Probabilistic Higher-Order Recursion Schemes and Termination Probabilities

Naoki Kobayashi University of Tokyo

joint work with

Ugo Dal Lago (University of Bologna) Charles Grellois (Aix-Marseille University)

Our Interest

Model Checking of Probabilistic and Higher-Order Systems (with applications to verification of probabilistic functional programs) cf.

- Model checking of probabilistic procedural programs (probabilistic pushdown [Esparza+ 04], recursive Markov chains [Etessami&Yannakakis 04])
- Model checking of higher-order programs
 [Knapik+02, Ong06, K09,...]

This Talk

- PHORS: probabilistic extension of higher-order recursion schemes
- Termination problems for pHORS
 - Undecidability of AST of order-2 pHORS
 - Fixpoint characterization of termination probabilities
 - Approximate computation of termination probabilities

This Talk

- PHORS: probabilistic extension of higher-order recursion schemes
- Termination problems for pHORS
 - Undecidability of AST of order-2 pHORS
 - Fixpoint characterization of termination probabilities
 - Approximate computation of termination probabilities

pHORS

A set of (simply-typed) rules of the form $F x_1 \dots x_n = t_L \bigoplus_p t_R$ where:

t ::= e (termination) | Ω (divergence) | x | F | t₁t₂

Termination probability of pHORS G

TP(G): the probability that $S_G \rightarrow^* e$

$$G_1: S = Fe$$

 $Fx = x \oplus_p F(Fx)$

TP(G₁) = the least solution of z=p+(1-p) z^2 = $\begin{bmatrix} 1 & \text{if } p \ge 0.5 \\ p/(1-p) & \text{if } p < 0.5 \end{bmatrix}$ Thus, TP(G₁)=1 iff p ≥ 0.5

Termination probability of pHORS G

TP(G): the probability that $S_G \rightarrow^* e$

- Problems of interest
 - Decision problems:

Input: G, a rational number $r \in [0,1]$

Output: whether TP(G) ~ r (where ~ $\in \{=, >, <\}$)

(Special case: almost sure termination TP(G)=1)

Known to be decidable for probabilistic pushdown (or recursive Markov chains) [Esparza+ 04][Etessami&Yannakakis 04]), hence also for order-1 pHORS

Termination probability of pHORS G

TP(G): the probability that $S_G \rightarrow^* e$

Problems of interest

– Decision problems:

Input: G, a rational number $r \in [0,1]$

Output: whether TP(G) ~ r (where ~ \in {=, >, <})

(Special case: almost sure termination TP(G)=1)

– Approximation:

Input: G, a rational number ε>0

Output: r such that $|TP(G)-r| < \varepsilon$

Problems of interest

– Decision problems:

Input: G, a rational number $r \in [0,1]$

Output: whether TP(G) ~ r (where ~ $\in \{=, >, <\}$)

- Approximation:

Input: G, a rational number ε >0

Output: r such that $|TP(G)-r| < \varepsilon$

Why termination?

- A fundamental property of programs
- Used as a basis of other model checking procedures for probabilistic pushdown [Etessami+][Esparza+]

Outline

- PHORS: probabilistic extension of higher-order recursion schemes
- Termination Problems
- Undecidability of AST of order-2 pHORS
 - summary of results
 - proof ideas
- Fixpoint characterization of termination probabilities
- Approximate computation of termination probabilities

Conclusion

Undecidability of AST (Almost Sure Termination)

- The following decision problem is undecidable
 - Input: order-2 pHORS G
 - Output: whether TP(G)=1.
- ♦ More precisely, the following sets are not recursively enumerable (for r∈(0,1])
 - G_{=r} = {G: order-2 pHORS | TP(G)=r}
 - − $G_{P \ge r}$ ={G: order-2 pHORS | TP(G)≥r}
 - cf. $\mathcal{G}_{>r}$ ={G: order-2 pHORS | TP(G)>r} is r.e. open: whether $\mathcal{G}_{<r}$ and $\mathcal{G}_{<r}$ are r.e.

Relationship between open problems

Outline

- PHORS: probabilistic extension of higher-order recursion schemes
- Termination Problems
- Undecidability of AST of order-2 pHORS
 - summary of results
 - proof ideas
- Fixpoint characterization of termination probabilities
- Approximate computation of termination probabilities

Conclusion

Proof Idea

- Reduction from Hilbert's 10th Problem (unsolvability of Diophantine equations)
 - Given polynomials P(x₁,...,x_n) and Q(x₁,...,x_n)
 (with non-negative coefficients),
 ∃x₁,...,x_n.P(x₁,...,x_n) < Q(x₁,...,x_n) is undecidable
 (corollary of unsolvability of Diophantine)

Note: $D(x_1,...,x_n)=0$ iff $D(x_1,...,x_n)^2 < 1$

Proof Idea

- Reduction from Hilbert's 10th Problem (unsolvability of Diophantine equations)
 - Given polynomials P(x₁,...,x_n) and Q(x₁,...,x_n)
 (with non-negative coefficients),
 ∃x₁,...,x_n.P(x₁,...,x_n) < Q(x₁,...,x_n) is undecidable
 (corollary of unsolvability of Diophantine)
 - Given P(x₁,...,x_n) and Q(x₁,...,x_n), one can effectively construct an order-2 pHORS G_{P,Q} s.t.

 $TP(G_{P,Q}) < 1 \text{ iff } \exists x_1, ..., x_n \cdot P(x_1, ..., x_n) < Q(x_1, ..., x_n)$

Construction of G_{P,Q} (order-3 case)

Church-encode natural numbers

[n]:nat = $\lambda s.\lambda z.s^n z$ (where nat=($o \rightarrow o$) $\rightarrow o \rightarrow o$)

Construct Test_< : nat \rightarrow nat \rightarrow o such that: m<n iff Test_< m n is not AST

Let G_{P,Q} run Test_< (P(x₁,...,x_n)) (Q(x₁,...,x_n)) for all x₁,...,x_n:

S = TestAll 0 0

TestAll
$$x_1 \dots x_n = \text{Test}_{<} (P(x_1, \dots, x_n)) (Q(x_1, \dots, x_n))$$

 $\bigoplus \text{TestAll} (x_1+1) x_2 \dots x_n \bigoplus \dots$
 $\bigoplus \text{TestAll} x_1 \dots x_{n-1} (x_n+1)$

Construction of G_{P,Q} (order-3 case)

Church-encode natural numbers

− [n] = λ s. λ z.sⁿ z : (o→o)→o→o

Construct Test< : nat \rightarrow nat \rightarrow o s.t.
m<n iff Church m n is not AST</p>

Let G_{P,Q} run Test_< (P(x₁,...,x_n)) (Q(x₁,...,x_n)) for all x₁,...,x_n:

S = TestAll 0 0

TestAll $x_1 \dots x_n = \text{Test}_{<} (P(x_1, \dots, x_n)) (Q(x_1, \dots, x_n))$ $\oplus \text{TestAll} (x_1+1) x_2 \dots x_n \oplus \dots$ $\oplus \text{TestAll} x_1 \dots x_{n-1} (x_n+1)$

Construction of Test_< m n

Recall:

- F e where F x = x ⊕_p F(F x) is non-AST iff p<0.5</p>
- **♦** Parametrize F by \oplus_p :
 - F' g e where F' g x = g x (F' g (F' g x)) is non-AST if g: $0 \rightarrow 0 \rightarrow 0$ chooses the first branch with prob. <0.5

$G_{P,Q}$ for order-3 case

 $G_{P,Q}$ is non-AST iff $P(x_1,...,x_n) < Q(x_1,...,x_n)$ is satisfiable

$G_{P,Q}$ for order-3 case

 $G_{P,Q}$ is non-AST iff $P(x_1,...,x_n) < Q(x_1,...,x_n)$ is satisfiable

Represent natural numbers as order-1 probabilistic functions

[n] = $\lambda x.\lambda y. x \bigoplus_{p(n)} y$ where $p(n)=1 - 1/2^n$ Zero x y = y Succ n x y = x $\bigoplus_{1/2} (n x y)$ Prob("Succ n x y chooses y") = $1/2 \cdot 1/2^n = 1/2^{n+1}$

Represent natural numbers as order-1 probabilistic functions

[n] = $\lambda x . \lambda y . x \bigoplus_{p(n)} y$ where $p(n) = 1 - 1/2^n$ Zero x y = y Succ n x y = x $\bigoplus_{1/2} (n x y)$ Add m n x y = m x (n x y)

Prob("Add m n x y chooses y")

 $= 1/2^{m} \cdot 1/2^{n} = 1/2^{m+n}$

Represent natural numbers as order-1 probabilistic functions

[n] = $\lambda x . \lambda y . x \bigoplus_{p(n)} y$ where $p(n)=1-1/2^n$ Zero x y = y Succ n x y = x $\bigoplus_{1/2} (n x y)$ Add m n x y = m x (n x y)

```
\begin{split} \mathsf{S} &= \mathsf{TestAll} \ \mathsf{Zero} \ \dots \ \mathsf{Zero} \\ \mathsf{TestAll} \ x_1 \ \dots \ x_n &= \mathsf{Test}_< (\mathsf{P} \ x_1 \ \dots \ x_n) \ (\mathsf{Q} \ x_1 \ \dots \ x_n) \\ & \oplus \ \mathsf{TestAll} \ (x_1 + 1) \ x_2 \ \dots \ x_n \ \oplus \ \dots \ \oplus \ \mathsf{TestAll} \ x_1 \ \dots \ x_{n-1} \ (x_n + 1) \\ \mathsf{Test}_< \ \mathsf{m} \ \mathsf{n} &= \mathsf{F'} \ (\mathsf{LT} \ \mathsf{m} \ \mathsf{n}) \ \mathsf{e} \\ \mathsf{LT} \ \mathsf{m} \ \mathsf{n} \ \mathsf{x} \ \mathsf{y} = (\mathsf{m} \ \mathsf{x} \ \mathsf{y}) \ \oplus_{0.5} \ (\mathsf{n} \ \mathsf{y} \ \mathsf{x}) \end{split}
```

Represent natural numbers as order-1 probabilistic functions

[n] = $\lambda x . \lambda y . x \bigoplus_{p(n)} y$ where $p(n) = 1 - 1/2^n$ Zero x y = y Succ n x y = x $\bigoplus_{1/2} (n x y)$ Add m n x y = m x (n x y) This cannot be

S = TestAll Zero Zero TestAll $x_1 ldots x_n = \text{Test}_{<} (P \ x_1 ldots x_n) (Q \ x_1 ldots x_n)$ $\oplus \text{TestAll} (x_1+1) \ x_2 ldots x_n \oplus \dots \oplus \text{TestAll} \ x_1 \ \dots \ x_{n-1} (x_n+1)$ Test_< m n = F' (LT m n) e LT m n x y = (m x y) $\oplus_{0.5}$ (n y x)

Represent natural numbers as order-1 probabilistic functions

[n] = $\lambda x.\lambda y. x \bigoplus_{p(n)} y$ where $p(n)=1-1/2^n$ Zero x y = y Succ n x y = $x \bigoplus_{1/2} (n x y)$ Add m n x y = m x (n x y)

Pass around the values of $x_1^{k1} \dots x_n^{kn}$ (for $k_1 \le d_1, \dots, k_n \le d_n$, where d_i is the degree of P+Q in x_i)

S = TestAll One Zero Zero $v_{k1,...,kn} \text{ holds the value of } x_1^{k1} \dots x_n^{kn}$ TestAll $v_{0,...,0} \dots v_{d1,...,dn}$ Test_< (P $v_{0,...,0} \dots v_{d1,...,dn}$) (Q $v_{0,...,0} \dots v_{d1,...,dn}$) \oplus TestAll (Inc₁ \vec{v}) \oplus ... \oplus TestAll (Inc_n \vec{v}) Inc_i updates $v_{k1,...,kn}$ to the value of $x_1^{k1} \dots (x_i+1)^{ki} x_n^{kn}$

• Pass around the values of $x_1^{k_1} \dots x_n^{k_n}$ (for $k_1 \le d_1, \dots, k_n$ \leq d_n, where d_i is the degree of P+Q in x_i) Example: $P = x^2y$, $Q = x^2+y$ v_{ik} holds the value of x^j y^k **TestAll** \mathbf{v}_{00} \mathbf{v}_{01} \mathbf{v}_{10} \mathbf{v}_{11} \mathbf{v}_{20} \mathbf{v}_{21} = $\text{Test}_{<} (P v_{00} v_{01} v_{10} v_{11} v_{20} v_{21}) (Q v_{00} v_{01} v_{10} v_{11} v_{20} v_{21})$ \oplus TestAll (Inc_{x.00} v₀₀ v₀₁ v₁₀ v₁₁ v₂₀ v₂₁) ... $(Inc_{x,21} v_{00} v_{01} v_{10} v_{11} v_{20} v_{21})$ \oplus TestAll (Inc_{v.00} v₀₀ v₀₁ v₁₀ v₁₁ v₂₀ v₂₁) ... $(Inc_{v,21} v_{00} v_{01} v_{10} v_{11} v_{20} v_{21})$ $P v_{00} v_{01} v_{10} v_{11} v_{20} v_{21} = v_{21}$ $Q v_{00} v_{01} v_{10} v_{11} v_{20} v_{21} = Add v_{20} v_{01}$ $\ln c_{x.00} v_{00} v_{01} v_{10} v_{11} v_{20} v_{21} = One$

 $Inc_{x,21} v_{00} v_{01} v_{10} v_{11} v_{20} v_{21} = Add v_{21} (Add v_{11} (Add v_{11} v_{01}))$ (since (x+1)²y = x²y+2xy+y)

Construction of G_{P,Q}

Summary of Undecidability Results

• The following decision problem is undecidable

- Input: order-2 pHORS G
- Output: whether TP(G)=1.
- ♦ More precisely, the following sets are not recursively enumerable (for r∈(0,1])
 - G_{=r} = {G: order-2 pHORS | TP(G)=r}
 - $G_{≥r} = {G: order-2 pHORS | TP(G)≥r}$
 - cf. $\mathcal{G}_{>r} = \{G: order 2 \text{ pHORS} \mid TP(G) > r\} \text{ is r.e.}$

open: whether $\mathcal{G}_{< r}$ and $\mathcal{G}_{\leq r}$ are r.e.

Note: A hope remains on approximate computation: Input: G, a rational number ε>0 Output: r such that |TP(G)-r| < ε

Outline

- PHORS: probabilistic extension of higher-order recursion schemes
- Termination Problems
- Undecidability of AST of order-2 pHORS
- Fixpoint characterization of termination probabilities
 - Order-n characterization
 - Order-(n-1) characterization
- Approximate computation of termination probabilities

Conclusion

The least solution: S = 0.5, F(x) = 0.5 x

Order-(n-1) Fixpoint Characterization?

(cf. Order-0 equations for termination probabilities of probabilistic PDS [Etessami+; Esparza+])

Easy in order-1 case

(cf. probabilistic pushdown)

Order-1 pHORS: S = F e F x = x $\bigoplus_{1/3}$ F (F x) Order-0 fixpoint equations $S = F_0 + F_1 \cdot 1$ $F_1 = 1/3 \cdot 1 + 2/3 \cdot F_1 \cdot F_1$ $F_0 = 1/3 \cdot 0 + 2/3 \cdot (F_0 + F_1 \cdot F_0)$

 F_0 : prob. of terminating without using x F_1 : prob. of using x

Order-1 function of arity k can be expressed as $(F_0, F_1, ..., F_k) \in \text{Real}^{k+1}$ where F_0 : prob. of terminating without using any arguments F_i : prob. of using the i-th argument

Order-(n-1) Fixpoint Characterization: General Case

- ♦ How to translate an order-2 function F of type
 (o→ o) → o?
 - Naive solution: as a function from
 (g₀, g₁)∈Real² (g₀: prob. that the argument g terminates,
 g₁: prob. that g uses its argument)
 to the termination probability of F(g).
 - => Does not work when g contains a variable:

e.g. Jx = F(Hx)

There is no way to calculate the prob. that J uses x from the translation of F.

Order-(n-1) Fixpoint Characterization: General Case

In a context where order-0 variables x₁,...,x_k are visible, a function λy₁...y_l. λz₁...z_m. t is translated to:

Order-(n-1) Fixpoint Characterization: General Case

In a context where order-0 variables x₁,...,x_k are visible, a function λy₁...y_l. λz₁...z_m. t is translated to:

e.g. $\lambda y.\lambda z. y (x \oplus_{1/3} z)$ is translated to: ($\lambda(y_0, y_1, y_2).y_0, \lambda(y_0, y_1, y_2).2/3 \cdot y_1, \lambda(y_0, y_1, y_2).1/3 \cdot y_1, \lambda(y_0, y_1, y_2).y_2$)

Translation Relation for Order-(n-1) Fixpoint Characterization

Translation Rule for Ω (divergence)

Translation Rule for Order-0 Variables

Translation Rule for Variables

Translation Rule for Applications (order-1 case)

$$\Gamma; \mathbf{x}_{1}, ..., \mathbf{x}_{k} \models s: o^{m+1} \rightarrow o$$

$$\Rightarrow (s_{0}, s_{1}, ..., s_{m+1}, s_{m+2} ..., s_{m+k+1}, s_{m+k+2})$$

$$\Gamma; \mathbf{x}_{1}, ..., \mathbf{x}_{k} \models t: o \Rightarrow (t_{0}, t_{1} ..., t_{k}, t_{k+1})$$

$$\begin{split} &\Gamma; \mathbf{x}_{1}, ..., \mathbf{x}_{k} \mid - s t: o^{m} \rightarrow o \\ & \hookrightarrow (s_{0} + s_{1} \cdot t_{0}, s_{2}, ..., s_{m+1}, \\ & s_{m+2} + s_{1} \cdot t_{1}, ..., s_{m+k+2} + s_{1} \cdot t_{k+1}) \end{split}$$

Translation Rule for Applications (higher-order case)

$$\Gamma; \mathbf{x}_{1}, ..., \mathbf{x}_{k} \mid - s: \kappa_{1} \rightarrow ... \rightarrow \kappa_{\ell} \rightarrow o^{m} \rightarrow o$$

$$\Rightarrow (s_{0}, s_{1}, ..., s_{m}, s_{m+1}, ..., s_{m+k}, s_{m+k+1})$$

$$\Gamma; \mathbf{x}_{1}, ..., \mathbf{x}_{k} \mid - t: \kappa_{1}$$

$$\Rightarrow (t_{0}, t_{1} ..., t_{n}, t_{n+1}, ..., t_{n+k}, t_{n+k+1})$$

$$\begin{split} & \Gamma; \mathbf{x}_{1}, \dots, \mathbf{x}_{k} \mid - s \ t: \ \kappa_{2} \rightarrow \dots \rightarrow \kappa_{\ell} \rightarrow \mathbf{0}^{m} \rightarrow \mathbf{0} \\ & \leftrightarrows (s_{0}(t_{0}, t_{1} \ \dots, \ t_{n}, t_{n+k+1}), \ \dots, \ s_{m}(t_{0}, t_{1} \ \dots, \ t_{n}, t_{n+k+1}), \\ & s_{m+1}(t_{n+1}, t_{1} \ \dots, \ t_{n}, t_{n+k+1}), \ \dots, \\ & s_{m+k+1}(t_{n+k+1}, t_{1} \ \dots, \ t_{n}, t_{n+k+1})) \end{split}$$

Translation of Rewriting rules

$$y_1,...,y_{\ell}; x_1,...,x_k \models s: o \Rightarrow (s_0, s_1, ..., s_k, s_{k+1})$$

 $y_1,...,y_{\ell}; x_1,...,x_k \models t: o \Rightarrow (t_0, t_1, ..., t_k, t_{k+1})$

$$F y_{1},...,y_{\ell} x_{1},...,x_{k} = s \bigoplus_{p} t$$

$$\Rightarrow \{ F_{0} (y_{1,0},...) ... (y_{\ell,0},...) = ps_{0} + (1-p)t_{0}, ..., F_{k} (y_{1,0},...) ... (y_{\ell,0},...) = ps_{k} + (1-p)t_{k} \}$$

Example

$$S_1 = F_0(C_0 \ 1 \ 0, \ C_0 \ 0 \ 0) = C_0 \ 1 \ 0 \ (H_0, \ H_1, \ H_0)$$

= 0.3(H_0 + H_1 \ 1) + 0.7(H_0 + H_1 \ 0) = 0.15

Correctness of Fixpoint Characterization

If $G \hookrightarrow \mathcal{E}_G$, then: TP(G) is the least solution of \mathcal{E}_G (more precisely, TP(G, S e) = lfp(\mathcal{E}_G)(S₁)).

For any order-n pHORS G, \mathcal{E}_{G} (such that $G \rightarrow \mathcal{E}_{G}$) is

- a system of order-(n-1) fixpoint equations; and

- constructible in polynomial time

Outline

- PHORS: probabilistic extension of higher-order recursion schemes
- Termination Problems
- Undecidability of AST of order-2 pHORS
- Fixpoint characterization of termination probabilities
- Approximate computation of termination probabilities (for order-2 pHORS)
- Related work and conclusion

Summary of the Talk So far $\mathbf{F}(G)$ r is undecidable for $\mathbf{r} \in \{=, \geq\}$

– A hope remains on approximate computability:

Input: G, a rational number ε>0

Output: r such that $|TP(G)-r| < \varepsilon$

- TP(G) can be characterized as order-(n-1) fixpoint equations (order-1 equations for order-2 pHORS)
 - immediately yields a method for computing a lower bound for TP(G)
 - Given f=F(f), the least solution can be lowerapproximated by F^k(⊥)
 - how about upper-approximation?

Non-Solution 1:

Upper-approximation of greatest fixpoint

♦ For f=F(f), Ifp(F) ≤ gfp(F) ≤ F^n (λx.1),

but $F^n(\lambda x.1)$ may be too imprecise as an upper bound for lfp(F).

e.g. For $F = \lambda f \cdot \lambda x \cdot f(x)$,

Ifp(F)= $\lambda x.0$, but gfp(F) = Fⁿ($\lambda x.1$)= $\lambda x.1$

Non-Solution 2: Upper-approximation by Polynomials

- Example: f(x)= 1/3 · x + 2/3 · f(f(x))
 Template: f(x) = c₀ + c₁ x
 - Sufficient condition for upper-approximation:

$$\begin{split} f(x) &\geq 1/3 \cdot x + 2/3 \cdot f(f(x)) \\ &= 1/3 \cdot x + 2/3(c_0 + c_1 (c_0 + c_1 x)), \\ \text{i.e.} \quad c_0 &\geq 2/3(c_0 + c_1 c_0) \\ &\quad c_1 &\geq 1/3 + 2/3 c_1^2, \\ \text{yielding } c_1 &= 1/2, c_0 &= 0, \text{ i.e. } f(x) &= 1/2 x \end{split}$$

Non-Solution 2: Upper-approximation by Polynomials

 Imprecise for: f(x₁, x₂)= x₁ + x₂ ·f(x₁, x₂) (where x₁, x₂ are constrained by 0≤ x₁+x₂ ≤ 1)
 – least solution:

$$f(x_1, x_2) = \begin{cases} 0 & \text{if } x_1 = 0 \\ x_1/(1-x_2) & \text{if } x_1 > 0 \end{cases}$$

Since $f(x_1, x_2)=1$ for $x_1 = \varepsilon > 0$ and $x_2 = 1-\varepsilon$,

f'(0,1)=1 > f(0,1)

for any sound polynomial upper-approximation f' of f (due to the continuity of f')

Our Approach: Discretization (à la Finite Element Method)

- Decompose [0,1] into a finite number of intervals, and use a step-wise linear function f* as an upper bound
- f* is determined by a finite number of points (x₀, y₀), ... (x_n, y_n)
- ♦ Sufficient condition for sound approximation: y_i ≥ f*(x_i) for i=0,...,n
- y_i can be computed by:
 - using decidability of theories of real arithmetics; or
 - discretization of codomain

Example

f(x) = 0.25x + 0.75f(f(x))

- discrete points:
 - $(0, y_0), (0.5, y_1), (1, y_2)$
- constraints:

 $y_0 \ge 0.25 \cdot 0 + 0.75f^*(f^*(0)), y_1 \ge 0.25 \cdot 0.5 + 0.75f^*(f^*(0.5)),$ $y_2 \ge 0.25 \cdot 1 + 0.75f^*(f^*(1))$ where $f^*(x) = [(1-2x)y_0 + 2xy_1 \text{ if } x \in [0, 0.5]]$ (2-2x)y₁ + (2x-1)y₂ if $x \in (0.5, 1]$ - with discretization of y_i to {0, 0.25, 0.5, 0.75, 1}: $(y_0, y_1, y_2)^{(0)} = (0, 0, 0)$ $(y_0, y_1, y_2)^{(1)} = (0, 0.25, 0.25)$ $(y_0, y_1, y_2)^{(2)} = (y_0, y_1, y_2)^{(3)} = (0, 0.25, 0.5)$

yielding $f^*(x)=0.5x$ (exact solution: $f(x)=1/3 \cdot x$)

Experimental Results

equations	#dom	#codom	l.b.	u.b.	u.b.(step)	exact
Ex2.3-1	16	512	0.333	0.336	1.0	$\frac{1}{3}$
Ex2.3-v1	16	512	0.312	0.315	0.365	-
Ex2.3-v2	16	512	0.262	0.266	0.321	Ϊ
Ex2.4	16	512	0.320	0.323	0.329	ļ
Double	16	512	0.649	0.653	1.0	Ì
Discont(0,1)	16	512	0.0	0.0	0.0	0
Discont(0.01, 0.99)	16	512	0.999	1.0	1.0	1
Incomp	16	512	0.299	1.0	1.0	0.3
Incomp	10	100	0.299	0.3	0.3	0.3
Incomp2	16	512	0.249	1.0	1.0	0.25
Incomp2	256	65536	0.249	1.0	1.0	0.25

Experimental Results

equatic f(x Ex2.3- Ex2.2-	$\frac{\text{tatic}}{2.3}$ f(x₁, x₂) = x₁ + x₂ · f(x₁, x₂) The exact solution is:						$exact$ $\frac{1}{3}$
Ex2.3- Ex2.3-	f(x ₁ , x ₂)=		if x ₁ =0			65 21	-
Ex2.4 Double		[x ₁ /((1-x₂) if x 512	x ₁ >0,	4₂ <1 0.653	1.0	-
Discont(0,1)	.)	16	512	0.0	0.0	0.0	0
Discont(0.0)	01,0.99)	16	512	0.999	1.0	1.0	1
Incomp		16	512	0.299	1.0	1.0	0.3
Incomp		10	100	0.299	0.3	0.3	0.3
Incomp2		16	512	0.249	1.0	1.0	0.25
Incomp2		256	65536	0.249	1.0	1.0	0.25

Experimental Results

eq E> E> E> Ex Do Di

equ Artificial ex	Artificial examples (having no corresponding						
\mathbf{Ex} pHORS) that	pHORS) that show possible incompleteness.						
Ex Incomp:						-	
Ex S = F(S), F	S = F(S), F(x) = $x^2 + 0.4x + 0.09$						
¹ x Incomp2:							
$O_{0} = C(C) = C(V) = O = CV^{2} + 2C(O = V)$							
Dist $S = \Gamma(S), \Gamma(X) = 0.5X^{-} + 2\Gamma(0.5X)$							
Discont(0.01,0.95		512	0.999	1.0	1.0	1	
Incomp	16	512	0.299	1.0	1.0	0.3	
Incomp	10	100	0.299	0.3	0.3	0.3	
Incomp2	16	512	0.249	1.0	1.0	0.25	
Incomp2	256	65536	0.249	1.0	1.0	0.25	

Experimental Results							
Artificial examples (having no corresponding							
eq pHORS) that show possible incompleteness.							
Ex Incomp:							
Ex $S = F(S), F(x) = x^2 + 0.4x + 0.09$							
Ex S > F(S) iff (S-0.3) ² <0 iff S=0.3							
$\frac{Ex}{D} = \frac{1}{2}$							
Dist $S = F(S), F(x) = 0.5x^2 + 2F(0.5x)$							
Discont(0.01,0.95		512	0.999	1.0	1.0	1	
Incomp	16	512	0.299	1.0	1.0	0.3	
Incomp	10	100	0.299	0.3	0.3	0.3	
Incomp2	16	512	0.249	1.0	1.0	0.25	
Incomp2	256	65536	0.249	1.0	1.0	0.25	

Outline

- PHORS: probabilistic extension of higher-order recursion schemes
- Termination Problems
- Undecidability of AST of order-2 pHORS
- Fixpoint characterization of termination
- Approximate computation of termination probabilities
- Related Work and Conclusion

Related Work

- Model checking of probabilistic pushdownsystems/recursive Markov chains [Esparza+ 04, Etessami&Yannakakis 04,...]
 - termination probabilities as polynomial equations (special case of our order-(n-1) fixpoint characterization)
 - studies of linear-time/branching-time model checking problems
- Model checking of (non-probabilistic) HORS [Knapik+02, Ong06, Kobayashi09, ...]
- Type-based characterization of termination probabilities of probabilistic functional programs [Dal Lago&Grellois, Breuvart&Dal Lago]
 - do not provide a method for precise approximation

Conclusion

- PHORS as a model of probabilistic functional programs
- Undecidability of AST of order-2 pHORS
- Order-(n-1) Fixpoint Characterization of Termination Probability of order-n pHORS
- Sound (but possibly incomplete) method for approximate computation of TP(G) for order-2 pHORS

Future Work

Settling the question of approximate computability of TP(G) with arbitrary precision

Input: G, a rational number ϵ >0

Output: r such that $|TP(G)-r| < \varepsilon$

(equivalent to the question of whether

*G*_{<r} ={G: order-2 pHORS | TP(G)<r} is r.e.)

- Practical method for approximate computation of TP(G) for pHORS of arbitrary order
- Model checking of pHORS