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Probabilistic Models

I The environment is supposed not to behave
deterministically, but probabilistically.

I Crucial when modeling uncertainty.
I Useful to handle complex domains.
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Randomized Computation

I Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

I This is a powerful tool when solving computational
problems.

I Example:

I Abstractions:
I Randomized algorithms;
I Probabilistic Turing machines.
I Labelled Markov chains.
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Higher-Order Computation

I Mainly useful in programming.

I Functions are first-class citizens:
I They can be passed as arguments;
I They can be obtained as results.

I Motivations:
I Modularity;
I Code reuse;
I Conciseness.

I Example:

I Models:
I λ-calculus
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Higher-Order Probabilistic Computation

Does it Make Sense?

What Kind of Metatheory
Does it Have?

Applications?
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Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;

I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V ) ∈ R[0,1]

∑
D =

∑
V

D(V ) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P ) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M ]K =

∑
JC[N ]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M ]K−

∑
JC[N ]K|.
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Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)
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A Labelled Markov Chain for Λ⊕
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Probabilistic Applicative Bisimulation

λx.M R λx.N

M{L/x}

L

N{L/x}

L

R
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JMKeval
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Applicative Bisimilarity vs. Context Equivalence

I Bisimilarity: the union ∼ of all bisimulation relations.
I Is it that ∼ is included in ≡? How to prove it?
I Natural strategy: is ∼ a congruence?

I If this is the case:

M ∼ N =⇒ C[M ] ∼ C[N ] =⇒
∑

JC[M ]K =
∑

JC[N ]K

=⇒M ≡ N.

I This is a necessary sanity check anyway.
I The naïve proof by induction fails, due to application:

from M ∼ N , one cannot directly conclude that LM ∼ LN .
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Our Neighborhood

I Λ, where we observe convergence

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X X

CBV X X

[Abramsky1990, Howe1993]
I Λ⊕ with nondeterministic semantics, where we observe
convergence, in its may or must flavors.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X ×

[Ong1993, Lassen1998]



The Probabilistic Case
I Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X X

I Counterexample for CBN: (λx.I)⊕ (λx.Ω) 6∼ λx.I ⊕ Ω

I Where these discrepancies come from?
I From testing!
I Bisimulation can be characterized by testing equivalence as

follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | 〈T, T 〉
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .
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I Probabilistic simulation can be characterized by testing as
follows:

T ::= ω | a · T | 〈T, T 〉 | T ∨ T

I Full abstraction can be recovered if endowing Λ⊕ with
parallel disjunction [CDLSV2015].
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Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.

I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .
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Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.
I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
I Trivialisation: the context distance collapses to an

equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?
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Part II

Bayesian Functional Programming
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Bayesian Functional Programming
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1. normalize(

2. let x = sample(gauss (0, 1)) in

4. observe d from exp(1/f(x));

5. return(x))



1. normalize(

2. let x = sample(gauss (0, 1)) in

4. observe d from exp(1/f(x));

5. return(x))



Bayesian Programming: Semantics
I Giving semantics to programming languages like Anglican

or Hakaru is nontrivial:
I Real numbers;
I Sampling from continuous distributions;
I Conditioning.

I Key ingredients:
I In M ⇓ D , we need D to be a measure, because the set of

term is not countable anymore.
I Terms must thus be equipped with the structure of a

measurable space.
I From

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P ) · EP

we go to

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∫

EP · dK (λx.P )

I This Lebesgue integral
does not necessarily exist.

I We must ensure that ⇓
gives rise to a stochastic
kernel.

I In presence of conditioning,
we need even more.
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Part III

Termination



The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable
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The Landscape: Recursion Theory

Determinism

Probabilism

Ms→∗ Ns

JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.
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Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.

I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V
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Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.
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Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk
Biased Randomn Walk

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.
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One-Counter Blind Markov Chains

I They are automata of the form (Q, δ) where
I Q is a finite set of states.
I δ : Q→ Dist(Q× {−1, 0, 1}).

I They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].

I The model is fully probabilistic, there is no nondeterminism.
I The counter value is ignored.

I The probability of reaching a configuration where the
counter is 0 can be approximated arbitrarily well in
polynomial time.
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Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.

I Judgments.
Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ
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Deterministic Intersection Types
I Question: what are simple types missing as a way to

precisely capture termination?

I Very simple examples of normalizing terms which canoot be
typed:

∆ = λx.xx ∆(λx.x).

I Types

τ ::= ? | A→ B A ::= {τ1, . . . , τn}

I Typing Rules: Examples
{Γ `M : τi}1≤i≤n

Γ `M : {τ1, . . . , τn}
Γ `M : {A→ B} Γ ` N : A

Γ `MN : B

I Termination
I Again by reducibility.

I Completeness
I By subject expansion, the dual of subject reduction.
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Oracle Intersection Types [BreuvartDL2017]
I Probabilistic choice can be seen as a form of read operation:

M ⊕N = if BitInput thenM else N

I Types

τ ::= ? | A→ s ·B A ::= {τ1, . . . , τn} s ∈ {0, 1}∗

I Typing Rules: Examples

Γ `M : s ·A
Γ `M ⊕N : 0s ·A

Γ `M : r · {A→ s ·B} Γ ` N : q ·A
Γ `MN : (rqs) ·B

I Termination and Completeness
I Formulated in a rather unusual way.
I Proved as usual, but relative to a single probabilistic branch

P(M ↓) =
∑
`M :s·?

2|s|

This is unavoidable, due to recursion theory.
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