorem (Upper bound)

Given two disjoint Petri nets, we can construct an NFA separating

their coverability languages of triply-exponential size.

Theorem (Lower bound)

The disjoint Petri net coverability languages

L
0@22k and L

1@22k over {0, 1}

cannot be separated by a DFA of less than triply-exponential size.
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Conclusion



Regular separability for WSTS languages

Theorem

If two WSTS languages are disjoint,

one of them finitely branching or deterministic or ω2,

then they are regularly separable.
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Open problems: Expressiveness

Non-Determinism:

Does non-determinism add to the expressiveness of WSTS:

deterministic WSTS languages ( all WSTS languages ?

Open: Infinitely branching WSTS over Rado order.

Related problem:

ω2-WSTS languages ( deterministic WSTS languages ?

Complexity:

Tight bound on the separator size for Petri nets.

Replace homomorphism trick or show combinatorial magic.
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Open problems: Theory of regular separability

Regular separability result:

Are disjoint WSTS languages always regularly separable?

Solved if non-determinism does not add expressiveness.

Fails for WBTS [Finkel et al. 2017], strictly larger class.

Myhill-Nerode-like characterization of regular separability:

Should explain existing (un)decidability results.

An equivalence will not do (not one separator).

ω-regular separability of WSTS?

Regular separability is for safety verification.

Is there an ω-regular separability result for liveness verification?

A similarly general result would be surprising

given the negative results for LCS [Abdulla, Jonsson 1996].
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Open problems: Algorithms

There are not yet practical algorithms

for and based on separability :)

Computing regular separators:

Compute separators from automata or WMSO formulas.

Interpolation algorithms rely on resolution proofs.

Proof systems for WSMO under development [Vojnar et al. 2017].

Verification:

Try out ideas for verification algorithms.

Iterated decomposition in the Petri net case open.

Learning would benefit from extrapolation.
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Open problems

Beyond regular separability?

Beyond WSTS?
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Thank you!
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