
Static Analysis of Programs
with Probabilities

Sriram Sankaranarayanan
University of Colorado, Boulder, USA.

Joint Work

Aleksandar Chakarov
Univ. Colorado, Boulder
now at Phase Change

Olivier Bouissou
CEA, now at Mathworks

Eric Goubault
Ecole Polytechnique

Sylvie Putot
Ecole Polytechnique

Yuen-Lam Voronin
Univ. Colorado, Boulder

What is this talk about?

VERSUS

Stochastic
Randomized

Demonic
Worst-Case

Programs with Probabilities

angles = [10, 60, 110, 160, 140, ...
100, 60, 20, 10, 0]

x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range(0,100):

for theta in angles:
Distance travelled variation
d = Uniform(0.98,1.02)
Steering angle variation
t = deg2rad(theta) * (1 + ...

TruncGaussian(0,0.01,-0.05,0.05))
Move distance d with angle t
x = x + d * cos(t)
y = y + d * sin(t)

#Probability that we went too far?
assert(x >= 272)

Probabilistic
Statements

Probability Estimate

Example #1: Coin Toss

Heads à Gain one dollar

Tails à Lose one dollar

Repeat 1000 times.

fortune := 1000
repeat(1000)

if flip(0.5):
fortune := fortune +1

else:
fortune := fortune -1

assert fortune >= 0

Example #2: Vehicle on a road
y = 0, theta = 0, x = 0
repeat(1000)

x := x + 0.1 * cos(theta)
y := y + 0.1 * sin(theta)
theta := 0.8 * theta + Normal(0, 0.1)

assert (y <= 5.0)

Example #3: Repetitive Robot

Sawyer Robotic Arm
(rethink robotics)

Small
errors at
each step.

Repeat this
100 times.

Probability of
going out of

bounds?

angles = [10, 60, 110, 160, 140, ...
100, 60, 20, 10, 0]

x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range(0,100):

for theta in angles:
Distance travelled variation
d = Uniform(0.98,1.02)
Steering angle variation
t = deg2rad(theta) * (1 + ...

TruncGaussian(0,0.01,-0.05,0.05))
Move distance d with angle t
x = x + d * cos(t)
y = y + d * sin(t)

#Probability that we went too far?
assert(x >= 272)

Repetitive Robot

angles = [10, 60, 110, 160, 140, ...
100, 60, 20, 10, 0]

x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range(0,100):

for theta in angles:
Distance travelled variation
d = Uniform(0.98,1.02)
Steering angle variation
t = deg2rad(theta) * (1 + ...

TruncGaussian(0,0.01,-0.05,0.05))
Move distance d with angle t
x = x + d * cos(t)
y = y + d * sin(t)

#Probability that we went too far?
assert(x >= 272)

Scatter Plot 10^5 Simulations

Systems Acting Under Disturbances

SystemExternal
Disturbances

Output

Property
Yes

No

“Classic” Formal Verification.
“Set-Valued” Robust Control.

Stochastic Verification
Reliability
Stochastic Controls
Uncertainty Quantification
AI

Reasoning about Uncertainty

Probabilistic
Program

Random
Inputs

Demonic
Inputs

Output
Property

Probability of Success?

Probability of Failure?

Estimating the probabilities vs. Proving bounds on probabilities.

Rare Event
≤10-6 ?

Static Analysis of Probabilities

Semantics

real x,y,z;
initially x is Normal(0,1),

y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)

if (z <= 10)
x := x +1 + 2*Normal(0,1);
y := y – 2 + Uniform(-1,1);
z := z + 1;

else
x := x +1;
y := y – 2;
z := z -1;

Markov Process

is a

NONDET (0,1)

Complicated Semantics
Skip for this talk

Sample Path Semantics

“Sample path” semantics.

real x,y,z;
initially x is Normal(0,1),

y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)

if (z <= 10)
x := x -1 + 2*Normal(0,1);
y := y – 2 + Uniform(-1,1);
z := z + 1;

else
x := x +1;
y := y – 2;
z := z -1;

Steps

Steps

[Kozen’1981]

real x,y,z;
initially x is Normal(0,1),

y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)

if (z <= 10)
x := x -1 + 2*Normal(0,1);
y := y – 2 + Uniform(-1,1);
z := z + 1;

else
x := x +1;
y := y – 2;
z := z -1;

Distribution Transformer Semantics [Kozen’1981]

Comparison with “Classical” Programs

“Classical” Programs Probabilistic Programs

State (x:10, y:25, z:15) Distributions x: N(0,1), y: U(-1,1), z: Poisson(5)

Sets of States Sets of Distributions

Abstract Domains Probabilistic Abstract Domains

Reachable Set of Distributions

real x, y;
real z;
initially x is Normal(0,1),

y is Uniform(-1,1);
initially z is Uniform(0,10);
while (true)

if (z <= 10)
x := x -1 + 2*Normal(0,1);
y := y – 2 + Uniform(-1,1);
z := z + 1;

else
x := x +1;
y := y – 2;
z := z -1;

Probabilistic Abstract Interpretation
[Monniaux, Cousot+Monerau, Mardziel
+ Hicks, Bouissou+Goubault+Putot,
S+Chakarov+Gulwani, …]

Probabilistic
Abstract

Interpreter

Abstraction of Initial Distribution

Program

Abstraction of reachable distributions

Probability of x <= 135? [0.956, 0.989]

How to:
1. Systematically abstract distributions?
2. Propagate abstract distributions through programs?
3. Answer queries on the results?

Approach #1: Discretization

Partition domain into cells.
Associate range of probability with each cell.

[Monniaux, Mardziel+Hicks,Cousot+Monerau]

Systematically abstract distributions?

Propagate abstract distributions through programs?

Use Standard
Forwards/Backwards

Abstract Interpretation
(with modifications)

Answer queries on the results?

“Discrete” Integration
Volume Computation (expensive)

Discretization

• Tradeoff: precise bounds vs number of cells.

• Off-the-shelf use of abstract interpretation tools.

• Conceptually easy to handle nondeterminism + stochastic choices.

Ø Does not scale to large number of random variables.

Ø Loops may require widening à precision loss.

Approach #2: Probabilistic Calculii

• How do program variables depend on the uncertainties?

[Bouissou+Goubault+Putot,
Bouissou+ Goubault + Putot+ Chakarov+S]

y := Uniform(-0.01, 0.01)
th := Uniform(-0.01, 0.01)

for i in range(0, 10):
y := y + 0.1 * th
th := 0.8 * th + randomw()

Probability(y >= 0.1) <= ??

Probabilitic Affine Forms

Systematically abstract distributions?

Propagate abstract distributions
through programs?

Modified Affine Form Calculus
Conditional Branches

Answer queries on the results?

Volume Computation (expensive)
Concentration of Measure Inequalities

(cheap but not fully general)

Repetitive Robot

Sawyer Robotic Arm
(rethink robotics)

Small
errors at
each step.

Repeat this
100 times.

Probability
of going out
of bounds?

angles = [10, 60, 110, 160, 140, ...
100, 60, 20, 10, 0]

x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1,-0.5,0.5)
for reps in range(0,100):

for theta in angles:
Distance travelled variation
d = Uniform(0.98,1.02)
Steering angle variation
t = deg2rad(theta) * (1 + ...

TruncGaussian(0,0.01,-0.05,0.05))
Move distance d with angle t
x = x + d * cos(t)
y = y + d * sin(t)

#Probability that we went too far?
assert(x >= 272)

Repetitive Robot: Affine Form

[Bouissou+Chakaraov+Goubault+Putot+S’TACAS 2016]

Repetitive Robot (Cont.)

Bounds computation using Chernoff-Hoeffding Inequality:

Anesthesia (Fentanyl) Infusion

Infusion
Rate

Time

Pump
Error Patient

Drug
Concentration

[McClain+Hug, Fentanyl Kinetics, Clinical Pharmacology & Therapeutics, 28(1):106–114, July 1980.]

x4 : [150, 300] ng/ml

+

Drug Conc.
must be inside
safe range.

Anesthesia Infusion (Continued)
infusionTimings[7] = {20, 15, 15, 15, 15, 15, 45};
double infusionRates[7] = { 3, 3.2, 3.3, 3.4, 3.2, 3.1, 3.0};
Interval e0(-0.4, 0.4), e1(0.0), e2(0.006,0.0064);
for i in range(0, 7):

currentInfusion= 20.0*infusionRates[i];
curTime = infusionTimings[i];

 for j in range(0, 40 * infusionTimings[j]):
e : = 1+ randomVariable(e0, e1, e2)
u : = e * currentInfusion
x1n : = 0.9012* x1 + 0.0304 * x2 + 0.0031 * x3

+ 2.676e-1 * u
x2n := 0.0139* x1 + 0.9857 * x2 + 2e-3*u
x3n := 0.0015 * x1 + 0.9985 * x3+ 2e-4*u
x4n := 0.0838 * x1 + 0.0014 * x2 + 0.0001 *x3 +

0.9117 * x4 + 12e-3 * u
x1 := x1n; x2 := x2n;
x3 := x3; x4 := x4n

[Bouissou+Chakaraov+Goubault+Putot+S’TACAS 2016]

Affine Form-Based Approach

ü Generalizes to nonlinear computation
üPolynomials, Trigonometric Functions, Hyperbolic Functions.

ü Relation to polynomial chaos approximations [Xiu+Karandiakis]

üWiener-Askey Approximation Scheme.

Ø Conditional Branches.
Ø Current Solution: discretize domain of the affine form into smaller boxes.

ØUnbounded Loops.

Approach #3: Deductive
Systematically abstract distributions?

real x,y,z
initially x is Normal(0,1),

y is Uniform(-1,1),
z is Uniform(0,10);

while (true)
if (z < 10)

x := x -1 + 2*Normal(0,1);
y := y – 2 + Uniform(-1,1);
z := z + 1;

else
x := x +1;
y := y – 2;
z := z -1;

E(x+ z) = 5
E(y) = 2n
E(z)  11
E(z)  5 + n

E(z) � 5� n

Facts about the moments of distributions.
Loop Invariants.

[McIver+Morgan+Katoen,
Chakarov+S, Chatterjee et al.,
Fioriti et al.]

Deducing Properties of Distributions

• Early work by McIver and Morgan.

• Pre-Expectation calculus for programs with probabilities.

• Restricted to finite domain random variables.

• Generalizing McIver and Morgan’s work [Chakarov + S ‘ CAV 2013].

• Connections with Supermartingales.

• Handle continuous random variables.

• Concentration of Measure Inequalities.

Coin Tossing Example
Heads à Gain one dollar

Tails à Lose one dollar

Repeat N times.

Expected fortune in next step =
fortune in current step.

X Dollars Toss
Coin
Once

? Dollars

Vehicle on the Road

Expected value in next step = value
in current step.

Martingale

Martingale is a special kind of stochastic process.

Super/SubMartingales

Supermartingale:

Submartingale:

Super Martingales and Loop Invariants

real x,y,z
initially x is Normal(0,1),

y is Uniform(-1,1),
z is Uniform(0,10);

while (true)
if (z < 10)

x := x + 1 + 2*Normal(0,1);
y := y – 2 + Uniform(-1,1);
z := z + 1;

else
x := x +1;
y := y – 2;
z := z -1;

2 * x + y is a Martingale

Automatic Inference of (Super) Martingale
[Katoen + McIver + Morgan, Gretz + Katoen, Chakarov + S]

1. Fix an unknown template form of the desired function.

2. Use Farkas’ Lemma to derive constraints [Colon+S+Sipma’03]

3. Solve to obtain (super) martingales.

Automatic Inference (Example)
Vehicle on a road.

How do we use super martingales to answer queries?

Azuma’s Inequality for Martingales

Supermartingale:

Submartingale:

Lipschitz Condition

Azuma Inequality (pictorially)

Number of Steps

Value
of
Martingale

t

Value Exceeds t

Example: Vehicle on the Road

Experiment #2: Proving Bounds

L Azuma Inequality Chernoff-Hoeffding

0.38 0.93 0.48

1.5 0.32 7.7 x 10-5

3.0 0.011 9.5 x 10-14

3.8 0.0073 3.8 x 10-19

Fix j = 100 steps (~ 10 seconds)

Beyond Supermartingales
Systematically abstract distributions?

real x,y,z
initially x is Normal(0,1),

y is Uniform(-1,1),
z is Uniform(0,10);

while (true)
if (z < 10)

x := x -1 + 2*Normal(0,1);
y := y – 2 + Uniform(-1,1);
z := z + 1;

else
x := x +1;
y := y – 2;
z := z -1;

E(x+ z) = 5
E(y) = 2n
E(z)  11
E(z)  5 + n

E(z) � 5� n

[McIver+Morgan+Katoen,
Chakarov+S, Chatterjee et al.,
Fioriti et al.]

SuperMartingales
``Singly-Inductive’’ Invariants

Inductive Expectation Invariants

Polyhedron:

Polyhedron over measures:

Ax  b

E(Ax)  b

x: State.
Set of States

x: Measure.
Set of Measures

[Chakarov+S’ SAS 2014]

Open Challenges

Challenge # 1: Conditioning/Observations

Probabilistic
Program

Parameters

Measurements/Observations

Prior
Distribution

Posterior
Distribution

Conditioning/Observations

theta ~ Uniform[0,1]
tails := false
count = 0
while (not tails):

tails := flip(theta)
count := count + 1

observe(count == 25);
assert(theta >= 0.6)

Semantics of conditioning is very tricky.
[Heunen et al. LICS 2017]

Applications
• Machine Learning.
• Filtering/State Estimation/Sensor Fusion.
• Data Driven Modeling.

Challenge #2: Scalable Analysis

Uncertainty reasoning for large programs.
• Biological Systems
• Protein Folding
• Large Cyber-Physical Systems.

Challenge #3: Symbolic Domains

• Incorporate Booleans, Graphs and other domains.

• Common in randomized algorithms.

• Benefit by careful mechanization.

• Application areas:
• Dynamics on graphs and social networks.
• Graph rewriting systems (Graph Grammars).
• Self-assembling systems.

Thank You

This work was supported by the US
National Science Foundation (NSF) under
Award # 1320069 and # 1646556.

All opinions expressed are those of the authors
and not necessarily of the NSF.

