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What is this talk about?

VERSUS

Dy

Stochastic Demonic
Randomized Worst-Case



Programs with Probabilities

angles =[10, 60, 110, 160, 140, ...

100, 60, 20, 10, 0] o
x := TruncGaussian(0,0.05,-0.5,0.5) | Probabilistic
y := TruncGaussian(0, 0.1,-0.5,0.5) Statements

for reps in range(0,100):
for theta in angles:
# Distance travelled variation
d = Uniform((0.98,1.02)
# Steering angle variation
t = deglrad(theta) * (1 +...
TruncGaussian(0,0.01,-0.05,0.05))
# Move distance d with angle t
x=x+d * cos(t)
y=y+d * sin(t)

#Probability that we went too far?
assert(x>=:73) Probability Estimate




Example #1: Coin Toss

fortune := 1000
repeat(1000)
Heads = Gain one dollar if ﬂip(O.B):
fortune := fortune +1
{\ else:
fortune := fortune -1
Repeat 1000 times. assert fortune >= 0

\V,

Tails = Lose one dollar




a road

y =0, theta=0,x=0

repeat(1000)
X :=x+0.1 * cos(theta)

y:=y+0.1 * sin(theta)
theta := 0.8 * theta + Normal(O, O.1)

assert (y <=5.0)

1.0

Example #2:Vehicle on

0.8

o
o

z(t+ 1) = z(t) + 0.1 cos(0)
y(t+1) =y(t) + 0.1sin()
O(t+1)=0.80(t) +w

w ~ N(0,0.1)

Probability

o
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Example #3: Repetitive Robot

angles =[10, 60, 110, 160, 140, ...

1
Repeat this 100, 60, 20, 10, O]
, X := TruncGaussian(0,0.05,-0.5,0.5)
100 times. y := TruncGaussian(0O, 0.1,-0.5,0.5)
Probability of for reps in range(0,100):
for theta in angles:

# Distance travelled variation
d = Uniform(0.98,1.02)

going out of
bounds!? \

# Steering angle variation
\ t = deglrad(theta) * (1 + ...
Small TruncGaussian(0,0.01,-0.05,0.05))

errors at # Move distance d with angle t
each step. x=x+d * cos(t)

y=y+d * sin(t)
#Probability that we went too far?
assert(x >=272)

e

Sawyer Robotic Arm
(rethink robotics)



Repetitive Robot

angles =[10, 60, 110, 160, 140, ...
100, 60, 20, 10, O]
x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range(0,100):
for theta in angles:
# Distance travelled variation
d = Uniform((0.98,1.02)
# Steering angle variation
t = deglrad(theta) * (1 + ...
TruncGaussian(0,0.01,;
# Move distance d with a
x=x+d * cos(t)
y=y+d * sin(t)
#Probability that w
assert(x>=2372)

05,0.08))
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Systems Acting Under Disturbances

Dy

External
Disturbances

E—

Stochastic Verification
Reliability
Stochastic Controls

Uncertainty Quantification
Al

System

Output

> Property

—

“Classic” Formal Verification.
“Set-Valued” Robust Control.




Reasoning about Uncertainty

Probability of Success!?
Output
Property
Probability of Failure?
Demonic

Random
Inputs

Probabilistic
Program

Inputs
Rare Event

<|0%6?

Estimating the probabilities ¥s. Proving bounds on probabilities.




Static Analysis of Probabilities



Semantics

real x,y,z;

while (true)
if (z <= 10)

zZ:=2z+1;
else

X :=X+1;

V=y-&;

z:=2-1;

initially x is Normal(0O,1),
y is Uniform(-1,1);
initially z is Uniform(0,10);

X :=x+1+2*Normal(0,1);
y:= ¥ -2+ NONDET (0,1) ;

N

Is a

‘ Markov Process

Complicated Semantics
Skip for this talk




Sample Path Semantics [Kozen'1981]

“Sample path” semantics.

real x,y,z;
initially x is Normal(O,1),
y is Uniform(-1,1);
initially z is Uniform(0,10);
: while (true)
40 s i 6 8 10 s 7 16 s 2 if (Z <= 10)
x:=x-1+2*Normal(O,l);
y := y - &+ Uniform(-1,1);
Z:=z+1;
else
X:=X+1,
y=y-&;
z:=z-1,




Distribution Transformer Semantics

probability

Distribution: N=25

40

[Kozen’1981]

real X,y,z;
initially x is Normal(O,1),

y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)

if (z<=10)
x:=x-1+2*Normal(0,l);
y := y - &+ Uniform(-1,1);
z:=z+1,

else
X:=X+1;
y=y-&;
z:=z-1;




Comparison with “Classical” Programs

“Classical” Programs Probabilistic Programs
State (x:10, y:25, z:15) Distributions x: N(O,1), y: U(-1,1), z: Poisson(5)
Sets of States Sets of Distributions

Abstract Domains Probabilistic Abstract Domains




Reachable Set of Distributions

real X, y;

initially x is Normal(O,1),
y is Uniform(-1,1);
initially z is Uniform(0,10);

if (z<=10)
x:=x-1+2*Normal(0O,l);
y := y - &+ Uniform(-1,1);

real z; -

while (true) — Jr

Distribution: N=10 Distribution: N=25

z:=z+1;
else
X:=X+1;
y=y-&;
z:=z-1;




Probabilistic Abstract Interpretation

[Monniaux, Cousot+Monerau, Mardziel
+ Hicks, Bouissou+Goubault+Putot,
S+Chakarov+Gulwani, ...]

Abstraction of Initial Distribution Abstraction of reachable distributions

Probabilistic
Abstract ‘
Program Inte rpreter
How to:

|. Systematically abstract distributions?
2. Propagate abstract distributions through programs!?
3.Answer queries on the results?

Probability of x <= 1357

[0.956,0.989]



Approach #1: Discretization

[Monniaux, Mardziel+Hicks,Cousot+Monerau]

Pos(n| 15) Propagate abstract distributions through programs?

o
. Zr

Use Standard
Forwards/Backwards
Abstract Interpretation
(with modifications)

0.15;

1 2 3 4 5 7 8 9101112131415

. o Answer queries on the results?
Partition domain into cells.

Associate range of probability with each cell.

“Discrete” Integration
. . . . , . .
Systematically abstract distributions! Volume Computation (expensive)




Discretization

* Tradeoff: precise bounds vs number of cells.

* Off-the-shelf use of abstract interpretation tools.

* Conceptually easy to handle nondeterminism + stochastic choices.
» Does not scale to large number of random variables.

» Loops may require widening = precision loss.



Approach #2: Probabilistic Calculii

[Bouissou+Goubault+Putot,
Bouissout+ Goubault + Putot+ Chakarov+S]

* How do program variables depend on the uncertainties?

y := Uniform(-0.01, 0.01)
th := Uniform(-0.01, 0.01)

for iin range(O, 10):

y:=y+0.1 *th
th := 0.8 * th + randomw()

Probability( y >=0.1) <= 2?

y[0

y|1]
o1

y[2

— Yo 9[0] — 90

| = Yo + 0190

— 0890 + Wy
= 30 + 0.160 + 0.1(0.80 + wp)
p— yo T 01890 + O]'wo




Probabilitic Affine Forms

Propagate abstract distributions

: C . ?
Systematically abstract distributions? through programs!

n
T ag+ Z a;w; Modified Affine Form Calculus
i—1 Conditional Branches
w; € |a;, b;)
E(w;) € [c;,d;)
E(w?) € [£;, u;] Answer queries on the results?

E(w,w;) € [fii, 9i4]
g Jr 94 Volume Computation (expensive)

Concentration of Measure Inequalities
(cheap but not fully general)




Repetitive Robot

1 angles =[10, 60, 110, 160, 140, ...

- ) 100, 60, 20, 10, O]
Ig%eét this x := TruncGaussian(0,0.05,-0.5,0.5)
times. y := TruncGaussian(0, 0.1,-0.5,0.5)

for reps in range(0,100):
for theta in angles:
# Distance travelled variation
d = Uniform((0.98,1.02)

Probability

of going out
of bounds? \

# Steering angle variation
t = deglrad(theta) * (1 + ...
TruncGaussian(0,0.01,-0.05,0.05))
# Move distance d with angle t
x=x+d * cos(t)
y=y+d * sin(t)
#Probability that we went too far?
assert(x >=2372)

\ Small

errors at
each step.

Sawyer Robotic Arm
(rethink robotics)



Repetitive Robot: Affine Form

[268.78, 268.82] + w1 + [0.984, 0.985]wo
+[0.030, 0.031]wg — wy
+[0.030, 0.031]wg — wg

T +[0.49,0.51]w~ + [0.90, 0.91]wg+
* —wag + [0.90, 091]11_10—'-

[0.03,0.031]wgrgo — wgrg3+
WHERA6 — WERAS — WgERA9

P(z > 272)7?

[Bouissout+Chakaraov+Goubault+Putot+S TACAS 2016]




Repetitive Robot (Cont.)

Bounds computation using Chernoff-Hoeffding Inequality:

P(z >272) <6.2x 10"



Anesthesia (Fentanyl) Infusion

[McClain+Hug, Fentanyl Kinetics, Clinical Pharmacology & Therapeutics, 28(1):106—114, July 1980.]

e W
Time Drug
Concentration  Dryg Conc.
e o (+) > | Patient D e
x4 : [150, 300] ng/ml
u=u(t) +w
z1(t + 1) = 0.9012z4(t) + 0.030422(t) + 0.0031z3(t) + 0.2676u
zo(t + 1) = 0.0139z(t) + 0.9857x5(t) + 0.002u
z3(t + 1) = 0.001521 (¢) + 0.9857x3(t) + 0.0002u
z4(t) = 0.0838z1(t) + 0.0014z4(t) + 0.0001z3(t) + 0.9117z4(t) + 0.012w



Anesthesia Infusion (Continued)

infusionTimings[7] = {&0, 15, 15, 15, 15, 15, 45}; [Bouissou+Chakaraov+Goubault+Putot+S TACAS 2016]

double infusionRates[7] = { 3, 3.2, 8.3, 3.4, 3.2, 3.1, 3.0};
Interval e0(-0.4, 0.4), €1(0.0), e2(0.006,0.0064);
foriin range(O, 7): IP(.’L'4 S 150ng/ml)
currentInfusion= 20.0 *infusionRates[i];
curTime = infusionTimings[i];,
for jin range(O, 40 * infusionTimings[j]):
e := 1+ randomVariable(eO, el, el) P(:E4 Z 300ng/ml)
u :=e * currentInfusion

x1n:=0.9012* x1 + 0.0304 * x2 + 0.0031 * X3
+2.676e-1 * u

x2n := 0.0139* x1 + 0.9857 * x2 + 2e-3*u _13

x3n := 0.0015 * x1 + 0.9985 * x3+ Qe-4*u P(z4 < 300ng/ml) <7 X 10

x4n = 0.0838 * x1 +0.0014 * x2 + 0.0001 *x3 + —23
0.9117 * x4+ 126-3 * u P(z4 > 150ng/ml) < 10

x] :=x1n; x8:=Xx2n,

X3 = x3; x4 :=x4n




Affine Form-Based Approach

v" Generalizes to nonlinear computation
v'Polynomials, Trigonometric Functions, Hyperbolic Functions.

v" Relation to polynomial chaos approximations [Xiu+Karandiakis]
v Wiener-Askey Approximation Scheme.

» Conditional Branches.

> Current Solution: discretize domain of the affine form into smaller boxes.

»Unbounded Loops.



Approach #3: Deductive

Systematically abstract distributions?

[Mclver+Morgan+Katoen,
Chakarov+S, Chatterjee et al.,

Fioriti et al.]
real xX,y,z = _
initially x is Normal(0,1), E(x+2) = 5

y is Uniform(-1,1), E(y) — In
z is Uniform(0,10);
while (true) a E(z) < 11 -
if (z < 10) E(z) < 5+n
X :=x -1 + 2*Normal(0,1); E(z) > 5—n
y := y - &+ Uniform(-1,1);

z:=z+1,
else

Facts about the moments of distributions.
Loop Invariants.




Deducing Properties of Distributions

* Early work by Mclver and Morgan.
* Pre-Expectation calculus for programs with probabilities.
* Restricted to finite domain random variables.
* Generalizing Mclver and Morgan’s work [Chakarov + S‘ CAV 2013].
* Connections with Supermartingales.
* Handle continuous random variables.

* Concentration of Measure Inequalities.



Coin Tossing Example

Heads = Gain one dollar

/(

o

N

Tails 2 Lose one dollar

X Dollars Toss

Repeat N times.

? Dollars

— Coin —

Once

000000

1

1
E(Xit1 | X)) = 5(X + 1) + 5(Xi = 1)

2
— X;

Expected fortune in next step =
fortune in current step.




Vehicle on the Road

y(t + 1)
6(t +1)

)

y(t) +0.16
0.996(t) + M(t) : y(t) + 106(¢)
[00100u

|| m || I|

E(w

E(M(t+1) | y(t),0(t)) = E (y(t) + 0.10(t) + 10(0.990(t) + w))
= y(t) +0.16(¢) +9.90(t) + E(w)
Expected value in next step = value | — y(t) 1 109(t) — M (t)

in current step.

—
7 o




Martingale

Martingale is a special kind of stochastic process.

Xo, X1, X2, ...

E(Xi+v1 | Xs...,X0) = Xi



Super/SubMartingales

Supermartingale: E(Xi+1 | Xi,...,X0) < X

Submartingale: E(X;+1 | Xiy...,X0) > X;



Super Martingales and Loop Invariants

real X,y,z

initially x is Normal(O,1),
y is Uniform(-1,1),
z is Uniform(0,10);

while (true)

else

if (z<10)

x:=x+1+2*Normal(O,l);
y := y — & + Uniform(-1,1);
z:=z+1;

_ 2 * x +y is a Martingale

(V z,y,2) E(22' + ¢'|z,y,2) = 2z + y

E2z+y) =0




Automatic Inference of (Super) Martingale

[Katoen + Mclver + Morgan, Gretz + Katoen, Chakarov + S]

|. Fix an unknown template form of the desired function.

c1y + co0
2. Use Farkas’ Lemma to derive constraints [Colon+S+Sipma’03]

3. Solve to obtain (super) martingales.

ci: 1, cog: 10



. Vehicle on a road. (.CC, Yy, 9)
Automatic Inference (Example)

z:=xz+0.1(1 — %92)

y:=1y+0.16

0 :=0.990 + w 2.985n + 15002 — 2.985z Martingale
E(w) =0 100 + y Martingale

20000y — 199n + 100y? + 1990z | Martingale
clxz e ng2 e 6392 e C40y

49n — 500z Supermartingale
+csx +coy + 70 + csn | 10000 — n Supermartingale
10z — n Supermartingale
—n — 10006 Supermartingale

How do we use super martingales to answer queries?



Azuma’s Inequality for Martingales

Xo,...,X, stochastic process.

|X7; — Xi—1| <c;, t>0 Lipschitz Condition

Supermartingale: P(X, > E(X,)+1t) <exp (2 Znt2 cz)

1™z

Submartingale: P(X, <E(Xn,)—t) <exp (2 Znt2 cz)

1™



Azuma Inequality (pictorially)

Value Exceeds t
Value

of
Martingale

,/—/\/\v/\

\/ Number of Steps

P(X, > E(X,)+t) <exp (2 E_’-"i Cz)




Example:Vehicle on the Road

6>0 A y>L

<0 AN y<-—-L

>0 Ay>L E y+100> L
0<0ANy<—-L = y+100 < —L




Experiment #2: Proving Bounds

P(M(j) > L) < exp(54;)

Fix j = 100 steps (~ 10 seconds)

0.38 0.93 0.48
|.5 0.32 7.7 x 10
3.0 0.011 9.5x 10-'4

3.8 0.0073 3.8x 10"




Beyond Supermartingales

Systematically abstract distributions?

real X,y,z

initially x is Normal(O,1),
y is Uniform(-1,1),

z is Uniform(0,10);

while (true)

if (z< 10)

else

x:=Xx-1+2*Normal(0,l);
y:= y - & + Uniform(-1,1);
z:=z+1;

—

[Mclver+Morgan+Katoen,
Chakarov+S, Chatterjee et al.,

Fioriti et al.]
E(x+2) = 5
E(y) = 2n
E(z) < 11
E(z) < 54mn
E(z) > 5—n

SuperMartingales
" Singly-Inductive” Invariants




Inductive Expectation Invariants  [Chakarov+s’ SAS 2014]

Polyhedron:

x: State.
Set of States

Polyhedron over measures:

L(Ax) < b

O

x: Measure.
Set of Measures



Open Challenges



Challenge # |: Conditioning/Observations

Parameters

Prior
Distribution

Probabilistic

Program

Posterior
Distribution

Measurements/Observations




Conditioning/Observations

theta ~ Uniform[O0, ]
tails := false
count =0
while (not tails):
tails := flip(theta)
count := count + |
observe(count == 25);
assert(theta >= 0.6)

Applications

* Machine Learning.

* Filtering/State Estimation/Sensor Fusion.
* Data Driven Modeling.

Semantics of conditioning is very tricky.
[Heunen et al. LICS 2017]




Challenge #2: Scalable Analysis

Uncertainty reasoning for large programs.
* Biological Systems

* Protein Folding

* Large Cyber-Physical Systems.



Challenge #3: Symbolic Domains

* Incorporate Booleans, Graphs and other domains.
* Common in randomized algorithms.
* Benefit by careful mechanization.

* Application areas:
* Dynamics on graphs and social networks.
* Graph rewriting systems (Graph Grammars).
* Self-assembling systems.
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