Probabilistic Higher-Order Recursion Schemes and Termination Probabilities

Naoki Kobayashi
University of Tokyo

joint work with

Ugo Dal Lago (University of Bologna)
Charles Grellois (Aix-Marseille University)

Our Interest

- Model Checking of Probabilistic and HigherOrder Systems
(with applications to verification of probabilistic functional programs) cf.
- Model checking of probabilistic procedural programs (probabilistic pushdown [Esparza+ 04], recursive Markov chains [Etessami\&Yannakakis 04])
- Model checking of higher-order programs [Knapik+02, Ong06, K09,...]

This Talk

- pHORS: probabilistic extension of higher-order recursion schemes
- Termination problems for pHORS
- Undecidability of AST of order-2 pHORS
- Fixpoint characterization of termination probabilities
- Approximate computation of termination probabilities

This Talk

- pHORS: probabilistic extension of higher-order recursion schemes
- Termination problems for pHORS
- Undecidability of AST of order-2 pHORS
- Fixpoint characterization of termination probabilities
- Approximate computation of termination probabilities

pHORS

- A set of (simply-typed) rules of the form

$$
F x_{1} \ldots x_{n}=t_{L} \oplus_{p} t_{R}
$$

where:
$\mathrm{t}::=\mathrm{e}$ (termination) | Ω (divergence) |

$$
x|F| t_{1} t_{2}
$$

Order-1 pHORS
(Random Walk):
$\mathrm{S}=\mathrm{Fe} \oplus_{1} \boldsymbol{\Omega}$
$F x=x \oplus_{1 / 3} F(F x)$

Termination Probabilities and Verification Problems

- Termination probability of pHORS G $\operatorname{TP}(\mathrm{G})$: the probability that $\mathrm{S}_{\mathrm{G}} \rightarrow^{*} \mathrm{e}$

$$
\begin{aligned}
\mathrm{G}_{1}: & \mathrm{S}
\end{aligned}=\mathrm{Fe} .
$$

$\operatorname{TP}\left(\mathrm{G}_{1}\right)=$ the least solution of $\mathrm{z}=\mathrm{p}+(1-\mathrm{p}) \mathrm{z}^{\mathbf{2}}$

$$
= \begin{cases}1 & \text { if } p \geq 0.5 \\ p /(1-p) & \text { if } p<0.5\end{cases}
$$

Thus, $\operatorname{TP}\left(\mathrm{G}_{1}\right)=1$ iff $\mathrm{p} \geq 0.5$

Termination Probabilities and Verification Problems

- Termination probability of pHORS G

TP(G): the probability that $\mathrm{S}_{\mathrm{G}} \rightarrow^{*} \mathrm{e}$

- Problems of interest
- Decision problems:

Input: G, a rational number $r \in[0,1]$
Output: whether TP(G) \sim r (where $\sim \in\{=,>,<\}$)
(Special case: almost sure termination $\operatorname{TP}(G)=1)$
Known to be decidable for probabilistic pushdown (or recursive Markov chains) [Esparza+ 04][Etessami\&Yannakakis 04]), hence also for order-1 pHORS

Termination Probabilities and Verification Problems

- Termination probability of pHORS G

TP(G): the probability that $\mathrm{S}_{\mathrm{G}} \rightarrow{ }^{*} \mathrm{e}$

- Problems of interest
- Decision problems:

Input: G, a rational number $r \in[0,1]$
Output: whether TP(G) $\sim r$ (where $\sim \in\{=,>,<\}$)
(Special case: almost sure termination TP(G)=1)

- Approximation:

Input: G, a rational number $\varepsilon>0$
Output: r such that $|T P(G)-r|<\varepsilon$

Termination Probabilities and Verification Problems

- Problems of interest
- Decision problems:

Input: \mathbf{G}, a rational number $\mathrm{r} \in[0,1]$
Output: whether TP(G) $\sim r$ (where $\sim \in\{=, \gg<\}$)

- Approximation:

Input: G, a rational number $\varepsilon>0$
Output: r such that $|T P(G)-r|<\varepsilon$

- Why termination?
- A fundamental property of programs
- Used as a basis of other model checking procedures for probabilistic pushdown [Etessami+][Esparza+]

Outline

pHORS: probabilistic extension of higher-order recursion schemes

- Termination Problems
\checkmark Undecidability of AST of order-2 pHORS
- summary of results
- proof ideas
- Fixpoint characterization of termination probabilities
- Approximate computation of termination probabilities
- Conclusion

Undecidability of AST (Almost Sure Termination)

- The following decision problem is undecidable
- Input: order-2 pHORS G
- Output: whether TP(G)=1.
- More precisely, the following sets are not recursively enumerable (for $\mathrm{r} \in(0,1]$)
$-\mathcal{G}_{=r}=\{\mathrm{G}:$ order-2 pHORS | TP(G)=r\}
$-\mathcal{G}_{\geq r}=\{G:$ order-2 pHORS | TP(G) $\geq r\}$
cf. $\mathcal{G}_{>r}=\{G$: order- $2 \mathrm{pHORS} \mid \mathrm{TP}(\mathrm{G})>\mathrm{r}\}$ is r.e.
open: whether $\mathcal{G}_{\text {<r }}$ and $\mathcal{G}_{\boldsymbol{\mathcal { s }}}$ are r.e.

Relationship between open problems

Approximate computability
(Computability of r such that $|r-T P(G)|<\varepsilon$ for any order-2 pHORS G and $\varepsilon>0$)
$\mathcal{G}_{<r}=\{G:$ order-2 pHORS | TP(G)<r\} is r.e.
1
$\mathcal{G}_{\leq \mathrm{r}}=\{\mathrm{G}:$ order-2 pHORS | TP(G)$\leq \mathrm{r}\}$ is r.e.

Outline

pHORS: probabilistic extension of higher-order recursion schemes

- Termination Problems
\checkmark Undecidability of AST of order-2 pHORS
- summary of results
- proof ideas
- Fixpoint characterization of termination probabilities
- Approximate computation of termination probabilities
- Conclusion

Proof Idea

- Reduction from Hilbert's $10^{\text {th }}$ Problem (unsolvability of Diophantine equations)
- Given polynomials $P\left(x_{1}, \ldots, x_{n}\right)$ and $Q\left(x_{1}, \ldots, x_{n}\right)$ (with non-negative coefficients),
$\exists x_{1}, \ldots, x_{n} \cdot P\left(x_{1}, \ldots, x_{n}\right)<Q\left(x_{1}, \ldots, x_{n}\right)$ is undecidable (corollary of unsolvability of Diophantine)
Note: $D\left(x_{1}, \ldots, x_{n}\right)=0$ iff $D\left(x_{1}, \ldots, x_{n}\right)^{2}<1$

Proof Idea

\checkmark Reduction from Hilbert's $10^{\text {th }}$ Problem (unsolvability of Diophantine equations)

- Given polynomials $P\left(x_{1}, \ldots, x_{n}\right)$ and $Q\left(x_{1}, \ldots, x_{n}\right)$ (with non-negative coefficients),
$\exists x_{1}, \ldots, x_{n} \cdot P\left(x_{1}, \ldots, x_{n}\right)<Q\left(x_{1}, \ldots, x_{n}\right)$ is undecidable (corollary of unsolvability of Diophantine)
- Given $P\left(x_{1}, \ldots, x_{n}\right)$ and $Q\left(x_{1}, \ldots, x_{n}\right)$, one can effectively construct an order-2 pHORS $G_{P, Q}$ s.t.

$$
\operatorname{TP}\left(\mathrm{G}_{\mathrm{P}, \mathrm{Q}}\right)<1 \text { iff } \exists \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \cdot \mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<\mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

Construction of $G_{P, Q}$ (order-3 case)

- Church-encode natural numbers
[n]:nat $=\lambda s . \lambda z . s^{n} z$
(where nat $=(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$)
- Construct Test ${ }_{<}$nat \rightarrow nat $\rightarrow 0$ such that:
$\mathbf{m}<\boldsymbol{n}$ iff Test $\mathbf{m} \mathbf{n}$ is not AST
\checkmark Let $G_{P, Q}$ run Test $\left(P\left(x_{1}, \ldots, x_{n}\right)\right)\left(Q\left(x_{1}, \ldots, x_{n}\right)\right)$ for all $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$:
$S=$ TestAll 00
TestAll $x_{1} \ldots x_{n}=\operatorname{Test}_{<}\left(P\left(x_{1}, \ldots, x_{n}\right)\right)\left(Q\left(x_{1}, \ldots, x_{n}\right)\right)$
\oplus TestAll $\left(x_{1}+1\right) x_{2} \ldots x_{n} \oplus \ldots$
\oplus TestAll $x_{1} \ldots x_{n-1}\left(x_{n}+1\right)$

Construction of $G_{P, Q}$ (order-3 case)

- Church-encode natural numbers
$-[n]=\lambda s . \lambda z . s^{n} z:(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$
- Construct Test $:$ nat \rightarrow nat $\rightarrow 0$ s.t.
$\mathrm{m}<\mathrm{n}$ iff Church $\mathrm{m} n$ is not AST
Let $G_{p, Q}$ run Test $\left(P\left(x_{1}, \ldots, x_{n}\right)\right)\left(Q\left(x_{1}, \ldots, x_{n}\right)\right)$ for all $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$:
$S=$ TestAll $0 \ldots$.
TestAll $x_{1} \ldots x_{n}=$ Test $\left(P\left(x_{1}, \ldots, x_{n}\right)\right)\left(Q\left(x_{1}, \ldots, x_{n}\right)\right)$
\oplus TestAll $\left(x_{1}+1\right) x_{2} \ldots x_{n} \oplus \ldots$
\oplus TestAll $x_{1} \ldots x_{n-1}\left(x_{n}+1\right)$

Construction of Test ${ }^{\mathbf{m}} \mathbf{n}$

- Recall:
- F e where $F x=x \oplus_{p} F(F x)$ is non-AST iff $p<0.5$
- Parametrize F by \oplus_{p} :
- $F^{\prime} g$ e where $F^{\prime} g x=g x\left(F^{\prime} g\left(F^{\prime} g x\right)\right)$ is non-AST if $\mathrm{g}: \mathrm{O} \rightarrow \mathbf{0} \rightarrow \mathbf{0}$ chooses the first branch with prob. <0.5
- Define Test ${ }^{\text {by }}$:
- Test $m n=F^{\prime}$ (LT m n)e

Chooses the first branch

- LT mnxy $=\left(\left(\mathrm{H}^{2}\right)^{\mathrm{m}} \mathrm{y}\right) \oplus_{0.5}\left(\left(\mathrm{Hy}^{\mathrm{n}} \mathrm{x}\right)\right.$
$-H x y=x \oplus_{0.5} y$

$\mathbf{G}_{\mathrm{P}, \mathrm{Q}}$ for order-3 case

S = TestAll Zero Zero
TestAll $x_{1} \ldots x_{n}=$ Test $_{<}\left(\right.$P $\left._{1} \ldots x_{n}\right)\left(Q x_{1} \ldots x_{n}\right)$ \oplus TestAll $\left(x_{1}+1\right) x_{2} \ldots x_{n} \oplus \ldots$ \oplus TestAll $x_{1} \ldots x_{n-1}\left(x_{n}+1\right)$

Run
Test ${ }_{<}\left(\mathrm{P} \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right)$ ($Q x_{1} \ldots x_{n}$)
for all x_{1}, \ldots, x_{n}

LT mnxy=((Hx) $\left.{ }^{m} y\right) \oplus_{0.5}\left(\left(H_{y}\right)^{n} x\right)$
$H x y=x \oplus_{0.5} y$

Zero s z = z
$P x_{1} \ldots x_{n}=\ldots$
$Q x_{1} \ldots x_{n}=\ldots$
non-AST iff $m<n$

Define natural numbers

- and polynomials using

Church encoding
$G_{P, Q}$ is non-AST iff $P\left(x_{1}, \ldots, x_{n}\right)<Q\left(x_{1}, \ldots, x_{n}\right)$ is satisfiable

$\mathrm{G}_{\mathrm{P}, \mathrm{Q}}$ for order-3 case

S = TestAll Zero Zero
TestAll $x_{1} \ldots x_{n}=$ Test $_{<}\left(P x_{1} \ldots x_{n}\right)\left(Q x_{1} \ldots x_{n}\right)$ \oplus TestAll $\left(x_{1}+1\right) x_{2} \ldots x_{n} \oplus \ldots$ \oplus TestAll $x_{1} \ldots x_{n-1}\left(x_{n}+1\right)$

Run
Test $\left.{ }^{\left(P x_{1} \ldots\right.} x_{n}\right)$ ($Q x_{1} \ldots x_{n}$)
for all $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$

Test $m n=F^{\prime}(L T m n) e$
Does not work for order-2 case,
because Church numerals are order-2 functions

Zero s z = \mathbf{z}
$P x_{1} \ldots x_{n}=\ldots$
$Q x_{1} \ldots x_{n}=\ldots$

Define natural numbers
and polynomials using
Church encoding
$G_{P, Q}$ is non-AST iff $P\left(x_{1}, \ldots, x_{n}\right)<Q\left(x_{1}, \ldots, x_{n}\right)$ is satisfiable

Ideas for Order-2 Case

\checkmark Represent natural numbers as order-1 probabilistic functions
$[n]=\lambda x . \lambda y . x \oplus_{p(n)} y \quad$ where $p(n)=1-1 / 2^{n}$
Zero $\mathrm{xy}=\mathrm{y} \quad$ Succ $\mathrm{nxy}=\mathrm{x} \oplus_{1 / 2}(\mathrm{nxy})$ Prob("Succ $n x y$ chooses y ")
$=1 / 2 \cdot 1 / 2^{n}=1 / 2^{n+1}$

Ideas for Order-2 Case

- Represent natural numbers as order-1 probabilistic functions
$[n]=\lambda x . \lambda y . x \oplus_{p(n)} y \quad$ where $p(n)=1-1 / 2^{n}$
Zero $\mathrm{xy}=\mathrm{y} \quad$ Succ $\mathrm{nxy}=\mathrm{x} \oplus_{1 / 2}(\mathrm{nxy})$
Add $m \mathrm{nxy}=\mathrm{mx}(\mathrm{nxy})$
Prob("Add mnxy chooses y")
$=1 / 2^{m} \cdot 1 / 2^{\mathrm{n}}=1 / 2^{\mathrm{m}+\mathrm{n}}$

Ideas for Order-2 Case

- Represent natural numbers as order-1 probabilistic functions

$$
\begin{aligned}
& {[n]=\lambda x \cdot \lambda y \cdot x \oplus_{p(n)} y \text { where } p(n)=1-1 / 2^{n}} \\
& \text { Zero } x y=y \quad \text { Succ } n x y=x \oplus_{1 / 2}(n x y) \\
& \text { Add } m n x y=m x(n x y)
\end{aligned}
$$

S = TestAll Zero Zero
TestAll $x_{1} \ldots x_{n}=$ Test $_{<}\left(P x_{1} \ldots x_{n}\right)\left(Q x_{1} \ldots x_{n}\right)$
\oplus TestAll $\left(x_{1}+1\right) x_{2} \ldots x_{n} \oplus \ldots \oplus$ TestAll $x_{1} \ldots x_{n-1}\left(x_{n}+1\right)$
Test ${ }^{m} \mathbf{n}=\mathrm{F}^{\prime}(\mathrm{LT} \mathrm{m} \mathrm{n}) \mathrm{e}$
LT m nxy $=(\mathrm{mxy}) \oplus_{0.5}(\mathrm{nyx})$

Ideas for Order-2 Case

- Represent natural numbers as order-1 probabilistic functions
$[n]=\lambda x . \lambda y . x \oplus_{p(n)} y \quad$ where $p(n)=1-1 / 2^{n}$
Zero $\mathrm{xy}=\mathrm{y} \quad$ Succ $\mathrm{nxy}=\mathrm{x} \oplus_{1 / 2}(\mathrm{nxy})$
Add $\mathrm{maxy}=\mathrm{mx}(\mathrm{nxy}) \quad$ This cannot be
S = TestAll Zero Zero
TestAll $x_{1} \ldots x_{n}=$ Test $_{<}\left(P x_{1} \ldots x_{n}\right)\left(Q x_{1} \ldots x_{n}\right)$ \oplus TestAll $\left(x_{1}+1\right) x_{2} \ldots x_{n} \oplus \ldots \oplus$ TestAll $x_{1} \ldots x_{n-1}\left(x_{n}+1\right)$
Test ${ }^{m} \mathbf{n}=\mathrm{F}^{\prime}(\mathrm{LT} \mathrm{m} \mathrm{n}) \mathrm{e}$
LT mnxy=(mxy) $\oplus_{0.5}(n y x)$

Ideas for Order-2 Case

- Represent natural numbers as order-1 probabilistic functions
$[n]=\lambda x . \lambda y . x \oplus_{p(n)} y \quad$ where $p(n)=1-1 / 2^{n}$
Zero $\mathrm{xy}=\mathrm{y} \quad$ Succ $\mathrm{nxy}=\mathrm{x} \oplus_{1 / 2}(\mathrm{nxy})$
Add $m \mathrm{nxy}=\mathrm{mx}(\mathrm{n} \times \mathrm{y})$
\bullet Pass around the values of $x_{1}{ }^{k 1} \ldots x_{n}{ }^{k n}$ (for $k_{1} \leq d_{1}, \ldots$, $k_{n} \leq d_{n}$, where d_{i} is the degree of $P+Q$ in x_{i})
$\mathrm{S}=$ TestAll One Zero Zero $\underbrace{v_{k 1, \ldots, k n} \text { holds the value of }}$ TestAll $\mathrm{v}_{0, \ldots, \ldots, 0} \ldots \mathrm{v}_{\mathrm{d} 1, \ldots, \mathrm{dn}}=$

$$
\text { Test }\left(P v_{0, \ldots, 0} \ldots v_{\mathrm{d} 1, \ldots, \mathrm{dn}}\right)\left(Q \mathrm{v}_{0, \ldots, 0,0} \ldots \mathrm{v}_{\mathrm{d} 1, \ldots, \mathrm{dn}}\right)
$$

\oplus TestAll $\left(\operatorname{lnc}_{1} \overrightarrow{\mathbf{v}}\right) \oplus \ldots \oplus$ TestAll $\left(\operatorname{Inc}_{\mathrm{n}} \overrightarrow{\mathbf{v}}\right)$
Inc c_{i} updates $v_{k 1, \ldots, k n}$ to the value of $x_{1}{ }^{k 1} \ldots\left(x_{i}+1\right)^{k i} x_{n}{ }^{k n}$

Ideas for Order-2 Case

\bullet Pass around the values of $x_{1}{ }^{k 1} \ldots x_{n}{ }^{k n}$ (for $k_{1} \leq d_{1}, \ldots, k_{n}$
$\leq d_{n}$, where d_{i} is the degree of $P+Q$ in x_{i})
Example: $P=x^{2} y, Q=x^{2}+y$
TestAll $v_{00} v_{01} v_{10} v_{11} v_{20} v_{21} \quad$ value of $x^{j} y^{k}$
Test $\left(P v_{00} v_{01} v_{10} v_{11} v_{20} v_{21}\right)\left(Q v_{00} v_{01} v_{10} v_{11} v_{20} v_{21}\right)$
\oplus TestAll ($\operatorname{Inc}_{\mathrm{x}, \mathbf{0 0}} \mathbf{v}_{\mathbf{0 0}} \mathbf{v}_{\mathbf{0 1}} \mathbf{v}_{10} \mathbf{v}_{11} \mathbf{v}_{\mathbf{2 0}} \mathbf{v}_{\mathbf{2 1}}$) ...
$\left(\operatorname{lnc}_{\mathrm{x}, 21} \mathrm{v}_{00} \mathrm{v}_{01} \mathrm{v}_{10} \mathbf{v}_{11} \mathrm{v}_{20} \mathrm{v}_{21}\right)$
\oplus TestAll ($\operatorname{Inc}_{\mathrm{y}, 00} \mathbf{v}_{\mathbf{0 0}} \mathbf{v}_{\mathbf{0 1}} \mathbf{v}_{10} \mathbf{v}_{11} \mathbf{v}_{20} \mathbf{v}_{21}$) ...
$\left(\begin{array}{llllll} & \operatorname{nnc}_{\mathrm{y}, 21} & v_{00} & v_{01} & v_{10} & v_{11} \\ v_{20} & v_{21}\end{array}\right)$
$P v_{00} v_{01} v_{10} v_{11} v_{20} v_{21}=v_{21} Q v_{00} v_{01} v_{10} v_{11} v_{20} v_{21}=$ Add $v_{20} v_{01}$ $\operatorname{Inc}_{\mathrm{x}, 00} \mathrm{v}_{00} \mathrm{v}_{01} \mathrm{v}_{10} \mathrm{v}_{11} \mathrm{v}_{20} \mathrm{v}_{21}=$ One
 (since $\left.(x+1)^{2} y=x^{2} y+2 x y+y\right)$

Construction of $\mathrm{G}_{\mathrm{P}, \mathrm{Q}}$

S = TestAll One Zero Zero
TestAll $\mathrm{v}_{0, \ldots, 0} \ldots \mathrm{v}_{\mathrm{d} 1, \ldots, \mathrm{dn}}=$
Test ${ }_{<}\left(P v_{0, \ldots, 0} \ldots v_{d 1, \ldots, d n}\right)\left(Q v_{0, \ldots, 0} \ldots v_{d 1, \ldots, d n}\right)$ \oplus TestAll $\left(\operatorname{lnc}_{\mathbf{1}} \mathbf{v}\right) \oplus \ldots \oplus$ TestAll $\left.\left(\operatorname{lnc}_{n} \overrightarrow{\mathbf{v}}\right) \quad\right]$

Run
Test $<\left(P\left(x_{1}, \ldots, x_{n}\right)\right)$
($\mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$)
for all $\mathbf{x}_{1}, \ldots, x_{n}$

Test $\quad \mathrm{m} n=\mathrm{F}^{\prime}(\mathrm{LT} \mathrm{m} n$) e
LT mnxy=(mxy) $\oplus_{0.5}(\mathrm{nyx})$
$F^{\prime} g x=g x\left(F^{\prime} g\left(F^{\prime} g x\right)\right)$
Zero $\mathrm{x} \mathrm{y}=\mathrm{y}$
Succ $n x y=x \oplus_{1 / 2}(n x y)$
Add $m \mathrm{nxy}=\mathrm{mx}(\mathrm{nxy})$
$P \mathbf{v}_{0, \ldots, 0} \ldots \mathbf{v}_{\mathrm{d} 1, \ldots, \mathrm{dn}}=\ldots$
$\operatorname{lnc}_{\mathrm{i}, \mathrm{k} 1, \ldots, \mathrm{kn}} \mathbf{v}_{\mathbf{0}, \ldots, 0} \ldots \mathbf{v}_{\mathrm{d} 1, \ldots, \mathrm{dn}}=\ldots$
non-AST iff $m<n$

Encode natural numbers as order-1
probabilistic functions
Can be expressed as
linear combinations of v

Summary of Undecidability Results

- The following decision problem is undecidable
- Input: order-2 pHORS G
- Output: whether TP(G)=1.
- More precisely, the following sets are not recursively enumerable (for $r \in(0,1])$
$-\mathcal{G}_{=r}=\{G$: order- 2 pHORS | TP(G)=r $\}$
$-\mathcal{G}_{\geq r}=\{G:$ order-2 pHORS | TP(G) $\geq r\}$
cf. $\mathcal{G}_{>r}=\{G:$ order-2 pHORS | TP(G)>r\} is r.e.
open: whether $\mathcal{G}_{<\mathrm{r}}$ and $\mathcal{G}_{\leq \mathrm{r}}$ are r.e.
Note: A hope remains on approximate computation:
Input: \mathbf{G}, a rational number $\varepsilon>0$
Output: r such that $|T P(G)-r|<\varepsilon$

Outline

pHORS: probabilistic extension of higher-order recursion schemes

- Termination Problems
- Undecidability of AST of order-2 pHORS
- Fixpoint characterization of termination probabilities
- Order-n characterization
- Order-(n-1) characterization
- Approximate computation of termination probabilities
- Conclusion

Order-n (Least) Fixpoint

Characterization of Termination Prob.

for Order-n pHORS

- Just replace
e (termination) with 1
Ω (divergence) with 0
$t_{L} \oplus_{p} t_{R}$ with $p\left[t_{L}\right]+(1-p)\left[t_{R}\right]$

Order-1 pHORS:
$\mathrm{S}=\mathrm{Fe}$
$F x=x \oplus_{1 / 3} F(F x)$

Order-1 fixpoint equations $\mathrm{S}=\mathrm{F} 1$
$F x=1 / 3 \cdot x+2 / 3 \cdot F(F x)$

The least solution: $S=0.5, F(x)=0.5 x$

Order-(n-1) Fixpoint Characterization? (cf. Order-0 equations for termination probabilities of probabilistic PDS [Etessami+; Esparza+])

- Easy in order-1 case (cf. probabilistic pushdown)

Order-1 pHORS: $\mathrm{S}=\mathrm{Fe}$
$F x=x \oplus_{1 / 3} F(F x)$

Order-0 fixpoint equations

$$
\begin{aligned}
& S=F_{0}+F_{1} \cdot 1 \\
& F_{1}=1 / 3 \cdot 1+2 / 3 \cdot F_{1} \cdot F_{1} \\
& F_{0}=1 / 3 \cdot 0+2 / 3 \cdot\left(F_{0}+F_{1} \cdot F_{0}\right)
\end{aligned}
$$

F_{0} : prob. of terminating without using x
F_{1} : prob. of using x
Order-1 function of arity k can be expressed as

$$
\left(F_{0}, F_{1}, \ldots, F_{k}\right) \in \operatorname{Real}^{k+1}
$$

where F_{0} : prob. of terminating without using any arguments F_{i} : prob. of using the i-th argument

Order-(n-1) Fixpoint Characterization: General Case

- How to translate an order-2 function F of type $(0 \rightarrow 0) \rightarrow 0$?
- Naive solution: as a function from
$\left(g_{0}, g_{1}\right) \in$ Real $^{2} \quad\left(g_{0}:\right.$ prob. that the argument g terminates, g_{1} : prob. that g uses its argument)
to the termination probability of $\mathrm{F}(\mathrm{g})$.
=> Does not work when g contains a variable:

$$
\text { e.g. J } x=F(H x)
$$

There is no way to calculate the prob. that J uses x from the translation of F.

Order-(n-1) Fixpoint Characterization: General Case

- In a context where order- 0 variables x_{1}, \ldots, x_{k} are visible, a function $\lambda y_{1} \ldots y_{l} \cdot \lambda z_{1} \ldots z_{m} . t$ is translated to:

Order-(n-1) Fixpoint Characterization: General Case

- In a context where order- 0 variables x_{1}, \ldots, x_{k} are visible, a function $\lambda y_{1} \ldots y_{\ell} . \lambda z_{1} \ldots z_{m} . t$ is translated to:

Returns the prob. of reaching the current reachability target

Returns prob. of reaching z_{i}

Returns prob. of reaching x_{j}
e.g. $\lambda y . \lambda z . y\left(x \oplus_{1 / 3} z\right)$ is translated to:

$$
\left(\lambda\left(y_{0}, y_{1}, y_{2}\right) \cdot y_{0}, \lambda\left(y_{0}, y_{1}, y_{2}\right) \cdot 2 / 3 \cdot y_{1}, \lambda\left(y_{0}, y_{1}, y_{2}\right) \cdot 1 / 3 \cdot y_{1}, \lambda\left(y_{0}, y_{1}, y_{2}\right) \cdot y_{2}\right)
$$

Translation Relation for

Order-(n-1) Fixpoint Characterization

order-0 variables

Translation Rule for Ω (divergence)

order-0 variables

Translation Rule for Order-0 Variables

order-0 variables

Translation Rule for

Variables

order-0 variables

Translation Rule for Applications (order-1 case)

order-0 variables
$\Gamma ;{ }_{x_{1}, \ldots, x_{k}}^{L}-s: 0^{m+1} \rightarrow 0$
$\rightarrow\left(s_{0}, s_{1}, \ldots, s_{m+1}, s_{m+2} \ldots, s_{m+k+1}, s_{m+k+2}\right)$
$\Gamma ; x_{1}, \ldots, x_{k} \mid-t: 0 \quad\left(t_{0}, t_{1} \ldots, t_{k}, t_{k+1}\right)$
$\Gamma ; x_{1}, \ldots, x_{k} \mid-$ st: $0^{m} \rightarrow 0$
$\rightarrow\left(s_{0}+s_{1} \cdot t_{0}, s_{2}, \ldots, s_{m+1}\right.$,

$$
\left.s_{m+2}+s_{1} \cdot t_{1}, \ldots, s_{m+k+2}+s_{1} \cdot t_{k+1}\right)
$$

Translation Rule for Applications (higher-order case)

order-0 variables

$$
\begin{aligned}
& \Gamma ; \dot{x}_{1}, \ldots, x_{k} \mid-s: \kappa_{1} \rightarrow \ldots \rightarrow \kappa_{l} \rightarrow o^{m} \rightarrow 0 \\
& \Rightarrow\left(s_{0}, s_{1}, \ldots, s_{m}, s_{m+1}, \ldots, s_{m+k}, s_{m+k+1}\right) \\
& \Gamma ; x_{1}, \ldots, x_{k}-t: \kappa_{1} \\
& \quad \rightarrow\left(t_{0}, t_{1} \ldots, t_{n}, t_{n+1}, \ldots, t_{n+k}, t_{n+k+1}\right)
\end{aligned}
$$

$\Gamma ; \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \mid-\mathrm{st}: \kappa_{2} \rightarrow \ldots \rightarrow \kappa_{\ell} \rightarrow \mathbf{o}^{\mathrm{m}} \rightarrow \mathbf{0}$
$\rightarrow\left(s_{0}\left(t_{0}, t_{1} \ldots, t_{n}, t_{n+k+1}\right), \ldots, s_{m}\left(t_{0}, t_{1} \ldots, t_{n}, t_{n+k+1}\right)\right.$,

$$
\begin{aligned}
& s_{m+1}\left(t_{n+1}, t_{1} \ldots, t_{n}, t_{n+k+1}\right), \ldots, \\
& \left.s_{m+k+1}\left(t_{n+k+1}, t_{1} \ldots, t_{n}, t_{n+k+1}\right)\right)
\end{aligned}
$$

Translation of Rewriting rules

> order-0 variables
> $y_{1}, \ldots, y_{l} ; x_{1}, \ldots, x_{k}-s: 0 \quad \Leftrightarrow\left(s_{0}, s_{1}, \ldots, s_{k}, s_{k+1}\right)$
> $y_{1}, \ldots, y_{i} ; x_{1}, \ldots, x_{k}-t: 0 \rightarrow\left(t_{0}, t_{1}, \ldots, t_{k}, t_{k+1}\right)$

$$
\begin{aligned}
& F y_{1}, \ldots, y_{\ell} x_{1}, \ldots, x_{k}=s \oplus_{p} t \\
& \qquad\left\{F_{0}\left(y_{1,0}, \ldots\right) \ldots\left(y_{\ell, 0}, \ldots\right)=p s_{0}+(1-p) t_{0}\right. \\
& \quad \ldots, \\
& \left.\quad F_{k}\left(y_{1,0}, \ldots\right) \ldots\left(y_{\ell, 0}, \ldots\right)=p s_{k}+(1-p) t_{k}\right\}
\end{aligned}
$$

Example

$S^{\prime}=S e \Omega \quad S x y=F(C x y) \quad F g=g H$
$H x=x \oplus_{0.5} \Omega \quad$ Cxyf=(fx) $\oplus_{0.3}(f y)$
(S': o, S: o->0->0, H: o->0, F: ((0->0)->0)->0,
C: $0->0->(0->0)->0$
$S_{0}=F_{0}\left(C_{0} 000, C_{0} 00\right) \quad S_{1}=F_{0}\left(C_{0} 10, C_{0} 00\right)$
$S_{2}=F_{0}\left(C_{0} 01, C_{0} 00\right)$
$F_{0}\left(g_{0}, g_{1}\right)=g_{0}\left(H_{0}, H_{1}, H_{0}\right)$
$C_{0} x_{0} y_{0}\left(f_{0}, f_{1}, f_{2}\right)=0.3\left(f_{0}+f_{1} \cdot x_{0}\right)+0.7\left(f_{0}+f_{1} \cdot y_{0}\right)$
$H_{0}=0 \quad H_{1}=0.5$

$$
\begin{aligned}
\mathrm{S}_{1} & =\mathrm{F}_{0}\left(\mathrm{C}_{0} 10, \mathrm{C}_{0} 00\right)=\mathrm{C}_{0} 10\left(\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{0}\right) \\
& =0.3\left(\mathrm{H}_{0}+\mathrm{H}_{1} \cdot 1\right)+0.7\left(\mathrm{H}_{0}+\mathrm{H}_{1} \cdot 0\right)=0.15
\end{aligned}
$$

Correctness of Fixpoint Characterization

If $G \rightarrow \mathcal{E}_{G}$, then:

$\operatorname{TP}(\mathrm{G})$ is the least solution of \mathcal{E}_{G} (more precisely, $\operatorname{TP}(\mathrm{G}, \mathrm{Se})=\operatorname{Ifp}\left(\mathcal{E}_{\mathrm{G}}\right)\left(\mathrm{S}_{1}\right)$).

For any order-n pHORS G, \mathcal{E}_{G} (such that $G \rightarrow \mathcal{E}_{G}$) is

- a system of order-(n-1) fixpoint equations; and
- constructible in polynomial time

Outline

pHORS: probabilistic extension of higher-order recursion schemes

- Termination Problems
- Undecidability of AST of order-2 pHORS
- Fixpoint characterization of termination probabilities
\checkmark Approximate computation of termination probabilities (for order-2 pHORS)
- Related work and conclusion

Summary of the Talk So far

- TP(G) $\sim r$ is undecidable for $\sim \in\{=, \geq\}$
- A hope remains on approximate computability:

Input: G, a rational number $\varepsilon>0$
Output: r such that $|T P(G)-r|<\varepsilon$

- TP(G) can be characterized as order-($\mathrm{n}-1$)
fixpoint equations
(order-1 equations for order-2 $\mathbf{p H O R S}$)
- immediately yields a method for computing a lower bound for TP(G)
- Given $f=F(f)$, the least solution can be lowerapproximated by $\mathrm{F}^{\mathrm{k}}(\perp)$
- how about upper-approximation?

Non-Solution 1:

Upper-approximation of greatest fixpoint

- For f=F(f), $\operatorname{lfp}(F) \leq \operatorname{gfp}(F) \leq F^{n}(\lambda x .1)$,
but $\mathrm{F}^{\mathrm{n}}(\lambda \times .1)$ may be too imprecise as an upper bound for Ifp(F).

$$
\begin{aligned}
& \text { e.g. For } F=\lambda f . \lambda x . f(x) \text {, } \\
& \quad \operatorname{lfp}(F)=\lambda x .0, \text { but } g f p(F)=F^{n}(\lambda x .1)=\lambda x .1
\end{aligned}
$$

Non-Solution 2:

Upper-approximation by Polynomials

- Example: $f(x)=1 / 3 \cdot x+2 / 3 \cdot f(f(x))$

Template: $f(x)=c_{0}+c_{1} x$
Sufficient condition for upper-approximation:

$$
\begin{aligned}
f(x) & \geq 1 / 3 \cdot x+2 / 3 \cdot f(f(x)) \\
& =1 / 3 \cdot x+2 / 3\left(c_{0}+c_{1}\left(c_{0}+c_{1} x\right)\right),
\end{aligned}
$$

i.e. $c_{0} \geq 2 / 3\left(c_{0}+c_{1} c_{0}\right)$

$$
c_{1} \geq 1 / 3+2 / 3 c_{1}{ }^{2},
$$

yielding $c_{1}=1 / 2, c_{0}=0$, i.e. $f(x)=1 / 2 x$

Non-Solution 2:

Upper-approximation by Polynomials

- Imprecise for: $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}+\mathrm{x}_{2} \cdot \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
(where x_{1}, x_{2} are constrained by $0 \leq x_{1}+x_{2} \leq 1$)
- least solution:

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}0 & \text { if } x_{1}=0 \\ x_{1} /\left(1-x_{2}\right) & \text { if } x_{1}>0\end{cases}
$$

Since $f\left(x_{1}, x_{2}\right)=1$ for $x_{1}=\varepsilon>0$ and $x_{2}=1-\varepsilon$,

$$
f^{\prime}(0,1)=1>f(0,1)
$$

for any sound polynomial upper-approximation f^{\prime} of f (due to the continuity of f^{\prime})

Our Approach: Discretization (à la Finite Element Method)

- Decompose $[0,1]$ into a finite number of intervals, and use a step-wise linear function f^{*} as an upper bound
-f* is determined by
a finite number of points $\left(x_{0}, y_{0}\right), \ldots\left(x_{n}, y_{n}\right)$
-Sufficient condition for sound approximation: $y_{i} \geq f^{*}\left(x_{i}\right)$ for $i=0, \ldots, n$
- y_{i} can be computed by:
- using decidability of theories of real arithmetics; or
- discretization of codomain

Example

$f(x)=0.25 x+0.75 f(f(x))$

- discrete points:

$$
\left(0, y_{0}\right),\left(0.5, y_{1}\right),\left(1, y_{2}\right)
$$

- constraints:

$$
\begin{aligned}
& y_{0} \geq 0.25 \cdot 0+0.75 f^{*}\left(f^{*}(0)\right), y_{1} \geq 0.25 \cdot 0.5+0.75 f^{*}\left(f^{*}(0.5)\right), \\
& y_{2} \geq 0.25 \cdot 1+0.75 f^{*}\left(f^{*}(1)\right) \\
& \text { where } f^{*}(x)=\left[\begin{array}{ll}
(1-2 x) y_{0}+2 x y_{1} \text { if } x \in[0,0.5] \\
(2-2 x) y_{1}+(2 x-1) y_{2} \text { if } x \in(0.5,1]
\end{array}\right.
\end{aligned}
$$

- with discretization of y_{i} to $\{0,0.25,0.5,0.75,1\}$:

$$
\begin{aligned}
& \left(y_{0}, y_{1}, y_{2}\right)^{(0)}=(0,0,0) \\
& \left(y_{0}, y_{1}, y_{2}\right)^{(1)}=(0,0.25,0.25) \\
& \left(y_{0}, y_{1}, y_{2}\right)^{(2)}=\left(y_{0}, y_{1}, y_{2}\right)^{(3)}=(0,0.25,0.5)
\end{aligned}
$$

yielding $f^{*}(x)=0.5 x$ (exact solution: $f(x)=1 / 3 \cdot x$)

Experimental Results

equations	\#dom	\#codom	l.b.	u.b.	u.b.(step)	exact
Ex2.3-1	16	512	0.333	0.336	1.0	$\frac{1}{3}$
Ex2.3-v1	16	512	0.312	0.315	0.365	-
Ex2.3-v2	16	512	0.262	0.266	0.321	-
Ex2.4	16	512	0.320	0.323	0.329	-
Double	16	512	0.649	0.653	1.0	-
Discont(0,1)	16	512	0.0	0.0	0.0	0
Discont(0.01,0.99)	16	512	0.999	1.0	1.0	1
Incomp	16	512	0.299	1.0	1.0	0.3
Incomp	10	100	0.299	0.3	0.3	0.3
Incomp2	16	512	0.249	1.0	1.0	0.25
Incomp2	256	65536	0.249	1.0	1.0	0.25

Experimental Results

Experimental Results

Artificial examples (having no corresponding pHORS) that show possible incompleteness. Incomp:

$$
S=F(S), F(x)=x^{2}+0.4 x+0.09
$$

Incomp2:

$$
S=F(S), F(x)=0.5 x^{2}+2 F(0.5 x)
$$

Discont(0	,	512	0.999	1.0	1.0	1
Incomp	16	512	0.299	1.0	1.0	0.3
Incomp	10	100	0.299	0.3	0.3	0.3
Incomp2	16	512	0.249	1.0	1.0	0.25
Incomp2	256	65536	0.249	1.0	1.0	0.25

Experimental Results

Artificial examples (having no corresponding pHORS) that show possible incompleteness. Incomp:

$$
S=F(S), F(x)=x^{2}+0.4 x+0.09
$$

$$
S \geq F(S) \text { iff }(S-0.3)^{2} \leq 0 \text { iff } S=0.3
$$

Incomp2:

$$
S=F(S), F(x)=0.5 x^{2}+2 F(0.5 x)
$$

Discont(0.01,0.9	512	0.999	1.0	1.0	1	
Incomp	16	512	0.299	1.0	1.0	0.3
Incomp	10	100	0.299	0.3	0.3	0.3
Incomp2	16	512	0.249	1.0	1.0	0.25
Incomp2	256	65536	0.249	1.0	1.0	0.25

Outline

pHORS: probabilistic extension of higher-order recursion schemes

- Termination Problems
- Undecidability of AST of order-2 pHORS
- Fixpoint characterization of termination
- Approximate computation of termination probabilities
- Related Work and Conclusion

Related Work

- Model checking of probabilistic pushdownsystems/recursive Markov chains
[Esparza+ 04, Etessami\&Yannakakis 04,...]
- termination probabilities as polynomial equations (special case of our order-(n-1) fixpoint characterization)
- studies of linear-time/branching-time model checking problems
- Model checking of (non-probabilistic) HORS [Knapik+02, Ong06, Kobayashi09, ...]
- Type-based characterization of termination probabilities of probabilistic functional programs [Dal Lago\&Grellois, Breuvart\&Dal Lago]
- do not provide a method for precise approximation

Conclusion

pHORS as a model of probabilistic functional programs
\checkmark Undecidability of AST of order-2 pHORS
\checkmark Order-(n-1) Fixpoint Characterization of Termination Probability of order-n pHORS

- Sound (but possibly incomplete) method for approximate computation of TP(G) for order2 pHORS

Future Work

Settling the question of approximate computability of TP(G) with arbitrary precision

Input: G, a rational number $\varepsilon>0$
Output: r such that $|T P(G)-r|<\varepsilon$
(equivalent to the question of whether $\mathcal{G}_{<r}=\{G:$ order-2 pHORS | TP(G)<r\} is r.e.)

- Practical method for approximate computation of TP(G) for pHORS of arbitrary order
- Model checking of pHORS

