
On Higher-Order Probabilistic Computation:
Relational Reasoning, Termination, and Bayesian Programming

Ugo Dal Lago
(Based on joint work with Michele Alberti, Raphaëlle

Crubillé, Charles Grellois, Davide Sangiorgi,. . .)

IFIP WG 2.2 Annual Meeting, Brno, September 17th

Probabilistic Models

I The environment is supposed not to behave
deterministically, but probabilistically.

I Crucial when modeling uncertainty.
I Useful to handle complex domains.
I Example:

q0 q1

q2 q3

1
4

3
4 1

1
2

1
2

1
3

2
3

I Abstractions:
I (Labelled) Markov Chains.

Probabilistic Models

I The environment is supposed not to behave
deterministically, but probabilistically.

I Crucial when modeling uncertainty.

I Useful to handle complex domains.
I Example:

q0 q1

q2 q3

1
4

3
4 1

1
2

1
2

1
3

2
3

I Abstractions:
I (Labelled) Markov Chains.

Probabilistic Models

I The environment is supposed not to behave
deterministically, but probabilistically.

I Crucial when modeling uncertainty.
I Useful to handle complex domains.

I Example:

q0 q1

q2 q3

1
4

3
4 1

1
2

1
2

1
3

2
3

I Abstractions:
I (Labelled) Markov Chains.

Probabilistic Models

I The environment is supposed not to behave
deterministically, but probabilistically.

I Crucial when modeling uncertainty.
I Useful to handle complex domains.
I Example:

q0 q1

q2 q3

1
4

3
4 1

1
2

1
2

1
3

2
3

I Abstractions:
I (Labelled) Markov Chains.

Probabilistic Models

I The environment is supposed not to behave
deterministically, but probabilistically.

I Crucial when modeling uncertainty.
I Useful to handle complex domains.
I Example:

q0 q1

q2 q3

1
4

3
4 1

1
2

1
2

1
3

2
3

I Abstractions:
I (Labelled) Markov Chains.

Probabilistic Models

R
O

B
O

T
IC

S

Probabilistic Models

A
RT

IF
IC

IA
L

IN
T

E
LL

IG
E

N
C

E

Probabilistic Models

N
AT

U
R

A
L

LA
N

G
U

A
G

E
P

R
O

C
E

SS
IN

G

Randomized Computation

I Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

I This is a powerful tool when solving computational
problems.

I Example:

I Abstractions:
I Randomized algorithms;
I Probabilistic Turing machines.
I Labelled Markov chains.

Randomized Computation

I Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

I This is a powerful tool when solving computational
problems.

I Example:

I Abstractions:
I Randomized algorithms;
I Probabilistic Turing machines.
I Labelled Markov chains.

Randomized Computation

I Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

I This is a powerful tool when solving computational
problems.

I Example:

I Abstractions:
I Randomized algorithms;
I Probabilistic Turing machines.
I Labelled Markov chains.

Randomized Computation

I Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

I This is a powerful tool when solving computational
problems.

I Example:

I Abstractions:
I Randomized algorithms;
I Probabilistic Turing machines.
I Labelled Markov chains.

Randomized Computation

I Algorithms and automata are assumed to have the ability
to sample from a distribution [dLMSS1956,R1963].

I This is a powerful tool when solving computational
problems.

I Example:

I Abstractions:
I Randomized algorithms;
I Probabilistic Turing machines.
I Labelled Markov chains.

Randomized Computation

A
LG

O
R

IT
H

M
IC

S

Randomized Computation

C
RY

P
T

O
G

R
A

P
H

Y

Randomized Computation

P
R

O
G

R
A

M
V

E
R

IF
IC

AT
IO

N

Higher-Order Computation

I Mainly useful in programming.

I Functions are first-class citizens:
I They can be passed as arguments;
I They can be obtained as results.

I Motivations:
I Modularity;
I Code reuse;
I Conciseness.

I Example:

I Models:
I λ-calculus

Higher-Order Computation

I Mainly useful in programming.
I Functions are first-class citizens:

I They can be passed as arguments;
I They can be obtained as results.

I Motivations:
I Modularity;
I Code reuse;
I Conciseness.

I Example:

I Models:
I λ-calculus

Higher-Order Computation

I Mainly useful in programming.
I Functions are first-class citizens:

I They can be passed as arguments;
I They can be obtained as results.

I Motivations:
I Modularity;
I Code reuse;
I Conciseness.

I Example:

I Models:
I λ-calculus

Higher-Order Computation

I Mainly useful in programming.
I Functions are first-class citizens:

I They can be passed as arguments;
I They can be obtained as results.

I Motivations:
I Modularity;
I Code reuse;
I Conciseness.

I Example:

I Models:
I λ-calculus

Higher-Order Computation

I Mainly useful in programming.
I Functions are first-class citizens:

I They can be passed as arguments;
I They can be obtained as results.

I Motivations:
I Modularity;
I Code reuse;
I Conciseness.

I Example:

I Models:
I λ-calculus

Higher-Order Computation

I Mainly useful in programming.
I Functions are first-class citizens:

I They can be passed as arguments;
I They can be obtained as results.

I Motivations:
I Modularity;
I Code reuse;
I Conciseness.

I Example:

I Models:
I λ-calculus

Higher-Order Computation

FU
N

C
T

IO
N

A
L

P
R

O
G

R
A

M
M

IN
G

Higher-Order Computation

FU
N

C
T

IO
N

A
L

D
AT

A
ST

R
U

C
T

U
R

E
S

Higher-Order Computation

λ
-C

A
LC

U
LU

S

Higher-Order Probabilistic Computation

Does it Make Sense?

What Kind of Metatheory
Does it Have?

Applications?

Higher-Order Probabilistic Computation

Does it Make Sense?

What Kind of Metatheory
Does it Have?

Applications?

Higher-Order Probabilistic Computation

Does it Make Sense?

What Kind of Metatheory
Does it Have?

Applications?

1980 1990

20002010

[Saheb-Djaromi] [JonesPlotkin]

[JungTix][DanosHarmer]

1980 1990

20002010

[Saheb-Djaromi] [JonesPlotkin]

[JungTix][DanosHarmer]. . . too many

Outline

Part I Relational Reasoning

Part II Bayesian Functional Programming

Part III Termination

Part I

Relational Reasoning

Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;

I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M]K−

∑
JC[N]K|.

Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;
I Values: V ::= λx.M ;

I Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M]K−

∑
JC[N]K|.

Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;
I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M]K−

∑
JC[N]K|.

Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;
I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M]K−

∑
JC[N]K|.

Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;
I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M]K−

∑
JC[N]K|.

Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;
I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M]K−

∑
JC[N]K|.

Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;
I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M]K−

∑
JC[N]K|.

Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;
I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M]K−

∑
JC[N]K|.

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x

∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x

∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Y1 vs. Y2

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Y1M →∗ M(Y2M)⊕M(Y3M)

Y2M →∗ M(Y1M)⊕M(Y3M)

Y3M →∗ M(Y1M)⊕M(Y2M)

A Labelled Markov Chain for Λ⊕

Terms

Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

A Labelled Markov Chain for Λ⊕

Terms Values

M

V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

λx.N

A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

λx.NN{W/x}
W , 1

Probabilistic Applicative Bisimulation

λx.M R λx.N

M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E)

JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)

=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Applicative Bisimilarity vs. Context Equivalence

I Bisimilarity: the union ∼ of all bisimulation relations.
I Is it that ∼ is included in ≡? How to prove it?
I Natural strategy: is ∼ a congruence?

I If this is the case:

M ∼ N =⇒ C[M] ∼ C[N] =⇒
∑

JC[M]K =
∑

JC[N]K

=⇒M ≡ N.

I This is a necessary sanity check anyway.
I The naïve proof by induction fails, due to application:

from M ∼ N , one cannot directly conclude that LM ∼ LN .

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Our Neighborhood

I Λ, where we observe convergence

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X X

CBV X X

[Abramsky1990, Howe1993]
I Λ⊕ with nondeterministic semantics, where we observe
convergence, in its may or must flavors.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X ×

[Ong1993, Lassen1998]

The Probabilistic Case
I Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X X

I Counterexample for CBN: (λx.I)⊕ (λx.Ω) 6∼ λx.I ⊕ Ω

I Where these discrepancies come from?
I From testing!
I Bisimulation can be characterized by testing equivalence as

follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | 〈T, T 〉
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .

The Probabilistic Case
I Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X X

I Counterexample for CBN: (λx.I)⊕ (λx.Ω) 6∼ λx.I ⊕ Ω

I Where these discrepancies come from?

I From testing!
I Bisimulation can be characterized by testing equivalence as

follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | 〈T, T 〉
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .

The Probabilistic Case
I Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X X

I Counterexample for CBN: (λx.I)⊕ (λx.Ω) 6∼ λx.I ⊕ Ω

I Where these discrepancies come from?
I From testing!

I Bisimulation can be characterized by testing equivalence as
follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | 〈T, T 〉
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .

The Probabilistic Case
I Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X X

I Counterexample for CBN: (λx.I)⊕ (λx.Ω) 6∼ λx.I ⊕ Ω

I Where these discrepancies come from?
I From testing!
I Bisimulation can be characterized by testing equivalence as

follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | 〈T, T 〉
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .

The Probabilistic Case
I Λ⊕ with probabilistic semantics.

- ⊆ ≤ ≤ ⊆ -
CBN X ×
CBV X ×

I Probabilistic simulation can be characterized by testing as
follows:

T ::= ω | a · T | 〈T, T 〉 | T ∨ T

I Full abstraction can be recovered if endowing Λ⊕ with
parallel disjunction [CDLSV2015].

- ⊆ ≤ ≤ ⊆ -
CBN X ×
CBV X X

The Probabilistic Case
I Λ⊕ with probabilistic semantics.

- ⊆ ≤ ≤ ⊆ -
CBN X ×
CBV X ×

I Probabilistic simulation can be characterized by testing as
follows:

T ::= ω | a · T | 〈T, T 〉 | T ∨ T

I Full abstraction can be recovered if endowing Λ⊕ with
parallel disjunction [CDLSV2015].

- ⊆ ≤ ≤ ⊆ -
CBN X ×
CBV X X

The Probabilistic Case
I Λ⊕ with probabilistic semantics.

- ⊆ ≤ ≤ ⊆ -
CBN X ×
CBV X ×

I Probabilistic simulation can be characterized by testing as
follows:

T ::= ω | a · T | 〈T, T 〉 | T ∨ T

I Full abstraction can be recovered if endowing Λ⊕ with
parallel disjunction [CDLSV2015].

- ⊆ ≤ ≤ ⊆ -
CBN X ×
CBV X X

Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.

I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.
I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;

I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.
I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.
I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.
I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.
I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.

I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.
I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.
I Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.
I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
I Trivialisation: the context distance collapses to an

equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?

Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.

I A Tuple LMC.
I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.
I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
I Trivialisation: the context distance collapses to an

equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?

Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.

I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
I Trivialisation: the context distance collapses to an

equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?

Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.

I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
I Trivialisation: the context distance collapses to an

equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?

Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.
I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X

I Examples: δt(!(I ⊕ Ω), !Ω) = 1
2 δt(!(I ⊕ Ω), !I) = 1.

I Trivialisation: the context distance collapses to an
equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?

Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.
I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.

I Trivialisation: the context distance collapses to an
equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?

Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.
I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
I Trivialisation: the context distance collapses to an

equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?

Context Distance: the General Case [CDL2016]
I The LMC we have have worked so far with induces
unsound metrics for Λ⊕. . .

I . . . because it does not adequately model copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.
I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
I Trivialisation: the context distance collapses to an

equivalence in strongly normalising fragments or in presence
of parellel disjuction.

What would a sensible notion of
distance look like?

Part II

Bayesian Functional Programming

1. normalize(

2. let x = sample(bern

(
5

7

)
) in

3. let r = if x then 10 else 3 in

4. observe 4 from poisson(r);

5. return(x))

x = true

x = false

5
7

2
7

r = 10

r = 3

x = true

x = false

1. normalize(

2. let x = sample(bern

(
5

7

)
) in

3. let r = if x then 10 else 3 in

4. observe 4 from poisson(r);

5. return(x))

x = true

x = false

5
7

2
7

r = 10

r = 3

x = true

x = false

1. normalize(

2. let x = sample(bern

(
5

7

)
) in

3. let r = if x then 10 else 3 in

4. observe 4 from poisson(r);

5. return(x))

x = true

x = false

5
7

2
7

r = 10

r = 3

x = true

x = false

1. normalize(

2. let x = sample(bern

(
5

7

)
) in

3. let r = if x then 10 else 3 in

4. observe 4 from poisson(r);

5. return(x))

x = true

x = false

5
7

2
7

r = 10

r = 3

x = true

x = false

1. normalize(

2. let x = sample(bern

(
5

7

)
) in

3. let r = if x then 10 else 3 in

4. observe 4 from poisson(r);

5. return(x))

x = true

x = false

5
7

2
7

r = 10

r = 3

x = true

x = false

poisson(10)(4) ∼ 0.016

poisson(3)(4) ∼ 0.168

1. normalize(

2. let x = sample(bern

(
5

7

)
) in

3. let r = if x then 10 else 3 in

4. observe 4 from poisson(r);

5. return(x))

x = true

x = false

5
7

2
7

r = 10

r = 3

x = true

x = false

0.22

0.78

Bayesian Functional Programming

A
N

G
LI

C
A

N

Bayesian Functional Programming

H
A

K
A

R
U

1. normalize(

2. let x = sample(gauss (0, 1)) in

4. observe d from exp(1/f(x));

5. return(x))

1. normalize(

2. let x = sample(gauss (0, 1)) in

4. observe d from exp(1/f(x));

5. return(x))

Bayesian Programming: Semantics
I Giving semantics to programming languages like Anglican

or Hakaru is nontrivial:
I Real numbers;
I Sampling from continuous distributions;
I Conditioning.

I Key ingredients:
I In M ⇓ D , we need D to be a measure, because the set of

term is not countable anymore.
I Terms must thus be equipped with the structure of a

measurable space.
I From

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

we go to

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∫

EP · dK (λx.P)

I This Lebesgue integral
does not necessarily exist.

I We must ensure that ⇓
gives rise to a stochastic
kernel.

I In presence of conditioning,
we need even more.

Bayesian Programming: Semantics
I Giving semantics to programming languages like Anglican

or Hakaru is nontrivial:
I Real numbers;
I Sampling from continuous distributions;
I Conditioning.

I Key ingredients:
I In M ⇓ D , we need D to be a measure, because the set of

term is not countable anymore.

I Terms must thus be equipped with the structure of a
measurable space.

I From
M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

we go to

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∫

EP · dK (λx.P)

I This Lebesgue integral
does not necessarily exist.

I We must ensure that ⇓
gives rise to a stochastic
kernel.

I In presence of conditioning,
we need even more.

Bayesian Programming: Semantics
I Giving semantics to programming languages like Anglican

or Hakaru is nontrivial:
I Real numbers;
I Sampling from continuous distributions;
I Conditioning.

I Key ingredients:
I In M ⇓ D , we need D to be a measure, because the set of

term is not countable anymore.
I Terms must thus be equipped with the structure of a

measurable space.

I From
M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

we go to

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∫

EP · dK (λx.P)

I This Lebesgue integral
does not necessarily exist.

I We must ensure that ⇓
gives rise to a stochastic
kernel.

I In presence of conditioning,
we need even more.

Bayesian Programming: Semantics
I Giving semantics to programming languages like Anglican

or Hakaru is nontrivial:
I Real numbers;
I Sampling from continuous distributions;
I Conditioning.

I Key ingredients:
I In M ⇓ D , we need D to be a measure, because the set of

term is not countable anymore.
I Terms must thus be equipped with the structure of a

measurable space.
I From

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

we go to

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∫

EP · dK (λx.P)

I This Lebesgue integral
does not necessarily exist.

I We must ensure that ⇓
gives rise to a stochastic
kernel.

I In presence of conditioning,
we need even more.

Bayesian Programming: Semantics
I Giving semantics to programming languages like Anglican

or Hakaru is nontrivial:
I Real numbers;
I Sampling from continuous distributions;
I Conditioning.

I Key ingredients:
I In M ⇓ D , we need D to be a measure, because the set of

term is not countable anymore.
I Terms must thus be equipped with the structure of a

measurable space.
I From

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P) · EP

we go to

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∫

EP · dK (λx.P)

I This Lebesgue integral
does not necessarily exist.

I We must ensure that ⇓
gives rise to a stochastic
kernel.

I In presence of conditioning,
we need even more.

Part III

Termination

The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable

The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable

The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable

The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable

The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable

The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable

The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable

The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable

The Landscape: Recursion Theory

Determinism

Probabilism

Ms→∗ Ns

JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF

∑
Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF

∑
Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.

Π0
2-complete. Π0

2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF

∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF

∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.

Π0
2-complete.

Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.

The Landscape: Recursion Theory

Determinism Probabilism

Ms→∗ Ns JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete.

Π0
2-complete.

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.

I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.

I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?

I All the termination properties are lost, for very good
reasons.

I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?

I All the termination properties are lost, for very good
reasons.

I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.

I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?

I NO!
fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V

Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.

Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.

Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.

Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.

Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.

Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.

Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.

Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk
Biased Randomn Walk

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk

Biased Randomn Walk

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk
Biased Randomn Walk

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk
Biased Randomn Walk

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk
Biased Randomn Walk

Unbiased Random Walk, with two upward calls.

Biased Random Walk, the “wrong” way.

Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk
Biased Randomn Walk

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk
Biased Randomn Walk

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

One-Counter Blind Markov Chains

I They are automata of the form (Q, δ) where
I Q is a finite set of states.
I δ : Q→ Dist(Q× {−1, 0, 1}).

I They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].

I The model is fully probabilistic, there is no nondeterminism.
I The counter value is ignored.

I The probability of reaching a configuration where the
counter is 0 can be approximated arbitrarily well in
polynomial time.

One-Counter Blind Markov Chains

I They are automata of the form (Q, δ) where
I Q is a finite set of states.
I δ : Q→ Dist(Q× {−1, 0, 1}).

I They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].

I The model is fully probabilistic, there is no nondeterminism.
I The counter value is ignored.

I The probability of reaching a configuration where the
counter is 0 can be approximated arbitrarily well in
polynomial time.

Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.

I Judgments.
Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ

Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.
I Judgments.

Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ

Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.
I Judgments.

Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ

Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.
I Judgments.

Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ

Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.
I Judgments.

Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ

Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.
I Judgments.

Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ

Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.
I Judgments.

Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ

Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.
I Judgments.

Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | x : σ ` V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ

Deterministic Intersection Types
I Question: what are simple types missing as a way to

precisely capture termination?

I Very simple examples of normalizing terms which canoot be
typed:

∆ = λx.xx ∆(λx.x).

I Types

τ ::= ? | A→ B A ::= {τ1, . . . , τn}

I Typing Rules: Examples
{Γ `M : τi}1≤i≤n

Γ `M : {τ1, . . . , τn}
Γ `M : {A→ B} Γ ` N : A

Γ `MN : B

I Termination
I Again by reducibility.

I Completeness
I By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
I Question: what are simple types missing as a way to

precisely capture termination?
I Very simple examples of normalizing terms which canoot be

typed:
∆ = λx.xx ∆(λx.x).

I Types

τ ::= ? | A→ B A ::= {τ1, . . . , τn}

I Typing Rules: Examples
{Γ `M : τi}1≤i≤n

Γ `M : {τ1, . . . , τn}
Γ `M : {A→ B} Γ ` N : A

Γ `MN : B

I Termination
I Again by reducibility.

I Completeness
I By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
I Question: what are simple types missing as a way to

precisely capture termination?
I Very simple examples of normalizing terms which canoot be

typed:
∆ = λx.xx ∆(λx.x).

I Types

τ ::= ? | A→ B A ::= {τ1, . . . , τn}

I Typing Rules: Examples
{Γ `M : τi}1≤i≤n

Γ `M : {τ1, . . . , τn}
Γ `M : {A→ B} Γ ` N : A

Γ `MN : B

I Termination
I Again by reducibility.

I Completeness
I By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
I Question: what are simple types missing as a way to

precisely capture termination?
I Very simple examples of normalizing terms which canoot be

typed:
∆ = λx.xx ∆(λx.x).

I Types

τ ::= ? | A→ B A ::= {τ1, . . . , τn}

I Typing Rules: Examples
{Γ `M : τi}1≤i≤n

Γ `M : {τ1, . . . , τn}
Γ `M : {A→ B} Γ ` N : A

Γ `MN : B

I Termination
I Again by reducibility.

I Completeness
I By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
I Question: what are simple types missing as a way to

precisely capture termination?
I Very simple examples of normalizing terms which canoot be

typed:
∆ = λx.xx ∆(λx.x).

I Types

τ ::= ? | A→ B A ::= {τ1, . . . , τn}

I Typing Rules: Examples
{Γ `M : τi}1≤i≤n

Γ `M : {τ1, . . . , τn}
Γ `M : {A→ B} Γ ` N : A

Γ `MN : B

I Termination
I Again by reducibility.

I Completeness
I By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
I Question: what are simple types missing as a way to

precisely capture termination?
I Very simple examples of normalizing terms which canoot be

typed:
∆ = λx.xx ∆(λx.x).

I Types

τ ::= ? | A→ B A ::= {τ1, . . . , τn}

I Typing Rules: Examples
{Γ `M : τi}1≤i≤n

Γ `M : {τ1, . . . , τn}
Γ `M : {A→ B} Γ ` N : A

Γ `MN : B

I Termination
I Again by reducibility.

I Completeness
I By subject expansion, the dual of subject reduction.

Oracle Intersection Types [BreuvartDL2017]
I Probabilistic choice can be seen as a form of read operation:

M ⊕N = if BitInput thenM else N

I Types

τ ::= ? | A→ s ·B A ::= {τ1, . . . , τn} s ∈ {0, 1}∗

I Typing Rules: Examples

Γ `M : s ·A
Γ `M ⊕N : 0s ·A

Γ `M : r · {A→ s ·B} Γ ` N : q ·A
Γ `MN : (rqs) ·B

I Termination and Completeness
I Formulated in a rather unusual way.
I Proved as usual, but relative to a single probabilistic branch

P(M ↓) =
∑
`M :s·?

2|s|

This is unavoidable, due to recursion theory.

Oracle Intersection Types [BreuvartDL2017]
I Probabilistic choice can be seen as a form of read operation:

M ⊕N = if BitInput thenM else N

I Types

τ ::= ? | A→ s ·B A ::= {τ1, . . . , τn} s ∈ {0, 1}∗

I Typing Rules: Examples

Γ `M : s ·A
Γ `M ⊕N : 0s ·A

Γ `M : r · {A→ s ·B} Γ ` N : q ·A
Γ `MN : (rqs) ·B

I Termination and Completeness
I Formulated in a rather unusual way.
I Proved as usual, but relative to a single probabilistic branch

P(M ↓) =
∑
`M :s·?

2|s|

This is unavoidable, due to recursion theory.

Oracle Intersection Types [BreuvartDL2017]
I Probabilistic choice can be seen as a form of read operation:

M ⊕N = if BitInput thenM else N

I Types

τ ::= ? | A→ s ·B A ::= {τ1, . . . , τn} s ∈ {0, 1}∗

I Typing Rules: Examples

Γ `M : s ·A
Γ `M ⊕N : 0s ·A

Γ `M : r · {A→ s ·B} Γ ` N : q ·A
Γ `MN : (rqs) ·B

I Termination and Completeness
I Formulated in a rather unusual way.
I Proved as usual, but relative to a single probabilistic branch

P(M ↓) =
∑
`M :s·?

2|s|

This is unavoidable, due to recursion theory.

Oracle Intersection Types [BreuvartDL2017]
I Probabilistic choice can be seen as a form of read operation:

M ⊕N = if BitInput thenM else N

I Types

τ ::= ? | A→ s ·B A ::= {τ1, . . . , τn} s ∈ {0, 1}∗

I Typing Rules: Examples

Γ `M : s ·A
Γ `M ⊕N : 0s ·A

Γ `M : r · {A→ s ·B} Γ ` N : q ·A
Γ `MN : (rqs) ·B

I Termination and Completeness
I Formulated in a rather unusual way.
I Proved as usual, but relative to a single probabilistic branch

P(M ↓) =
∑
`M :s·?

2|s|

This is unavoidable, due to recursion theory.

Oracle Intersection Types [BreuvartDL2017]
I Probabilistic choice can be seen as a form of read operation:

M ⊕N = if BitInput thenM else N

I Types

τ ::= ? | A→ s ·B A ::= {τ1, . . . , τn} s ∈ {0, 1}∗

I Typing Rules: Examples

Γ `M : s ·A
Γ `M ⊕N : 0s ·A

Γ `M : r · {A→ s ·B} Γ ` N : q ·A
Γ `MN : (rqs) ·B

I Termination and Completeness
I Formulated in a rather unusual way.
I Proved as usual, but relative to a single probabilistic branch

P(M ↓) =
∑
`M :s·?

2|s|

This is unavoidable, due to recursion theory.

Oracle Intersection Types [BreuvartDL2017]
I Probabilistic choice can be seen as a form of read operation:

M ⊕N = if BitInput thenM else N

I Types

τ ::= ? | A→ s ·B A ::= {τ1, . . . , τn} s ∈ {0, 1}∗

I Typing Rules: Examples

Γ `M : s ·A
Γ `M ⊕N : 0s ·A

Γ `M : r · {A→ s ·B} Γ ` N : q ·A
Γ `MN : (rqs) ·B

I Termination and Completeness
I Formulated in a rather unusual way.
I Proved as usual, but relative to a single probabilistic branch

P(M ↓) =
∑
`M :s·?

2|s|

This is unavoidable, due to recursion theory.

Intersection Types and Computations

M

V

M

W
V

...
...

M

W
V

...
...

Intersection TypesOracle Intersection Types

Monadic Intersection Types [BDL2017]
I They are a combination of oracle and

sized types.
I Intersections are needed for preciseness.
I Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.

Intersection Types and Computations

M

V

M

W
V

...
...

M

W
V

...
...

Intersection Types

Oracle Intersection Types

Monadic Intersection Types [BDL2017]
I They are a combination of oracle and

sized types.
I Intersections are needed for preciseness.
I Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.

Intersection Types and Computations

M

V

M

W
V

...
...

M

W
V

...
...

Intersection TypesOracle Intersection Types

Monadic Intersection Types [BDL2017]
I They are a combination of oracle and

sized types.
I Intersections are needed for preciseness.
I Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.

Intersection Types and Computations

M

V

M

W
V

...
...

M

W
V

...
...

Intersection Types

Oracle Intersection Types

Monadic Intersection Types [BDL2017]
I They are a combination of oracle and

sized types.
I Intersections are needed for preciseness.
I Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.

Intersection Types and Computations

M

V

M

W
V

...
...

M

W
V

...
...

Intersection TypesOracle Intersection Types

Monadic Intersection Types [BDL2017]
I They are a combination of oracle and

sized types.
I Intersections are needed for preciseness.
I Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.

Intersection Types and Computations

M

V

M

W
V

...
...

M

W
V

...
...

Intersection TypesOracle Intersection Types

Monadic Intersection Types [BDL2017]
I They are a combination of oracle and

sized types.
I Intersections are needed for preciseness.
I Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.

These Slides, and More...

Questions?

These Slides, and More...

Questions?

	Relational Reasoning
	Bayesian Functional Programming
	Termination

