On Higher-Order Probabilistic Computation:
 Relational Reasoning, Termination, and Bayesian Programming

Ugo Dal Lago

(Based on joint work with Michele Alberti, Raphaëlle Crubillé, Charles Grellois, Davide Sangiorgi,...)

IFIP WG 2.2 Annual Meeting, Brno, September 17th

Probabilistic Models

- The environment is supposed not to behave deterministically, but probabilistically.

Probabilistic Models

- The environment is supposed not to behave deterministically, but probabilistically.
- Crucial when modeling uncertainty.

Probabilistic Models

- The environment is supposed not to behave deterministically, but probabilistically.
- Crucial when modeling uncertainty.
- Useful to handle complex domains.

Probabilistic Models

- The environment is supposed not to behave deterministically, but probabilistically.
- Crucial when modeling uncertainty.
- Useful to handle complex domains.
- Example:

Probabilistic Models

- The environment is supposed not to behave deterministically, but probabilistically.
- Crucial when modeling uncertainty.
- Useful to handle complex domains.
- Example:

- Abstractions:
- (Labelled) Markov Chains.

Probabilistic Models

Probabilistic Models

Probabilistic Models

Randomized Computation

- Algorithms and automata are assumed to have the ability to sample from a distribution [dLMSS1956,R1963].

Randomized Computation

- Algorithms and automata are assumed to have the ability to sample from a distribution [dLMSS1956,R1963].
- This is a powerful tool when solving computational problems.

Randomized Computation

- Algorithms and automata are assumed to have the ability to sample from a distribution [dLMSS1956,R1963].
- This is a powerful tool when solving computational problems.
- Example:

Input: $n>3$, an odd integer to be tested for primality;
Input: k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime
write $n-1$ as $2^{s} \cdot d$ with d odd by factoring powers of 2 from $n-1$
WitnessLoop: repeat k times:
pick a random integer a in the range $[2, n-2]$
$x \leftarrow a^{d} \bmod n$
if $x=1$ or $x=n-1$ then do next WitnessLoop
repeat $s-1$ times:
$x \leftarrow x^{2} \bmod n$
if $x=1$ then return composite
if $x=n-1$ then do next WitnessLoop
return composite
return probably prime

Randomized Computation

- Algorithms and automata are assumed to have the ability to sample from a distribution [dLMSS1956,R1963].
- This is a powerful tool when solving computational problems.
- Example:

Input: $n>3$, an odd integer to be tested for primality;
Input: k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime
write $n-1$ as $2^{s} \cdot d$ with d odd by factoring powers of 2 from $n-1$
WitnessLoop: repeat k times:
pick a random integer a in the range $[2, n-2]$
if $x=1$ or $x=n-1$ then do next WitnessLoop
repeat $s-1$ times:
$x \leftarrow x^{2} \bmod n$
if $x=1$ then return composite
if $x=n-1$ then do next WitnessLoop
return composite
return probably prime

Randomized Computation

- Algorithms and automata are assumed to have the ability to sample from a distribution [dLMSS1956,R1963].
- This is a powerful tool when solving computational problems.
- Example:

```
Input: n > 3, an odd integer to be tested for primality;
Input: }k\mathrm{ , a parameter that determines the accuracy of the test
Output: composite if }n\mathrm{ is composite, otherwise probably prime
write n - 1 as 2 2s}\cdotd\mathrm{ with }d\mathrm{ odd by factoring powers of 2 from n - 1
WitnessLoop: repeat }k\mathrm{ times:
    pick a random integer a in the range [2, n - 2]
    if }x=1\mathrm{ or }x=n-1 then do next WitnessLoop
    repeat s-1 times:
            x}\leftarrow\mp@subsup{x}{}{2}\operatorname{mod}
            if }x=1\mathrm{ then return composite
            if }x=n-1 then do next WitnessLoop
    return composite
return probably prime
```

- Abstractions:
- Randomized algorithms;
- Probabilistic Turing machines.
- Labelled Markov chains.

Randomized Computation

ALGORITHMICS

Randomized Computation

MONOGRAPHS IN COMPUTER SCIENCE

ABSTRACTION, REFINEMENT AND PROOF FOR PROBABILISTIC SYSTEMS

Annabelle Mclver

Carroll Morgan

Q Springer

Higher-Order Computation

- Mainly useful in programming.

Higher-Order Computation

- Mainly useful in programming.
- Functions are first-class citizens:
- They can be passed as arguments;
- They can be obtained as results.

Higher-Order Computation

- Mainly useful in programming.
- Functions are first-class citizens:
- They can be passed as arguments;
- They can be obtained as results.
- Motivations:
- Modularity;
- Code reuse;
- Conciseness.

Higher-Order Computation

- Mainly useful in programming.
- Functions are first-class citizens:
- They can be passed as arguments;
- They can be obtained as results.
- Motivations:
- Modularity;
- Code reuse;
- Conciseness.
- Example:

$$
\begin{array}{ll}
\text { foldr } & :=(a->b->b) \rightarrow b->[a]->b \\
\text { foldr } f \text { acc }[] & =\text { acc } \\
\text { foldr } f \text { acc }(x: x s) & =f x \text { (foldr } f \text { acc } x s)
\end{array}
$$

Higher-Order Computation

- Mainly useful in programming.
- Functions are first-class citizens:
- They can be passed as arguments;
- They can be obtained as results.
- Motivations:
- Modularity;
- Code reuse;
- Conciseness.
- Example:

```
    foldr
    foldr f acc []
    foldr f acc (x:xs) = f x (foldr f acc xs)
```


Higher-Order Computation

- Mainly useful in programming.
- Functions are first-class citizens:
- They can be passed as arguments;
- They can be obtained as results.
- Motivations:
- Modularity;
- Code reuse;
- Conciseness.
- Example:

```
    foldr
    foldr f acc []
    foldr f acc (x:xs) = f x (foldr f acc xs)
```

- Models:
- λ-calculus

Higher-Order Computation

Higher-Order Computation

Higher-Order Computation

STUDIES IN LOGIC

AND
THEFOUNDATIONSOFMATHEMATICS
vOLuME M3
 spitoss

The Lambila Caleulus

Its Syntax and Semanties
nevised epinow
H.P. BARENDREGT

NOETN- v0LLAND

Higher-Order Probabilistic Computation

Does it Make Sense?

Higher-Order Probabilistic Computation

Does it Make Sense?

What Kind of Metatheory Does it Have?

Higher-Order Probabilistic Computation

Does it Make Sense?

What Kind of Metatheory Does it Have?

Applications?

[DanosHarmer] [JungTix]

... too many
[DanosHarmer] [JungTix]

Outline

Part I Relational Reasoning
Part II Bayesian Functional Programming Part III Termination

Part I

Relational Reasoning

Syntax and Operational Semantics of Λ_{\oplus}

- Terms: $M::=x|\lambda x \cdot M| M M \mid M \oplus M$;

Syntax and Operational Semantics of Λ_{\oplus}

- Terms: $M::=x|\lambda x . M| M M \mid M \oplus M$;
- Values: $V::=\lambda x . M$;

Syntax and Operational Semantics of Λ_{\oplus}

- Terms: $M::=x|\lambda x . M| M M \mid M \oplus M$;
- Values: $V::=\lambda x$. M;
- Value Distributions:

$$
V \xrightarrow{\mathcal{D}} \mathcal{D}(V) \in \mathbb{R}_{[0,1]} \quad \sum \mathcal{D}=\sum_{V} \mathcal{D}(V) \leq 1 .
$$

Syntax and Operational Semantics of Λ_{\oplus}

- Terms: $M::=x|\lambda x . M| M M \mid M \oplus M$;
- Values: $V::=\lambda x$. M;
- Value Distributions:

$$
V \xrightarrow{\mathcal{D}} \mathcal{D}(V) \in \mathbb{R}_{[0,1]} \quad \sum \mathcal{D}=\sum_{V} \mathcal{D}(V) \leq 1 .
$$

- Semantics: $\llbracket M \rrbracket=\sup _{M \Downarrow \mathcal{D}} \mathcal{D} ;$

Syntax and Operational Semantics of Λ_{\oplus}

- Semantics: $\llbracket M \rrbracket=\sup _{M \Downarrow \mathcal{D}} \mathcal{D}$;

Syntax and Operational Semantics of Λ_{\oplus}

- Terms: $M::=x|\lambda x . M| M M \mid M \oplus M$;
- Values: $V::=\lambda x . M$;
- Value Distributions:

$$
V \xrightarrow{\mathcal{D}} \mathcal{D}(V) \in \mathbb{R}_{[0,1]} \quad \sum \mathcal{D}=\sum_{V} \mathcal{D}(V) \leq 1 .
$$

- Semantics: $\llbracket M \rrbracket=\sup _{M \Downarrow \mathcal{D}} \mathcal{D}$;
- Context Equivalence: $M \equiv N$ iff for every context C it holds that $\sum \llbracket C[M] \rrbracket=\sum \llbracket C[N] \rrbracket$.

Syntax and Operational Semantics of Λ_{\oplus}

- Terms: $M::=x|\lambda x \cdot M| M M \mid M \oplus M$;
- Values: $V::=\lambda x . M$;
- Value Distributions:

$C::=[\cdot]$	$\lambda x . C$	$C M$	$M C$	$C \oplus M$	$M \oplus C$

- Semantics: $\llbracket M \rrbracket=\sup _{\wedge}$ (\mathcal{D}^{D};
- Context Equivalence: $N \equiv N$ iff for every context C it holds that $\sum \llbracket C[M] \rrbracket=\sum \llbracket C[N] \rrbracket$.

Syntax and Operational Semantics of Λ_{\oplus}

- Terms: $M::=x|\lambda x . M| M M \mid M \oplus M$;
- Values: $V::=\lambda x . M$;
- Value Distributions:

$$
V \xrightarrow{\mathcal{D}} \mathcal{D}(V) \in \mathbb{R}_{[0,1]} \quad \sum \mathcal{D}=\sum_{V} \mathcal{D}(V) \leq 1 .
$$

- Semantics: $\llbracket M \rrbracket=\sup _{M \Downarrow \mathcal{D}} \mathcal{D}$;
- Context Equivalence: $M \equiv N$ iff for every context C it holds that $\sum \llbracket C[M] \rrbracket=\sum \llbracket C[N] \rrbracket$.
- Context Distance: $\delta^{C}(M, N)=\sup _{C}\left|\sum \llbracket C[M] \rrbracket-\sum \llbracket C[N] \rrbracket\right|$.

Examples

$$
I \oplus \Omega \quad \text { vs. } \quad I
$$

Examples

Examples

Exam Not Context Equivalent: $C=[\cdot]$.
Context Distance? Consider $C_{n}=(\lambda x . \underbrace{x \ldots x}_{n \text { times }})[\cdot]$.

$I \oplus \Omega$
 s. $\quad I$

Examples

$$
\begin{array}{llc}
I \oplus \Omega & \text { vs. } & I \\
I \oplus \Omega & \text { vs. } & \Omega
\end{array}
$$

Examples

Not Context Equivalent: $C=[\cdot]$.
Context Distance? Cannot Easily Amplify.

Ω

Examples

$$
\begin{array}{rll}
I \oplus \Omega & \text { vs. } & I \\
I \oplus \Omega & \text { vs. } & \Omega \\
(\lambda x . I) \oplus(\lambda x . \Omega) & \text { vs. } & \lambda x . I \oplus \Omega
\end{array}
$$

Examples

$$
I \oplus \Omega \quad \text { vs. } \quad I
$$

Not Context Equivalent in CBV: $C=(\lambda x \cdot x(x I))[\cdot]$ Apparently Context Equivalent in CBN.

$$
(\lambda x . I) \oplus(\lambda x . \Omega) \quad \text { s. } \quad \lambda x . I \oplus \Omega
$$

Examples

$$
\begin{array}{rll}
I \oplus \Omega & \text { vs. } & I \\
I \oplus \Omega & \text { vs. } & \Omega \\
(\lambda x . I) \oplus(\lambda x . \Omega) & \text { vs. } & \lambda x . I \oplus \Omega \\
Y_{1} & \text { vs. } & Y_{2}
\end{array}
$$

Examples

$$
I \oplus \Omega \quad \text { vs. } \quad I
$$

A Labelled Markov Chain for Λ_{\oplus}

Terms

A Labelled Markov Chain for Λ_{\oplus}

Terms
Values

A Labelled Markov Chain for Λ_{\oplus}

Terms
Values

$$
M
$$

A Labelled Markov Chain for Λ_{\oplus}

Terms
Values

A Labelled Markov Chain for Λ_{\oplus}

Terms
Values

$$
\lambda x . N
$$

A Labelled Markov Chain for Λ_{\oplus}

$$
\begin{aligned}
& \text { Terms } \\
& \\
& N\{W / x\} \rightleftarrows \\
& \longleftrightarrow \\
&
\end{aligned}
$$

Probabilistic Applicative Bisimulation

$\lambda x . M \mathcal{R} \quad \lambda x . N$

Probabilistic Applicative Bisimulation

Probabilistic Applicative Bisimulation

Probabilistic Applicative Bisimulation

Probabilistic Applicative Bisimulation

$$
M \mathcal{R} N
$$

Probabilistic Applicative Bisimulation

Applicative Bisimilarity vs. Context Equivalence

- Bisimilarity: the union \sim of all bisimulation relations.
- Is it that \sim is included in \equiv ? How to prove it?
- Natural strategy: is \sim a congruence?
- If this is the case:

$$
\begin{aligned}
M \sim N & \Longrightarrow C[M] \sim C[N] \Longrightarrow \sum \llbracket C[M] \rrbracket=\sum \llbracket C[N] \rrbracket \\
& \Longrightarrow M \equiv N
\end{aligned}
$$

- This is a necessary sanity check anyway.
- The naïve proof by induction fails, due to application: from $M \sim N$, one cannot directly conclude that $L M \sim L N$.

Howe's Technique

Howe's Technique

Howe's Technique

Howe's Technique

Howe's Technique

Our Neighborhood

- Λ, where we observe convergence

	$\sim \subseteq \equiv$	$\equiv \subseteq \sim$
$C B N$	\checkmark	\checkmark
$C B V$	\checkmark	\checkmark

[Abramsky 1990, Howe1993]

- Λ_{\oplus} with nondeterministic semantics, where we observe convergence, in its may or must flavors.

	$\sim \subseteq \equiv$	$\equiv \subseteq \sim$
$C B N$	\checkmark	\times
$C B V$	\checkmark	\times

[Ong1993, Lassen1998]

The Probabilistic Case

- Λ_{\oplus} with probabilistic semantics.

	$\sim \subseteq \equiv$	$\equiv \subseteq \sim$
$C B N$	\checkmark	\times
$C B V$	\checkmark	\checkmark

The Probabilistic Case

- Λ_{\oplus} with probabilistic semantics.

	$\sim \subseteq \equiv$	$\equiv \subseteq \sim$
$C B N$	\checkmark	\times
$C B V$	\checkmark	\checkmark

- Counterexample for $\mathrm{CBN}:(\lambda x . I) \oplus(\lambda x . \Omega) \nsim \lambda x . I \oplus \Omega$
- Where these discrepancies come from?

The Probabilistic Case

- Λ_{\oplus} with probabilistic semantics.

	$\sim \subseteq \equiv$	$\equiv \subseteq \sim$
$C B N$	\checkmark	\times
$C B V$	\checkmark	\checkmark

- Counterexample for CBN: $(\lambda x . I) \oplus(\lambda x . \Omega) \nsim \lambda x . I \oplus \Omega$
- Where these discrepancies come from?
- From testing!

The Probabilistic Case

- Λ_{\oplus} with probabilistic semantics.

	$\sim \subseteq \equiv$	$\equiv \subseteq \sim$
$C B N$	\checkmark	\times
$C B V$	\checkmark	\checkmark

- Counterexample for CBN: $(\lambda x . I) \oplus(\lambda x . \Omega) \nsim \lambda x . I \oplus \Omega$
- Where these discrepancies come from?
- From testing!
- Bisimulation can be characterized by testing equivalence as follows:

Calculus	Testing		
Λ	$T::=\omega \mid a \cdot T$		
$P \Lambda_{\oplus}$	$T::=\omega\|a \cdot T\|\langle T, T\rangle$		
$N \Lambda_{\oplus}$	$T::=\omega\|a \cdot T\| \wedge_{i \in I} T_{i} \mid \ldots$		

The Probabilistic Case

- Λ_{\oplus} with probabilistic semantics.

	$\precsim \subseteq \leq$	$\leq \subseteq \precsim$
$C B N$	\checkmark	\times
$C B V$	\checkmark	\times

The Probabilistic Case

- Λ_{\oplus} with probabilistic semantics.

- Probabilistic simulation can be characterized by testing as follows:

$$
T::=\omega|a \cdot T|\langle T, T\rangle \mid T \vee T
$$

The Probabilistic Case

- Λ_{\oplus} with probabilistic semantics.

- Probabilistic simulation can be characterized by testing as follows:

$$
T::=\omega|a \cdot T|\langle T, T\rangle \mid T \vee T
$$

- Full abstraction can be recovered if endowing Λ_{\oplus} with parallel disjunction [CDLSV2015].

	$\precsim \subseteq \leq$	$\leq \subseteq \precsim$
$C B N$	\checkmark	\times
$C B V$	\checkmark	\checkmark

Context Distance: the Affine Case [CDL2015]

- Let us consider a simple fragment of Λ_{\oplus}, first.

Context Distance: the Affine Case [CDL2015]

- Let us consider a simple fragment of Λ_{\oplus}, first.
- Preterms: $M, N::=x|\lambda x . M| M M|M \oplus M| \Omega$;

Context Distance: the Affine Case [CDL2015]

- Let us consider a simple fragment of Λ_{\oplus}, first.
- Preterms: $M, N::=x|\lambda x . M| M M|M \oplus M| \Omega$;
- Terms: any preterm M such that $\Gamma \vdash M$.

$$
\text { Cor } \begin{array}{llllll}
\overline{\Gamma, x \vdash x} & \frac{x, \Gamma \vdash M}{\Gamma \vdash \lambda x \cdot M} & \frac{\Gamma \vdash M}{\Gamma, \Delta \vdash M N} & \frac{\Gamma \vdash M}{\Gamma \vdash M \oplus N} \\
\hline
\end{array}
$$

- Let us consider a simple fragmet of Λ_{\oplus}, first.
- Preterms: $M, N::=x|\lambda x . M \bigvee M M| M \oplus M \mid \Omega$;
- Terms: any preterm M such that $\Gamma \vdash M$.

Context Distance: the Affine Case [CDL2015]

- Let us consider a simple fragment of Λ_{\oplus}, first.
- Preterms: $M, N::=x|\lambda x . M| M M|M \oplus M| \Omega$;
- Terms: any preterm M such that $\Gamma \vdash M$.
- Behavioural Distance δ^{b}.
- The metric analogue to bisimilarity.

Context Distance: the Affine Case [CDL2015]

- Let us consider a simple fragment of Λ_{\oplus}, first.
- Preterms: $M, N::=x|\lambda x . M| M M|M \oplus M| \Omega$;
- Terms: any preterm M such that $\Gamma \vdash M$.
- Behavioural Distance δ^{b}.
- The metric analogue to bisimilarity.
- Trace Distance δ^{t}.
- The maximum distance induced by traces, i.e., sequences of actions: $\delta^{t}(M, N)=\sup _{\mathrm{T}}|\operatorname{Pr}(M, \mathrm{~T})-\operatorname{Pr}(N, \mathrm{~T})|$.

Context Distance: the Affine Case [CDL2015]

- Let us consider a simple fragment of Λ_{\oplus}, first.
- Preterms: $M, N::=x|\lambda x . M| M M|M \oplus M| \Omega$;
- Terms: any preterm M such that $\Gamma \vdash M$.
- Behavioural Distance δ^{b}.
- The metric analogue to bisimilarity.
- Trace Distance δ^{t}.
- The maximum distance induced by traces, i.e., sequences of actions: $\delta^{t}(M, N)=\sup _{\mathrm{T}}|\operatorname{Pr}(M, \mathrm{~T})-\operatorname{Pr}(N, \mathrm{~T})|$.
- Soundness and Completeness Results:

$\delta^{b} \leq \delta^{c}$	$\delta^{c} \leq \delta^{b}$	$\delta^{t} \leq \delta^{c}$	$\delta^{c} \leq \delta^{t}$
\checkmark	\times	\checkmark	\checkmark

Context Distance: the Affine Case [CDL2015]

- Let us consider a simple fragment of Λ_{\oplus}, first.
- Preterms: $M, N::=x|\lambda x . M| M M|M \oplus M| \Omega$;
- Terms: any preterm M such that $\Gamma \vdash M$.
- Behavioural Distance δ^{b}.
- The metric analogue to bisimilarity.
- Trace Distance δ^{t}.
- The maximum distance induced by traces, i.e., sequences of actions: $\delta^{t}(M, N)=\sup _{\mathrm{T}}|\operatorname{Pr}(M, \mathrm{~T})-\operatorname{Pr}(N, \mathrm{~T})|$.
- Soundness and Completeness Results:

$\delta^{b} \leq \delta^{c}$	$\delta^{c} \leq \delta^{b}$	$\delta^{t} \leq \delta^{c}$	$\delta^{c} \leq \delta^{t}$
\checkmark	\times	\checkmark	\checkmark

- Example: $\delta^{t}(I, I \oplus \Omega)=\delta^{t}(I \oplus \Omega, \Omega)=\frac{1}{2}$.

Context Distance: the General Case [CDL2016]

- The LMC we have have worked so far with induces unsound metrics for $\Lambda_{\oplus} \ldots$

Context Distance: the General Case [CDL2016]

- The LMC we have have worked so far with induces unsound metrics for $\Lambda_{\oplus} \ldots$
- ... because it does not adequately model copying.

Context Distance: the General Case [CDL2016]

- The LMC we have have worked so far with induces unsound metrics for $\Lambda_{\oplus} \ldots$
- ... because it does not adequately model copying.
- A Tuple LMC.
- Preterms:

$$
M::=x|\lambda x . M| \lambda!x . M|M M| M \oplus M \mid!M
$$

- Terms: any preterm M such that $\Gamma \vdash M$.
- States: sequences of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.

Context,Distance the General Case [CDI2016]

- Preterms:

$$
M::=x|\lambda x . M| \lambda!x . M|M M| M \oplus M \mid!M
$$

- Terms: any preterm M such that $\Gamma \perp M$.
- States: sequences of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.

Context Distance: the General Case [CDL2016]

- The LMC we have have worked so far with induces unsound metrics for $\Lambda_{\oplus} \ldots$
- ... because it does not adequately model copying.
- A Tuple LMC.
- Preterms:

$$
M::=x|\lambda x . M| \lambda!x . M|M M| M \oplus M \mid!M
$$

- Terms: any preterm M such that $\Gamma \vdash M$.
- States: sequences of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.
- Soundness and Completeness Results:

$\delta^{t} \leq \delta^{c}$	$\delta^{c} \leq \delta^{t}$
\checkmark	\checkmark

Context Distance: the General Case [CDL2016]

- The LMC we have have worked so far with induces unsound metrics for $\Lambda_{\oplus} \ldots$
- ... because it does not adequately model copying.
- A Tuple LMC.
- Preterms:

$$
M::=x|\lambda x . M| \lambda!x . M|M M| M \oplus M \mid!M
$$

- Terms: any preterm M such that $\Gamma \vdash M$.
- States: sequences of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.
- Soundness and Completeness Results:

$\delta^{t} \leq \delta^{c}$	$\delta^{c} \leq \delta^{t}$
\checkmark	\checkmark

- Examples: $\delta^{t}(!(I \oplus \Omega),!\Omega)=\frac{1}{2} \quad \delta^{t}(!(I \oplus \Omega),!I)=1$.

Context Distance: the General Case [CDL2016]

- The LMC we have have worked so far with induces unsound metrics for $\Lambda_{\oplus} \ldots$
- ... because it does not adequately model copying.
- A Tuple LMC.
- Preterms:

$$
M::=x|\lambda x . M| \lambda!x . M|M M| M \oplus M \mid!M
$$

- Terms: any preterm M such that $\Gamma \vdash M$.
- States: sequences of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.
- Soundness and Completeness Results:

$\delta^{t} \leq \delta^{c}$	$\delta^{c} \leq \delta^{t}$
\checkmark	\checkmark

- Examples: $\delta^{t}(!(I \oplus \Omega),!\Omega)=\frac{1}{2} \quad \delta^{t}(!(I \oplus \Omega),!I)=1$.
- Trivialisation: the context distance collapses to an equivalence in strongly normalising fragments or in presence of parellel disjuction.

Context Distance: the General Case [CDL2016]

- The LMC we have have worked so far with induces unsound metrics for $\Lambda_{\oplus} \ldots$
- ... because it does not adequately model copying.
- A Tuple LMC.
- Preterms:

$$
M::=x|\lambda x . M| \lambda!x . M|M M| M \oplus M \mid!M
$$

- Terms: any preterm M such that $\Gamma \vdash M$.
- States: sequences of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.
- Soundness and Comple What would a sensible notion of

$\delta^{t} \leq 0$	
distance look lik	
\checkmark	
	\checkmark

- Examples: $\delta^{t}(!(I \oplus \Omega),!\Omega)=\frac{1}{2} \quad \delta^{t}(!(I \oplus \Omega),!I)=1$.
- Trivialisation: the context distance collapses to an equivalence in strongly normalising fragments or in presence of parellel disjuction.

Part II

Bayesian Functional Programming

1. normalize(
2. let $x=\operatorname{sample}\left(\operatorname{bern}\left(\frac{5}{7}\right)\right)$ in
3. let $r=$ if x then 10 else 3 in
4. observe 4 from poisson (r);
5. return (x))
6. normalize(
7. let $x=\operatorname{sample}\left(\operatorname{bern}\left(\frac{5}{7}\right)\right)$ in
8. let $r=$ if x then 10 else 3 in
9. observe 4 from poisson (r);
10. return (x))
11. normalize(
12. let $x=$ sample $\left(\operatorname{bern}\left(\frac{5}{7}\right)\right)$ in
13. let $r=$ if x then 10 else 3 in
14. observe 4 from poisson (r);
15. return (x))

16. normalize(
17. let $x=\operatorname{sample}\left(\operatorname{bern}\left(\frac{5}{7}\right)\right)$ in
18. let $r=$ if x then 10 else 3 in
19. observe 4 from poisson (r);
20. return (x))

21. normalize(
22. let $x=$ sample $\left(\operatorname{bern}\left(\frac{5}{7}\right)\right)$ in
23. let $r=$ if x then 10 else 3 in
24. observe 4 from poisson (r);
25. return (x))

26. normalize(
27. let $x=$ sample $\left(\operatorname{bern}\left(\frac{5}{7}\right)\right)$ in
28. let $r=$ if x then 10 else 3 in
29. observe 4 from poisson (r);
30. return (x))

Bayesian Functional Programming

Bayesian Functional Programming

- 0 - ${ }^{\text {e }}$	\equiv hakaru-dev.github.io ¢ ¢ 回
Hakaru Introduction v	
Quick Start: A Mixture Model Example Modeling a Bernoulli Experiment Creating a Mixture Model Conditioning a Hakaru Program	Quick Start: A Mixture Model Example Let's start with a simple model of a coin toss experiment so that you can become familiar with some of Hakaru's data types and functionality. We will assume that a single coin flip can be represented using a Bernoulli distribution. After we have created the Bernoulli model, we will use it to create a mixture model and condition the model to estimate what the original coin toss experiment looked like based on the resulting mixture model samples. Modeling a Bernoulli Experiment We will use the categorical Hakaru Random Primitive to write a Bernoulli distribution ${ }^{1}$ for our model. The categorical primitive requires an array representing the probability of achieving each category in the experiement. Let's start with a fair experiment and state that each side of the coin has an equal chance of being picked. The result of the coin toss is stored in the variable b using Hakaru's notation for bind: $\mathrm{b}<\sim \text { categorical([0.5, 0.5]) }$ For data type simplicity, we will map Heads to true and Tails to false. By putting the values of true and false into an array, we can use the value in b to select which of them to return as the result of the coin toss: return [true, false] [b] A characteristic of the Bernoulli distribution is that it assumes that only one experiment is enndurted To collest samnles we need to run this exneriment multinle times Tn aid in this task

1. normalize(
2. let $x=\operatorname{sample}($ gauss $(0,1))$ in observe d from $\exp (1 / f(x))$;
3. return (x))
4. normalize(
5. let $x=\operatorname{sample}($ gauss $(0,1))$ in
6. observe d from $\exp (1 / f(x))$;
7. return (x))

Bayesian Programming: Semantics

- Giving semantics to programming languages like Anglican or Hakaru is nontrivial:
- Real numbers;
- Sampling from continuous distributions;
- Conditioning.

Bayesian Programming: Semantics

- Giving semantics to programming languages like Anglican or Hakaru is nontrivial:
- Real numbers;
- Sampling from continuous distributions;
- Conditioning.
- Key ingredients:
- In $M \Downarrow \mathscr{D}$, we need \mathscr{D} to be a measure, because the set of term is not countable anymore.

Bayesian Programming: Semantics

- Giving semantics to programming languages like Anglican or Hakaru is nontrivial:
- Real numbers;
- Sampling from continuous distributions;
- Conditioning.
- Key ingredients:
- In $M \Downarrow \mathscr{D}$, we need \mathscr{D} to be a measure, because the set of term is not countable anymore.
- Terms must thus be equipped with the structure of a measurable space.

Bayesian Programming: Semantics

- Giving semantics to programming languages like Anglican or Hakaru is nontrivial:
- Real numbers;
- Sampling from continuous distributions;
- Conditioning.
- Key ingredients:
- In $M \Downarrow \mathscr{D}$, we need \mathscr{D} to be a measure, because the set of term is not countable anymore.
- Terms must thus be equipped with the structure of a measurable space.
- From

$$
\frac{M \Downarrow \mathscr{K} \frac{\left\{P[N / x] \Downarrow \mathscr{E}_{P}\right\}_{\lambda x . P \in \mathrm{~S} \mathscr{K}}}{M N \Downarrow \sum_{\lambda x \cdot P \in \mathrm{~S} \mathscr{K}} \mathscr{K}(\lambda x . P) \cdot \mathscr{E}_{P}}}{\text { 位 }}
$$

we go to

$$
\frac{M \Downarrow \mathscr{K} \quad\left\{P[N / x] \Downarrow \mathscr{E}_{P}\right\}_{\lambda x . P \in \mathbf{S} \mathscr{K}}}{M N \Downarrow \int \mathscr{E}_{P} \cdot d \mathscr{K}(\lambda x . P)}
$$

Bayesian Programming: Semantics

- Giving semantics to programming languages like Anglican or Hakaru is nontrivial:
- Real numbers;
- Sampling from continuous distributions;
- Conditioning.
- Key ingrediontc.
- In $M \Downarrow$
- This Lebesgue integral does not necessarily exist.
- Te - We must ensure that \Downarrow ucture of a
- From

Part III

Termination

The Landscape: Type Theory

Simple Types
 $\tau::=\iota \quad \tau \rightarrow \tau$

The Landscape: Type Theory

Simple Types

- Sound for termination, in absence of recursion.
- Poor expressive power.
- Intuitionistic Logic.

The Landscape: Type Theory

Simple Types
$\tau::=\iota \quad \tau \rightarrow \tau$

Polymorphic
Types
$\tau::=\cdots|\alpha| \forall \alpha . \tau$

The Landscape: Type Theory

- Second-order Logic.
- Very expressive, extensionally.
- Still poor, intensionally.

Polymorphic
Types

$$
\tau::=\cdots|\alpha| \forall \alpha . \tau
$$

The Landscape: Type Theory

The Landscape: Recursion Theory

Determinism

$$
M \bar{s} \rightarrow{ }^{*} N_{s}
$$

The Landscape: Recursion Theory

Determinism

$M \bar{s} \rightarrow{ }^{*} N_{s}$
$\llbracket M \bar{s} \rrbracket=\mathcal{D}_{s}$

The Landscape: Recursion Theory

$\sum \mathcal{D}_{s}$ can be smaller than 1.

Determinism

$$
M \bar{s} \rightarrow^{*} N_{s} \quad \llbracket M \bar{s} \rrbracket=\mathcal{D}_{s}
$$

The Landscape: Recursion Theory

Determinism

$$
M \bar{s} \rightarrow^{*} N_{s} \quad \llbracket M \bar{s} \rrbracket=\mathcal{D}_{s}
$$

Termination $\quad \exists N_{s} \in N F$

The Landscape: Recursion Theory

Probabilism

$\llbracket M \bar{s} \rrbracket=\mathcal{D}_{s}$
Termination $\quad \exists N_{s} \in N F$

The Landscape: Recursion Theory

Determinism

$$
M \bar{s} \rightarrow{ }^{*} N_{s}
$$

$\exists N_{s} \in N F$

Probabilism
$\llbracket M \bar{s} \rrbracket=\mathcal{D}_{s}$

Termination
$\sum \mathcal{D}_{s}=1$

The Landscape: Recursion Theory

Termination $\quad \exists N_{s} \in N F$

$$
\sum \mathcal{D}_{s}=1
$$

The Landscape: Recursion Theory

Determinism

$$
M \bar{s} \rightarrow{ }^{*} N_{s}
$$

$\exists N_{s} \in N F$
$\forall s . \exists N_{s} \in N F$

The Landscape: Recursion Theory

Probabilism

$\llbracket M \bar{s} \rrbracket=\mathcal{D}_{s}$
$\sum \mathcal{D}_{s}=1$
Uniform Termination

$$
\forall s . \exists N_{s} \in N F
$$

The Landscape: Recursion Theory

Determinism

$$
M \bar{s} \rightarrow{ }^{*} N_{s}
$$

$\exists N_{s} \in N F$
$\forall s . \exists N_{s} \in N F$

Probabilism
$\llbracket M \bar{s} \rrbracket=\mathcal{D}_{s}$
Termination
Uniform Termination

The Landscape: Recursion Theory

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducibility.
- But useless as a programming language.

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducjbility.
- But us less as a programming language.
- For every type τ, define a set of reducible terms $\operatorname{Red}_{\tau}$.
- Prove that all reducible terms are normalizing. . .
- ... and that all typable terms are reducible.

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducibility.
- But useless as a programming language.
- What if we endow it with full recursion as a fix binder?

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducibility.
- But useless as a programming language.
- What if we endow it with full recursion as a fjx binder?

$$
(\mathrm{fix} x . M) V \rightarrow M\{\mathrm{fix} x . M / x\} V
$$

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducibility.
- But useless as a programming language.
- What if we endow it with full recursion as a fix binder?
- All the termination properties are lost, for very good reasons.

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducibility.
- But useless as a programming language.
- What if we endow it with full recursion as a fix binder?
- All the termination properties are lost, for very good reasons.
- Is everything lost?

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducibility.
- But useless as a programming language.
- What if we endow it with full recursion as a fix binder?
- All the termination properties are lost, for very good reasons.
- Is everything lost?
- NO!

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducibility.
- But useless as a programming language.
- What if we endow it with full recursion as a fix binder?
- All the termination properties are lost, for very good reasons.
- Is everything lost?
- NO!

Deterministic Sized Types

- Pure λ-calculus with simple types is terminating.
- This can be proved in many ways, including by reducibility.
- But useless as a programming language.
- What if we endow it with full recursion as a fix binder?
- All the termination properties are lost, for very good reasons.
- Is everything lost?
- NO!

Deterministic Sized Types, Technically

- Types.

$$
\xi::=a|\omega| \xi+1 ; \quad \tau::=\iota[\xi] \mid \tau \rightarrow \tau
$$

Deterministic Sized Types, Technically

- Types.

$$
\begin{aligned}
\xi::=a|\omega| \xi+1 ; & \tau::=\iota[\xi] \mid \tau \rightarrow \tau . \\
& \text { Index Terms } \\
&
\end{aligned}
$$

Deterministic Sized Types, Technically

- Types.

$$
\xi::=a|\omega| \xi+1 ; \quad \tau::=\iota[\xi] \mid \tau \rightarrow \tau
$$

- Typing Fixpoints.

$$
\frac{\Gamma, x: \iota[a] \rightarrow \tau \vdash M: \iota[a+1] \rightarrow \tau}{\Gamma \vdash \mathrm{fix} x . M: \iota[\xi] \rightarrow \tau}
$$

Deterministic Sized Types, Technically

- Types.

$$
\xi::=a|\omega| \xi+1 ; \quad \tau::=\iota[\xi] \mid \tau \rightarrow \tau .
$$

- Typing Fixpoints.

$$
\frac{\Gamma, x: \iota[a] \rightarrow \tau \vdash M: \iota[a+1] \rightarrow \tau}{\Gamma \vdash \mathrm{fix} x . M: \iota[\xi] \rightarrow \tau}
$$

- Quite Powerful.
- Can type many forms of structural recursion.

Deterministic Sized Types, Technically

- Types.

$$
\xi::=a|\omega| \xi+1 ; \quad \tau::=\iota[\xi] \mid \tau \rightarrow \tau .
$$

- Typing Fixpoints.

$$
\frac{\Gamma, x: \iota[a] \rightarrow \tau \vdash M: \iota[a+1] \rightarrow \tau}{\Gamma \vdash \mathrm{fix} x . M: \iota[\xi] \rightarrow \tau}
$$

- Quite Powerful.
- Can type many forms of structural recursion.
- Termination.
- Proved by Reducibility.
- ... but of an indexed form.

Deterministic Sized Types, Technically

- Types.

$$
\xi::=a|\omega| \xi+1 ; \quad \tau::=\iota[\xi] \mid \tau \rightarrow \tau .
$$

- Typing Fixpoints.
- Reducibility sets are of the form $\operatorname{Red} \theta_{\tau}^{\theta}$.
- θ is an environment for index variables.
- Proof of reducibility for fix $x . M$ is rather delicate.
- Termination.
- Proved by Reducibility.
- ... but of an indexed form.

Deterministic Sized Types, Technically

- Types.

$$
\xi::=a|\omega| \xi+1 ; \quad \tau::=\iota[\xi] \mid \tau \rightarrow \tau .
$$

- Typing Fixpoints.

$$
\frac{\Gamma, x: \iota[a] \rightarrow \tau \vdash M: \iota[a+1] \rightarrow \tau}{\Gamma \vdash \mathrm{fix} x . M: \iota[\xi] \rightarrow \tau}
$$

- Quite Powerful.
- Can type many forms of structural recursion.
- Termination.
- Proved by Reducibility.
- ... but of an indexed form.
- Type Inference.
- It is indeed decidable.
- But nontrivial.

Probabilistic Termination

- Examples:
fix $f . \lambda x$.if $x>0$ then if FairCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if $x>0$ then if BiasedCoin then $f(x-1)$ else $f(x+1)$;
fix f. λx.if BiasedCoin then $f(x+1)$ else x.

Probabilistic Termination

- Examples:
fix $f . \lambda x$.if $x>0$ then if FairCoin then $f(x-1)$ else $f(x+1)$;
fix f. x.if $x>0$ then if BiasedCoin then $f(x-1)$ else $f(x+1)$;
Unbiased Random Walk then $f(x+1)$ else x.

Probabilistic Termination

- Examples:

Probabilistic Termination

- Examples:
fix $f . \lambda x$.if $x>0$ then if FairCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if $x>0$ then if BiasedCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if BiasedCoin then $f(x+1)$ else x.
- Non-Examples:

$$
\begin{aligned}
& \text { fix } f . \lambda x \text {.if FairCoin then } f(x-1) \text { else }(f(x+1) ; f(x+1)) \text {; } \\
& \text { fix } f . \lambda x \text {.if BiasedCoin then } f(x+1) \text { else } f(x-1) \text {; }
\end{aligned}
$$

Probabilistic Termination

- Examples:
fix $f . \lambda x$.if $x>0$ then if FairCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if $x>0$ then if BiasedCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if BiasedCoin then $f(x+1)$ else x.
- Non-Examples:

$$
\begin{aligned}
& \text { fix } f . \lambda x \text {.if FairCpin then } f(x-1) \text { else }(f(x+1) ; f(x+1)) \text {; } \\
& \text { fix } f . \lambda x \text {.if Biase Coin then } f(x+1) \text { else } f(x-1) ;
\end{aligned}
$$

Unbiased Random Walk, with two upward calls.

Probabilistic Termination

- Examples:
fix $f . \lambda x$.if $x>0$ then if FairCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if $x>0$ then if BiasedCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if BiasedCoin then $f(x+1)$ else x.
- Non-Examples:

fix $f . \lambda x$.if FairCpin then $f(x-1)$ else $(f(x+1) ; f(x+1))$;
fix $f . \lambda x$.if Biase Coin then $f(x+1)$ else $f(x-1) ;$
Unbiased Random Walk, with two upward calls.

Probabilistic Termination

- Examples:
fix $f . \lambda x$.if $x>0$ then if FairCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if $x>0$ then if BiasedCoin then $f(x-1)$ else $f(x+1)$;
fix $f . \lambda x$.if BiasedCoin then $f(x+1)$ else x.
- Non-Examples:

$$
\begin{aligned}
& \text { fix } f . \lambda x \text {.if FairCoin then } f(x-1) \text { else }(f(x+1) ; f(x+1)) \text {; } \\
& \text { fix } f . \lambda x \text {.if BiasedCoin then } f(x+1) \text { else } f(x-1) \text {; }
\end{aligned}
$$

- Probabilistic termination is thus:
- Sensitive to the actual distribution from which we sample.
- Sensitive to how many recursive calls we perform.

One-Counter Blind Markov Chains

- They are automata of the form (Q, δ) where
- Q is a finite set of states.
- $\delta: Q \rightarrow \operatorname{Dist}(Q \times\{-1,0,1\})$.
- They are a very special form of One-Counter Markov Decision Processeses [BBEK2011].
- The model is fully probabilistic, there is no nondeterminism.
- The counter value is ignored.

One-Counter Blind Markov Chains

- They are automata of the form (Q, δ) where
- Q is a finite set of states.
- $\delta: Q \rightarrow \operatorname{Dist}(Q \times\{-1,0,1\})$.
- They are a very special form of One-Counter Markov Decision Processeses [BBEK2011].
- The model is fully probabilistic, there is no nondeterminism.
- The counter value is ignored.
- The probability of reaching a configuration where the counter is 0 can be approximated arbitrarily well in polynomial time.

Probabilistic Sized Types [DLGrellois2017]

- Basic Idea: craft a sized-type system in such a way as to mimick the recursive structure by a OCBMC.

Probabilistic Sized Types [DLGrellois2017]

- Basic Idea: craft a sized-type system in such a way as to mimick the recursive structure by a OCBMC.
- Judgments.

$$
\Gamma \mid \Delta \vdash M: \mu
$$

Probabilistic Sized Types [DLGrellois2017]

- Basic Idea: craft a sized-type system in such a way as to mimick the recursive structure by a OCBMC.
- Judgments.

$$
\Gamma \Delta \vdash \vdash M: \mu
$$

Every higher-order variable occurs at most once.

Probabilistic Sized Types [DLGrellois2017]

- Basic Idea: craft a sized-type system in such a way as to mimick the recursive structure by a OCBMC.
- Judgments.

$$
\Gamma \mid \Delta \vdash M: \mu
$$

- Typing Fixpoints.

$$
\frac{\Gamma \mid x: \sigma \vdash V: \iota[a+1] \rightarrow \tau \quad O C B M C(\sigma) \text { terminates. }}{\Gamma \mid x: \sigma \vdash V: \iota[\xi] \rightarrow \tau}
$$

Probabilistic Sized Types [DLGrellois2017]

- Basic Idea: craft a sized-type system in such a way as to mimick the recursive structure by a OCBMC.
- Judgments.

$$
\Gamma \mid \Delta \vdash M: \mu
$$

- Typing Fixpoints.

$$
\begin{aligned}
& \begin{array}{c|ll}
\Gamma \mid x: \sigma \vdash V: \iota[a+1] \rightarrow & O C B M C(\sigma) \text { terminates. } \\
\hline \Gamma \mid x: \sigma & V: \iota[\xi] \rightarrow \tau \\
&
\end{array} \\
& \text { This is sufficient for typing: } \\
& \text { - Unbiased random walks; } \\
& \text { - Biased random walks. }
\end{aligned}
$$

Probabilistic Sized Types [DLGrellois2017]

- Basic Idea: craft a sized-type system in such a way as to mimick the recursive structure by a OCBMC.
- Judgments.

$$
\Gamma \mid \Delta \vdash M: \mu
$$

- Typing Fixpoints.

$$
\frac{\Gamma \mid x: \sigma \vdash V: \iota[a+1] \rightarrow \tau \quad O C B M C(\sigma) \text { terminates. }}{\Gamma \mid x: \sigma \vdash V: \iota[\xi] \rightarrow \tau}
$$

- Typing Probabilistic Choice

$$
\frac{\Gamma|\Delta \vdash M: \tau \quad \Gamma| \Omega \vdash N: \rho}{\Gamma \left\lvert\, \frac{1}{2} \Delta+\frac{1}{2} \Omega \vdash M \oplus N\right.: \frac{1}{2} \tau+\frac{1}{2} \rho}
$$

Probabilistic Sized Types [DLGrellois2017]

- Basic Idea: craft a sized-type system in such a way as to mimick the recursive structure by a OCBMC.
- Judgments.

$$
\Gamma \mid \Delta \vdash M: \mu
$$

- Typing Fixpoints.

$$
\frac{\Gamma \mid x: \sigma \vdash V: \iota[a+1] \rightarrow \tau \quad O C B M C(\sigma) \text { terminates. }}{\Gamma \mid x: \sigma \vdash V: \iota[\xi] \rightarrow \tau}
$$

- Typing Probabilistic Choice

$$
\frac{\Gamma|\Delta \vdash M: \tau \quad \Gamma| \Omega \vdash N: \rho}{\Gamma \left\lvert\, \frac{1}{2} \Delta+\frac{1}{2} \Omega \vdash M \oplus N\right.: \frac{1}{2} \tau+\frac{1}{2} \rho}
$$

- Termination.
- By a quantitative nontrivial refinement of reducibility.

Probabilistic Sized Types [DLGrellois2017]

- Basic Idea: craft a sized-type system in such a way as to mimick the recursive structure by a OCBMC.
- Judgments.

$$
\Gamma \mid \Delta \vdash M: \mu
$$

- Tvping Fixpoints.
- Reducibility sets are now on the form $\operatorname{Red}_{\tau}^{\theta, p}$
- p stands for the probability of being reducible.
- Reducibility sets are continuous:

$$
\operatorname{Red}_{\tau}^{\theta, p}=\bigcup_{q<p} \operatorname{Red}_{\tau}^{\theta, q}
$$

- Termination.
- By a quantitative nontrivial refinement of reducibility.

Deterministic Intersection Types

- Question: what are simple types missing as a way to precisely capture termination?

Deterministic Intersection Types

- Question: what are simple types missing as a way to precisely capture termination?
- Very simple examples of normalizing terms which canoot be typed:

$$
\Delta=\lambda x . x x \quad \Delta(\lambda x \cdot x)
$$

Deterministic Intersection Types

- Question: what are simple types missing as a way to precisely capture termination?
- Very simple examples of normalizing terms which canoot be typed:

$$
\Delta=\lambda x . x x \quad \Delta(\lambda x \cdot x)
$$

- Types

$$
\tau::=\star \mid A \rightarrow B \quad A::=\left\{\tau_{1}, \ldots, \tau_{n}\right\}
$$

Deterministic Intersection Types

- Question: what are simple types missing as a way to precisely capture termination?
- Very simple examples of normalizing terms which canoot be typed:

$$
\Delta=\lambda x \cdot x x \quad \Delta(\lambda x \cdot x)
$$

- Types

$$
\tau::=\star \mid A \rightarrow B \quad A::=\left\{\tau_{1}, \ldots, \tau_{n}\right\}
$$

- Typing Rules: Examples

$$
\frac{\left\{\Gamma \vdash M: \tau_{i}\right\}_{1 \leq i \leq n}}{\Gamma \vdash M:\left\{\tau_{1}, \ldots, \tau_{n}\right\}} \quad \frac{\Gamma \vdash M:\{A \rightarrow B\} \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B}
$$

Deterministic Intersection Types

- Question: what are simple types missing as a way to precisely capture termination?
- Very simple examples of normalizing terms which canoot be typed:

$$
\Delta=\lambda x \cdot x x \quad \Delta(\lambda x \cdot x)
$$

- Types

$$
\tau::=\star \mid A \rightarrow B \quad A::=\left\{\tau_{1}, \ldots, \tau_{n}\right\}
$$

- Typing Rules: Examples

$$
\frac{\left\{\Gamma \vdash M: \tau_{i}\right\}_{1 \leq i \leq n}}{\Gamma \vdash M:\left\{\tau_{1}, \ldots, \tau_{n}\right\}} \quad \frac{\Gamma \vdash M:\{A \rightarrow B\} \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B}
$$

- Termination
- Again by reducibility.

Deterministic Intersection Types

- Question: what are simple types missing as a way to precisely capture termination?
- Very simple examples of normalizing terms which canoot be typed:

$$
\Delta=\lambda x \cdot x x \quad \Delta(\lambda x \cdot x)
$$

- Types

$$
\tau::=\star \mid A \rightarrow B \quad A::=\left\{\tau_{1}, \ldots, \tau_{n}\right\}
$$

- Typing Rules: Examples

$$
\frac{\left\{\Gamma \vdash M: \tau_{i}\right\}_{1 \leq i \leq n}}{\Gamma \vdash M:\left\{\tau_{1}, \ldots, \tau_{n}\right\}} \quad \frac{\Gamma \vdash M:\{A \rightarrow B\} \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B}
$$

- Termination
- Again by reducibility.
- Completeness
- By subject expansion, the dual of subject reduction.

Oracle Intersection Types [BreuvartDL2017]

- Probabilistic choice can be seen as a form of read operation:

$$
M \oplus N=\text { if BitInput then } M \text { else } N
$$

Oracle Intersection Types [BreuvartDL2017]

- Probabilistic choice can be seen as a form of read operation:

$$
M \oplus N=\text { if BitInput then } M \text { else } N
$$

- Types

$$
\tau::=\star \mid A \rightarrow s \cdot B \quad A::=\left\{\tau_{1}, \ldots, \tau_{n}\right\} \quad s \in\{0,1\}^{*}
$$

Oracle Intersection Types [BreuvartDL2017]

- Probabilistic choice can be seen as a form of read operation:

$$
M \oplus N=\text { if BitInput then } M \text { else } N
$$

- Types

$$
\tau::=\star \mid A \rightarrow s \cdot B \quad A::=\left\{\tau_{1}, \ldots, \tau_{n}\right\} \quad s \in\{0,1\}^{*}
$$

- Typing Rules: Examples

$$
\frac{\Gamma \vdash M: s \cdot A}{\Gamma \vdash M \oplus N: 0 s \cdot A} \quad \frac{\Gamma \vdash M: r \cdot\{A \rightarrow s \cdot B\} \quad \Gamma \vdash N: q \cdot A}{\Gamma \vdash M N:(r q s) \cdot B}
$$

Oracle Intersection Types [BreuvartDL2017]

- Probabilistic choice can be seen as a form of read operation:

$$
M \oplus N=\text { if BitInput then } M \text { else } N
$$

- Types

$$
\tau::=\star \mid A \rightarrow s \cdot B \quad A::=\left\{\tau_{1}, \ldots, \tau_{n}\right\} \quad s \in\{0,1\}^{*}
$$

- Typing Rules: Examples

$$
\frac{\Gamma \vdash M: s \cdot A}{\Gamma \vdash M \oplus N: 0 s \cdot A} \quad \frac{\Gamma \vdash M: r \cdot\{A \rightarrow s \cdot B\} \quad \Gamma \vdash N: q \cdot A}{\Gamma \vdash M N:(r q s) \cdot B}
$$

- Termination and Completeness
- Formulated in a rather unusual way.
- Proved as usual, but relative to a single probabilistic branch

Oracle Intersection Types [BreuvartDL2017]

- Probabilistic choice can be seen as a form of read operation:

$$
M \oplus N=\text { if BitInput then } M \text { else } N
$$

- Types

$$
\begin{aligned}
& \tau::=\star \mid A \rightarrow s \cdot B \quad A::=\left\{\tau_{1}, \ldots, \tau_{n}\right\} \quad s \in\{0,1\}^{*} \\
& \mathbb{P}(M \downarrow)=\sum_{\vdash M: s \cdot \star} 2^{|s|} \\
& \frac{\Gamma \vdash M: s \cdot A}{\Gamma \vdash M \oplus N: 0 s \cdot A} \quad \frac{\Gamma \vdash M}{\frac{r \cdot\{A \rightarrow s \cdot B\} \quad \Gamma \vdash N: q \cdot A}{\Gamma \vdash M N:(r q s) \cdot B}}
\end{aligned}
$$

- Termination and Completeness
- Formulated in a rather unusual way.
- Proved as usual, but relative to a single probabilistic branch

Oracle Intersection Types [BreuvartDL2017]

- Probabilistic choice can be seen as a form of read operation:

$$
M \oplus N=\text { if BitInput then } M \text { else } N
$$

- Types

This is unavoidable, due to recursion theory. $\mid \vdash N: q \cdot A$

- Termination and Completeness
- Formulated in a rather unusual way.
- Proved as usual, but relative to a single probabilistic branch

Intersection Types and Computations

Intersection Types and Computations

Monadic Intersection Types [BDL2017]

- They are a combination of oracle and sized types.
- Intersections are needed for preciseness.
- Distributions of types allow to analyse more than one probabilistic branch in the same type derivation.

These Slides, and More...

These Slides, and More...

Questions?

