Static Analysis of Programs with Probabilities

Sriram Sankaranarayanan
University of Colorado, Boulder, USA.

Joint Work

Aleksandar Chakarov Univ. Colorado, Boulder now at Phase Change

Olivier Bouissou CEA, now at Mathworks

Eric Goubault Ecole Polytechnique

Sylvie Putot Ecole Polytechnique

Yuen-Lam Voronin Univ. Colorado, Boulder

What is this talk about?

Programs with Probabilities

```
angles = [10, 60, 110, 160, 140, ..
    100, 60, 20, 10, 0]
x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range(0,100):
    for theta in angles:
        # Distance travelled variation
        d = Uniform(0.98,1.02)
        # Steering angle variation
        t = deg2rad(theta) * (l + ...
            TruncGaussian(0,0.01,-0.05,0.05))
        # Move distance d with angle t
        x = x + d * cos(t)
        y=y+d* sin(t)
#Probability that we went too far?
assert(x >= 272)
Probability Estimate
```


Example \#I: Coin Toss

Heads \rightarrow Gain one dollar

Repeat 1000 times.

Tails \rightarrow Lose one dollar

```
fortune := 1000
repeat(1000)
    if flip(0.5):
        fortune := fortune +1
    else:
        fortune := fortune -1
assert fortune >= 0
```


Example \#2:Vehicle on a road

$$
\begin{aligned}
x(t+1) & =x(t)+0.1 \cos (\theta) \\
y(t+1) & =y(t)+0.1 \sin (\theta) \\
\theta(t+1) & =0.8 \theta(t)+w \\
w & \sim \mathcal{N}(0,0.1)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y}=0, \text { theta }=0, \mathrm{x}=0 \\
& \text { repeat }(1000) \\
& \quad \mathrm{x}:=\mathrm{x}+0.1 * \cos (\text { theta }) \\
& \mathrm{y}:=\mathrm{y}+0.1 * \sin (\text { theta }) \\
& \text { theta }:=0.8 * \text { theta + Normal }(0,0.1) \\
& \text { assert }(\mathrm{y}<=5.0)
\end{aligned}
$$

Example \#3: Repetitive Robot

Sawyer Robotic Arm (rethink robotics)

```
angles = [10, 60, 110, 160, 140, ..
    100, 60, 20, 10, 0]
x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range(0,100):
    for theta in angles:
        # Distance travelled variation
        d = Uniform(0.98,1.02)
        # Steering angle variation
        t = deg\gtrsimrad(theta) * (l + ...
            TruncGaussian(0,0.01,-0.05,0.05))
        # Move distance d with angle t
        x = x+d * cos(t)
        y=y+d* sin(t)
#Probability that we went too far?
assert(x >= 272)
```


Repetitive Robot

```
angles = [10, 60, 110, 160, 140, ...
    100, 60, 20, 10, 0]
x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range(0,100):
    for theta in angles:
    # Distance travelled variation
    d = Uniform(0.98,1.02)
    # Steering angle variation
        t = deg2rad(theta) * (l + ...
            TruncGaussian(0,0.01,--0.05,0.05))
        # Move distance d with angle t
        x = x + d * cos(t)
        y=y+d* sin(t)
#Probability that we went too far?
assert(x >= 272)
```

Scatter Plot $10^{\wedge} 5$ Simulations

$$
\mathbb{P}(x \geq 272) \leq ? ?
$$

Systems Acting Under Disturbances


```
Stochastic Verification
Reliability
Stochastic Controls
Uncertainty Quantification
AI
```


"Classic" Formal Verification.
"Set-Valued" Robust Control.

Reasoning about Uncertainty

Static Analysis of Probabilities

Semantics

```
real x,y,z;
initially x is Normal(0,1),
    y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)
    if (z < = 10)
    x := x +1 + 2*Normal(0,1);
    y := y - 2 + NONDET (0,I);
    z:= z + l;
    else
    x:= x +l;
    y:= y - 2;
    z := z-l;
```

is a

Markov Process

Sample Path Semantics

"Sample path" semantics.


```
real x,y,z;
initially x is Normal(0,1),
                                    y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)
    if (z <= 10)
        x := x -1 + 2 *Normal(0,1);
        y := y - 2 + Uniform(-1,1);
        z:= z + l;
    else
        x := x +l;
        y:= y-2;
    z := z -l;
```


Distribution Transformer Semantics


```
real x,y,z;
initially x is Normal(0,1),
    y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)
    if (z<= 10)
    x:= x - + + 2*Normal(0,1);
    y := y - 2 + Uniform(-1,1);
    z:= z + l;
    else
    x:= x +l;
    y := y - 2;
    z := z -l;
```


Comparison with "Classical" Programs

"Classical" Programs	Probabilistic Programs
State (x:10, y:25, z:15)	Distributions $\mathrm{x}: \mathrm{N}(0,1), \mathrm{y}: \mathrm{U}(-1,1), \mathrm{z}:$ Poisson(5)
Sets of States	Sets of Distributions
Abstract Domains	Probabilistic Abstract Domains

Reachable Set of Distributions

```
real x, y;
real z;
initially x is Normal(0,1),
    y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)
    if (z<= 10)
        x:= x -1 + 2*Normal(0,1);
        y := y - 2 + Uniform(-1,1);
        z:= z + l;
    else
        x := x +l;
        y := y - 2;
        z := z-1;
```


Probabilistic Abstract Interpretation

[Monniaux, Cousot+Monerau, Mardziel

+ Hicks, Bouissou+Goubault+Putot, S+Chakarov+Gulwani, ...]

Abstraction of Initial Distribution

Abstraction of reachable distributions

How to:
I. Systematically abstract distributions?

Probability of $x<=135$?
2. Propagate abstract distributions through programs?
3.Answer queries on the results?

Approach \#I: Discretization

[Monniaux, Mardziel+Hicks,Cousot+Monerau]

Partition domain into cells.
Associate range of probability with each cell.
Systematically abstract distributions?

Propagate abstract distributions through programs?

> Use Standard Forwards/Backwards
> Abstract Interpretation (with modifications)

Answer queries on the results?
"Discrete" Integration Volume Computation (expensive)

Discretization

- Tradeoff: precise bounds vs number of cells.
- Off-the-shelf use of abstract interpretation tools.
- Conceptually easy to handle nondeterminism + stochastic choices.
$>$ Does not scale to large number of random variables.
$>$ Loops may require widening \rightarrow precision loss.

Approach \#2: Probabilistic Calculii

[Bouissou+Goubault+Putot,
Bouissou+ Goubault + Putot+ Chakarov+S]

- How do program variables depend on the uncertainties?
$\mathrm{y}:=$ Uniform(-0.01, 0.01)
th $:=$ Uniform $(-0.01,0.01)$
for i in range(0, 10):
$\quad \mathrm{y}:=\mathrm{y}+0.1 *$ th
th $:=0.8 *$ th + randomw($)$
Probability $(y>=0.1)<=$??

$$
\begin{aligned}
y[0] & =y_{0} \quad \theta[0]=\theta_{0} \\
y[1] & =y_{0}+0.1 \theta_{0} \\
\theta[1] & =0.8 \theta_{0}+w_{0} \\
y[2] & =y_{0}+0.1 \theta_{0}+0.1\left(0.8 \theta_{0}+w_{0}\right) \\
& =y_{0}+0.18 \theta_{0}+0.1 w_{0}
\end{aligned}
$$

Probabilitic Affine Forms

Systematically abstract distributions?

$$
\begin{array}{r}
x: a_{0}+\sum_{i=1}^{n} a_{i} w_{i} \\
w_{i} \in\left[a_{i}, b_{i}\right] \\
\mathbb{E}\left(w_{i}\right) \in\left[c_{i}, d_{i}\right] \\
\mathbb{E}\left(w_{i}^{2}\right) \in\left[\ell_{i}, u_{i}\right] \\
\mathbb{E}\left(w_{i} w_{j}\right) \in\left[f_{i j}, g_{i j}\right]
\end{array}
$$

Propagate abstract distributions through programs?

Modified Affine Form Calculus Conditional Branches

Answer queries on the results?
Volume Computation (expensive)
Concentration of Measure Inequalities
(cheap but not fully general)

Repetitive Robot

Sawyer Robotic Arm
(rethink robotics)
angles $=[10,60,110,160,140, \ldots$ 100, 60, 20, 10, 0]
$\mathrm{x}:=$ TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range (0,100):
for theta in angles:
\# Distance travelled variation
d = Uniform(0.98,1.02)
\# Steering angle variation
$\mathrm{t}=\mathrm{deg}$ 2rad(theta) $*(1+\ldots$
TruncGaussian(0,0.01,-0.05,0.05))
\# Move distance d with angle t
$\mathrm{x}=\mathrm{x}+\mathrm{d} * \cos (\mathrm{t})$
$y=y+d * \sin (t)$
\#Probability that we went too far?
assert (x >= 272)

Repetitive Robot:Affine Form

$$
x:\left(\begin{array}{c}
{[268.78,268.82]+w_{1}+[0.984,0.985] w_{2}} \\
+[0.030,0.031] w_{3}-w_{4} \\
+[0.030,0.031] w_{5}-w_{6} \\
+[0.49,0.51] w_{7}+[0.90,0.91] w_{8}+ \\
-w_{9}+[0.90,0.91] w_{10}+ \\
\cdots \\
{[0.03,0.031] w_{6892}-w_{6893}+} \\
w_{6896}-w_{6898}-w_{6899}
\end{array}\right)
$$

$$
\mathbb{P}(x \geq 272) ? ?
$$

Repetitive Robot (Cont.)

Bounds computation using Chernoff-Hoeffding Inequality:

$$
\mathbb{P}(x \geq 272) \leq 6.2 \times 10^{-7}
$$

Anesthesia (Fentanyl) Infusion

[McClain+Hug, Fentanyl Kinetics, Clinical Pharmacology \& Therapeutics, 28(I):I06-I I4, July I980.]

Anesthesia Infusion (Continued)

```
infusionTimings[7] = {20, 15, 15, 15, 15, 15, 45};
double infusionRates[`] = { 3, 3.2, 3.3, 3.4, 3.2, 3.1, 3.0};
Interval eO(-0.4, 0.4), el(0.0), e2(0.006,0.0064);
for i in range(0, 7):
    currentInfusion=20.0*infusionRates[i];
    curTime = infusionTimings[i];
    for j in range(0, 40 * infusionTimings[j]):
        e := l+ randomVariable(eO, el, e2)
        u :=e * currentInfusion
        xln := 0.9012* xl + 0.0304 * x2 + 0.0031 * x3
        +2.676e-1 * u
        x2n := 0.0139* xl + 0.9857 * x2 + 2e-3*u
        x3n := 0.0015 * xl + 0.9985 * x3+ 2e-4*u
        x4n := 0.0838 * xl + 0.0014 * x2 + 0.0001 *x3 +
            0.9117* x4 + 12e-3 * u
        xl := xln; x2 := x2n;
        x3 := x3; x4 := x4n
```

[Bouissou+Chakaraov+Goubault+Putot+S'TACAS 2016]

$$
\begin{aligned}
& \mathbb{P}\left(x_{4} \leq 150 \mathrm{ng} / \mathrm{ml}\right) \\
& \mathbb{P}\left(x_{4} \geq 300 \mathrm{ng} / \mathrm{ml}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}\left(x_{4} \leq 300 \mathrm{ng} / \mathrm{ml}\right) \leq 7 \times 10^{-13} \\
& \mathbb{P}\left(x_{4} \geq 150 \mathrm{ng} / \mathrm{ml}\right) \leq 10^{-23}
\end{aligned}
$$

Affine Form-Based Approach

\checkmark Generalizes to nonlinear computation \checkmark Polynomials, Trigonometric Functions, Hyperbolic Functions.
\checkmark Relation to polynomial chaos approximations [Xiu+Karandiakis] \checkmark Wiener-Askey Approximation Scheme.
> Conditional Branches.
$>$ Current Solution: discretize domain of the affine form into smaller boxes.
$>$ Unbounded Loops.

Approach \#3: Deductive

[Mclver+Morgan+Katoen,

Systematically abstract distributions?

```
real x,y,z
initially x is Normal(0,1),
    y is Uniform(-1,1),
    z is Uniform(0,10);
while (true)
    if(z<10)
        x:= x-1 + 2*Normal(0,1);
        y := y - 2 + Uniform(-1,1);
        z:= z + l;
    else
        x:= x +l;
        y:= y - 2;
        z := z -l;
```


Facts about the moments of distributions.
Loop Invariants.

Deducing Properties of Distributions

- Early work by Mclver and Morgan.
- Pre-Expectation calculus for programs with probabilities.
- Restricted to finite domain random variables.
- Generalizing Mclver and Morgan's work [Chakarov + s‘CAV 20I3].
- Connections with Supermartingales.
- Handle continuous random variables.
- Concentration of Measure Inequalities.

Coin Tossing Example

Vehicle on the Road

$$
\begin{array}{rlr}
y(t+1) & =y(t)+0.1 \theta & \\
\theta(t+1) & =0.99 \theta(t)+w \\
w & \in[-0.01,0.01] & \\
\mathbb{E}(w) & =0 &
\end{array}
$$

$$
\begin{aligned}
\mathbb{E}(M(t+1) \mid y(t), \theta(t)) & =\mathbb{E}(y(t)+0.1 \theta(t)+10(0.99 \theta(t)+w)) \\
& =y(t)+0.1 \theta(t)+9.9 \theta(t)+\mathbb{E}(w) \\
& =y(t)+10 \theta(t)=M(t)
\end{aligned}
$$

Martingale

Martingale is a special kind of stochastic process.

$$
X_{0}, X_{1}, X_{2}, \ldots
$$

$$
\mathbb{E}\left(X_{i+1} \mid X_{i}, \ldots, X_{0}\right)=X_{i}
$$

Super/SubMartingales

Supermartingale:

$$
\mathbb{E}\left(X_{i+1} \mid X_{i}, \ldots, X_{0}\right) \leq X_{i}
$$

Submartingale:

$$
\mathbb{E}\left(X_{i+1} \mid X_{i}, \ldots, X_{0}\right) \geq X_{i}
$$

Super Martingales and Loop Invariants

```
real x,y,z
initially x is Normal(0,1),
    y is Uniform(-1,1),
    z is Uniform(0,10);
while (true)
    if (z< 10)
        x:= x + 1 + 2*Normal(0,1);
        y := y - 2 + Uniform(-1,1);
        z:= z + l;
    else
        x:= x +l;
        y:= y - 2;
        z := z -l;
```

$2 * x+y$ is a Martingale

$$
(\forall x, y, z) \mathbb{E}\left(2 x^{\prime}+y^{\prime} \mid x, y, z\right)=2 x+y
$$

$$
\mathbb{E}(2 x+y)=0
$$

Automatic Inference of (Super) Martingale

```
[Katoen + Mclver + Morgan, Gretz + Katoen, Chakarov + S]
```

I. Fix an unknown template form of the desired function.

$$
c_{1} y+c_{2} \theta
$$

2. Use Farkas' Lemma to derive constraints [Colon+S+Sipma'03]
3. Solve to obtain (super) martingales.

$$
c_{1}: 1, c_{2}: 10
$$

Automatic Inference (Example)

Vehicle on a road. (x, y, θ)

$$
\begin{aligned}
x & :=x+0.1\left(1-\frac{1}{2} \theta^{2}\right) \\
y & :=y+0.1 \theta \\
\theta & :=0.99 \theta+w \\
\mathbb{E}(w) & =0
\end{aligned}
$$

$c_{1} x^{2}+c_{2} y^{2}+c_{3} \theta^{2}+c_{4} \theta y$

$$
+c_{5} x+c_{6} y+c_{7} \theta+c_{8} n
$$

$2.985 n+150 \theta^{2}-2.985 x$
$10 \theta+y$
$2000 \theta y-199 n+100 y^{2}+1990 x$
$49 n-500 x$
$1000 \theta-n$
$10 x-n$
$-n-1000 \theta$

Martingale Martingale Martingale

Supermartingale Supermartingale Supermartingale Supermartingale

Azuma's Inequality for Martingales

X_{0}, \ldots, X_{n} stochastic process.
$\left|X_{i}-X_{i-1}\right| \leq c_{i}, \quad i>0 \quad$ Lipschitz Condition

Supermartingale: $\quad \mathbb{P}\left(X_{n} \geq \mathbb{E}\left(X_{n}\right)+t\right) \leq \exp \left(\frac{-t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)$

Submartingale:

$$
\mathbb{P}\left(X_{n} \leq \mathbb{E}\left(X_{n}\right)-t\right) \leq \exp \left(\frac{-t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Azuma Inequality (pictorially)

Example:Vehicle on the Road

Experiment \#2: Proving Bounds

$$
\mathbb{P}(M(j) \geq L) \leq \exp \left(\frac{-L^{2}}{0.02 j}\right)
$$

Fix $\mathrm{j}=100$ steps (~ 10 seconds)

L	Azuma Inequality	Chernoff-Hoeffding
0.38	0.93	0.48
1.5	0.32	7.7×10^{-5}
3.0	0.011	9.5×10^{-14}
3.8	0.0073	3.8×10^{-19}

Beyond Supermartingales

Systematically abstract distributions?

```
real x,y,z
initially x is Normal(0,1),
    y is Uniform(-1,1),
    z is Uniform(0,10);
while (true)
    if(z<10)
        x:= x-1 + 2*Normal(0,1);
        y := y - 2 + Uniform(-1,1);
        z:= z + l;
    else
        x:= x +l;
        y:= y - 2;
        z := z -l;
```

$$
\begin{aligned}
\mathbb{E}(x+z) & =5 \\
\mathbb{E}(y) & =2 n \\
\mathbb{E}(z) & \leq 11 \\
\mathbb{E}(z) & \leq 5+n \\
\mathbb{E}(z) & \geq 5-n
\end{aligned}
$$

SuperMartingales

"'Singly-Inductive" Invariants

Inductive Expectation Invariants

Polyhedron:

$$
A \mathbf{x} \leq \mathbf{b} \quad \begin{gathered}
x: \text { State } \\
\text { Set of States }
\end{gathered}
$$

Polyhedron over measures:

$$
\mathbb{E}(A \mathbf{x}) \leq \mathbf{b}
$$

x: Measure.
Set of Measures

Open Challenges

Challenge \# I: Conditioning/Observations

Conditioning/Observations

```
theta ~ Uniform[0,I]
tails := false
count = 0
while (not tails):
    tails:= flip(theta)
    count := count + I
observe(count == 25);
assert(theta >= 0.6)
```


Applications

- Machine Learning.
- Filtering/State Estimation/Sensor Fusion.
- Data Driven Modeling.

Semantics of conditioning is very tricky. [Heunen et al. LICS 20I7]

Challenge \#2: Scalable Analysis

Uncertainty reasoning for large programs.

- Biological Systems
- Protein Folding
- Large Cyber-Physical Systems.

Challenge \#3: Symbolic Domains

- Incorporate Booleans, Graphs and other domains.
- Common in randomized algorithms.
- Benefit by careful mechanization.
- Application areas:
- Dynamics on graphs and social networks.
- Graph rewriting systems (Graph Grammars).
- Self-assembling systems.

Thank You

This work was supported by the US National Science Foundation (NSF) under Award \# I 320069 and \# I 646556.

All opinions expressed are those of the authors and not necessarily of the NSF.

