Static Analysis of Programs with Probabilities

Sriram Sankaranarayanan

University of Colorado, Boulder, USA.

Joint Work

Aleksandar Chakarov Univ. Colorado, Boulder now at Phase Change

Olivier Bouissou CEA, now at Mathworks

Eric Goubault Ecole Polytechnique

Sylvie Putot Ecole Polytechnique

Yuen-Lam Voronin Univ. Colorado, Boulder

What is this talk about?

Stochastic Randomized Demonic Worst-Case

Programs with Probabilities

Example #1: Coin Toss

Tails \rightarrow Lose one dollar

```
fortune := 1000
repeat(1000)
if flip(0.5):
   fortune := fortune +1
else:
   fortune := fortune -1
```

assert fortune >= 0

Example #2:Vehicle on a road

$$x(t+1) = x(t) + 0.1\cos(\theta)$$
$$y(t+1) = y(t) + 0.1\sin(\theta)$$
$$\theta(t+1) = 0.8\theta(t) + w$$
$$w \sim \mathcal{N}(0, 0.1)$$

Example #3: Repetitive Robot

Sawyer Robotic Arm (rethink robotics)

```
angles = [10, 60, 110, 160, 140, ...
         100, 60, 20, 10, 0]
x := TruncGaussian(0,0.05,-0.5,0.5)
y := TruncGaussian(0, 0.1, -0.5, 0.5)
for reps in range(0,100):
   for theta in angles:
      # Distance travelled variation
      d = Uniform(0.98, 1.02)
      # Steering angle variation
      t = deg2rad(theta) * (1 + ...
              TruncGaussian(0,0.01,-0.05,0.05))
      # Move distance d with angle t
      x = x + d * \cos(t)
      y = y + d * sin(t)
#Probability that we went too far?
assert(x \ge 272)
```

Repetitive Robot

Systems Acting Under Disturbances

Reasoning about Uncertainty

Static Analysis of Probabilities

Semantics

Sample Path Semantics

[Kozen'1981]

"Sample path" semantics.

real x,y,z; initially x is Normal(0,1), y is Uniform(-1,1); initially z is Uniform(0,10); while (true) if (z <= 10) x := x -1 + 2*Normal(0,1); y := y - 2 + Uniform(-1,1); z := z + 1; else x := x +1; y := y - 2; z := z -1;

Distribution Transformer Semantics

[Kozen'1981]

real x,y,z; initially x is Normal(0,1), y is Uniform(-1,1); initially z is Uniform(0,10); while (true) if (z <= 10) x := x - 1 + 2 * Normal(0,1);y := y - 2 + Uniform(-1,1);z := z + 1; else x := x +1; y := y - 2; z := z - 1;

Comparison with "Classical" Programs

"Classical" Programs	Probabilistic Programs
State (x:10, y:25, z:15)	Distributions x: $N(0,1)$, y: $U(-1,1)$, z: $Poisson(5)$
Sets of States	Sets of Distributions
Abstract Domains	Probabilistic Abstract Domains

Reachable Set of Distributions

Probabilistic Abstract Interpretation

[Monniaux, Cousot+Monerau, Mardziel + Hicks, Bouissou+Goubault+Putot, **S**+Chakarov+Gulwani, ...]

Approach #1: Discretization

[Monniaux, Mardziel+Hicks, Cousot+Monerau]

Propagate abstract distributions through programs?

Use Standard Forwards/Backwards Abstract Interpretation (with modifications)

Answer queries on the results?

Partition domain into cells. Associate range of probability with each cell.

Systematically abstract distributions?

"Discrete" Integration Volume Computation (expensive)

Discretization

- Tradeoff: precise bounds vs number of cells.
- Off-the-shelf use of abstract interpretation tools.
- Conceptually easy to handle nondeterminism + stochastic choices.
- > Does not scale to large number of random variables.

 \succ Loops may require widening \rightarrow precision loss.

Approach #2: Probabilistic Calculii

[Bouissou+Goubault+Putot, Bouissou+ Goubault + Putot+ Chakarov+S]

• How do program variables depend on the uncertainties?

y := Uniform(-0.01, 0.01) th := Uniform(-0.01, 0.01)

```
for i in range(0, 10):
y := y + 0.1 * th
th := 0.8 * th + randomw()
```

Probability($y \ge 0.1$) <= ??

$$egin{aligned} y[0] &= y_0 & heta[0] = heta_0 \ y[1] &= y_0 + 0.1 heta_0 \ heta[1] &= 0.8 heta_0 + w_0 \ y[2] &= y_0 + 0.1 heta_0 + 0.1 (0.8 heta_0 + w_0) \ &= y_0 + 0.18 heta_0 + 0.1 w_0 \end{aligned}$$

Probabilitic Affine Forms

Systematically abstract distributions?

$$egin{aligned} x: \ a_0 + \sum_{i=1}^n a_i w_i \ &w_i \in [a_i, b_i] \ &\mathbb{E}(w_i) \in [c_i, d_i] \ &\mathbb{E}(w_i^2) \in [\ell_i, u_i] \ &\mathbb{E}(w_i w_j) \in [f_{ij}, g_{ij}] \end{aligned}$$

Propagate abstract distributions through programs?

Modified Affine Form Calculus Conditional Branches

Answer queries on the results?

Volume Computation (expensive) Concentration of Measure Inequalities (cheap but not fully general)

Repetitive Robot

Sawyer Robotic Arm (rethink robotics)

angles = [10, 60, 110, 160, 140, ... 100, 60, 20, 10, 0] x := TruncGaussian(0,0.05,-0.5,0.5)y := TruncGaussian(0, 0.1, -0.5, 0.5)for reps in range(0,100): for theta in angles: # Distance travelled variation d = Uniform(0.98, 1.02)# Steering angle variation t = deg2rad(theta) * (1 + ...TruncGaussian(0,0.01,-0.05,0.05))# Move distance d with angle t $x = x + d * \cos(t)$ y = y + d * sin(t)#Probability that we went too far? $assert(x \ge 272)$

Repetitive Robot: Affine Form

$$x: \begin{pmatrix} [268.78, 268.82] + w_1 + [0.984, 0.985]w_2 \\ + [0.030, 0.031]w_3 - w_4 \\ + [0.030, 0.031]w_5 - w_6 \\ + [0.49, 0.51]w_7 + [0.90, 0.91]w_8 + \\ -w_9 + [0.90, 0.91]w_{10} + \\ & \ddots \\ \\ [0.03, 0.031]w_{6892} - w_{6893} + \\ & w_{6896} - w_{6898} - w_{6899} \end{pmatrix}$$

 $\mathbb{P}(x \ge 272)??$

[Bouissou+Chakaraov+Goubault+Putot+S'TACAS 2016]

Repetitive Robot (Cont.)

Bounds computation using Chernoff-Hoeffding Inequality:

$\mathbb{P}(x \ge 272) \le 6.2 \times 10^{-7}$

Anesthesia (Fentanyl) Infusion

[McClain+Hug, Fentanyl Kinetics, Clinical Pharmacology & Therapeutics, 28(1):106–114, July 1980.]

$$\begin{aligned} x_2(t+1) &= 0.0139 x_1(t) + 0.9857 x_2(t) + 0.002 u \\ x_3(t+1) &= 0.0015 x_1(t) + 0.9857 x_3(t) + 0.0002 u \\ x_4(t) &= 0.0838 x_1(t) + 0.0014 x_2(t) + 0.0001 x_3(t) + 0.9117 x_4(t) + 0.012 u \end{aligned}$$

Anesthesia Infusion (Continued)

```
infusionTimings[7] = \{20, 15, 15, 15, 15, 15, 15, 45\};
double infusionRates [7] = \{3, 3.2, 3.3, 3.4, 3.2, 3.1, 3.0\};
Interval e0(-0.4, 0.4), e1(0.0), e2(0.006, 0.0064);
for i in range(0, 7):
   currentInfusion= 20.0*infusionRates[i];
   curTime = infusionTimings[i];
   for j in range(0, 40 * infusionTimings[j]):
       e := 1+ randomVariable(e0, e1, e2)
        u := e^* currentInfusion
        xln:=0.9012* x1+0.0304 * x2+0.0031 * x3
               + 2.676e-1 * u
         x2n := 0.0139* x1 + 0.9857 * x2 + 2e-3*u
        x3n := 0.0015 * x1 + 0.9985 * x3 + 2e-4*u
        x4n := 0.0838 * x1 + 0.0014 * x2 + 0.0001 * x3 +
              0.9117 * x4 + 12e-3 * u
        x1 := x1n; x2 := x2n;
        x3 := x3; x4 := x4n
```

[Bouissou+Chakaraov+Goubault+Putot+**S**'TACAS 2016]

$$\mathbb{P}(x_4 \leq 150 \text{ng/ml})$$

$$\mathbb{P}(x_4 \geq 300 \text{ng/ml})$$

$$\mathbb{P}(x_4 \le 300 \text{ng/ml}) \le 7 \times 10^{-13}$$
$$\mathbb{P}(x_4 \ge 150 \text{ng/ml}) \le 10^{-23}$$

Affine Form-Based Approach

✓ Generalizes to nonlinear computation
 ✓ Polynomials, Trigonometric Functions, Hyperbolic Functions.

Relation to polynomial chaos approximations [Xiu+Karandiakis]
 Wiener-Askey Approximation Scheme.

Conditional Branches.

> Current Solution: discretize domain of the affine form into smaller boxes.

➤Unbounded Loops.

Approach #3: Deductive

Systematically abstract distributions?

[Mclver+Morgan+Katoen, Chakarov+**S**, Chatterjee et al., Fioriti et al.]

Facts about the moments of distributions. Loop Invariants.

Deducing Properties of Distributions

- Early work by McIver and Morgan.
 - Pre-Expectation calculus for programs with probabilities.
 - Restricted to finite domain random variables.
- Generalizing McIver and Morgan's work [Chakarov + S' CAV 2013].
 - Connections with Supermartingales.
 - Handle continuous random variables.
 - Concentration of Measure Inequalities.

Coin Tossing Example

Heads \rightarrow Gain one dollar

Repeat N times.

Tails \rightarrow Lose one dollar

$$\mathbb{E}(X_{i+1} \mid X_i) = \frac{1}{2}(X_i + 1) + \frac{1}{2}(X_i - 1)$$
$$= X_i$$

Expected fortune in next step = fortune in current step.

Vehicle on the Road

 $y(t+1) = y(t) + 0.1\theta$ $\theta(t+1) = 0.99\theta(t) + w$ $w \in [-0.01, 0.01]$ $\mathbb{E}(w) = 0$

$$M(t): y(t) + 10 heta(t)$$

$$\begin{split} \mathbb{E}(M(t+1) \mid y(t), \theta(t)) &= \mathbb{E}\left(y(t) + 0.1\theta(t) + 10(0.99\theta(t) + w)\right) \\ &= y(t) + 0.1\theta(t) + 9.9\theta(t) + \mathbb{E}(w) \\ \end{split}$$
Expected value in next step = value in current step.
$$\begin{split} &= y(t) + 10\theta(t) = M(t) \end{split}$$

Martingale

Martingale is a special kind of stochastic process.

 X_0, X_1, X_2, \ldots

 $\mathbb{E}(X_{i+1} \mid X_i, \dots, X_0) = X_i$

Super/SubMartingales

Supermartingale: $\mathbb{E}(X_{i+1} \mid X_i, \dots, X_0) \leq X_i$

Submartingale: $\mathbb{E}(X_{i+1} \mid X_i, \dots, X_0) \ge X_i$

Super Martingales and Loop Invariants

Automatic Inference of (Super) Martingale

[Katoen + Mclver + Morgan, Gretz + Katoen, Chakarov + S]

- I. Fix an unknown template form of the desired function. $c_1y + c_2\theta$
- 2. Use Farkas' Lemma to derive constraints [Colon+S+Sipma'03]
- 3. Solve to obtain (super) martingales.

 $c_1: 1, c_2: 10$

Automatic Inference (Example)

$$egin{aligned} x &:= x + 0.1(1 - rac{1}{2} heta^2) \ y &:= y + 0.1 heta \ heta &:= 0.99 heta + oldsymbol{w} \ \mathbb{E}(oldsymbol{w}) &= 0 \end{aligned}$$

$$\begin{array}{c} 100 + y \\ 2000\theta y - 199n + 100y^2 + 1990x \\ 2000\theta y - 199n + 100y^2 + 1990x \\ 49n - 500x \\ 1000\theta - n \\ 10x - n \\ -n - 1000\theta \end{array}$$

Vehicle on a road.
$$(x,y, heta)$$

$2.985n + 150 heta^2 - 2.985x$	Martingale
10 heta+y	Martingale
$2000\theta y - 199n + 100y^2 + 1990x$	Martingale
49n - 500x	Supermartingale
1000 heta-n	Supermartingale
10x - n	Supermartingale
-n - 1000 heta	Supermartingale

How do we use super martingales to answer queries?

Azuma's Inequality for Martingales

 X_0, \ldots, X_n stochastic process.

 $|X_i - X_{i-1}| \leq c_i, \ i > 0$ Lipschitz Condition

Supermartingale:
$$\mathbb{P}(X_n \ge \mathbb{E}(X_n) + t) \le \exp\left(\frac{-t^2}{2\sum_{i=1}^n c_i^2}\right)$$

Submartingale:

$$\mathbb{P}(X_n \leq \mathbb{E}(X_n) - t) \leq \exp\left(\frac{-t^2}{2\sum_{i=1}^n c_i^2}\right)$$

Azuma Inequality (pictorially)

Example: Vehicle on the Road

Experiment #2: Proving Bounds

$$\mathbb{P}(M(j) \ge L) \le \exp\left(\frac{-L^2}{0.02j}\right)$$

Fix j = 100 steps (~ 10 seconds)

L	Azuma Inequality	Chernoff-Hoeffding
0.38	0.93	0.48
1.5	0.32	7.7 × 10 ⁻⁵
3.0	0.011	9.5 x 10 ⁻¹⁴
3.8	0.0073	3.8 x 10 ⁻¹⁹

[Mclver+Morgan+Katoen, Chakarov+**S**, Chatterjee et al., Fioriti et al.]

Beyond Supermartingales

Systematically abstract distributions?

```
real x,y,z
initially x is Normal(0,1),
         y is Uniform(-1,1),
         z is Uniform(0,10);
while (true)
        if (z < 10)
                x := x - 1 + 2*Normal(0,1);
                y := y - 2 + Uniform(-1,1);
                z := z + 1;
        else
                x := x +1;
                y := y - 2;
                z := z - 1;
```

$$\begin{aligned}
 \mathbb{E}(x+z) &= 5 \\
 \mathbb{E}(y) &= 2n \\
 \mathbb{E}(z) &\leq 11 \\
 \mathbb{E}(z) &\leq 5+n \\
 \mathbb{E}(z) &\geq 5-n
 \end{aligned}$$

SuperMartingales Singly-Inductive" Invariants

Inductive Expectation Invariants [Chakarov+S' SAS 2014]

Open Challenges

Challenge # I: Conditioning/Observations

Conditioning/Observations

theta ~ Uniform[0,1]
tails := false
count = 0
while (not tails):
 tails := flip(theta)
 count := count + 1
observe(count == 25);
assert(theta >= 0.6)

Applications

- Machine Learning.
- Filtering/State Estimation/Sensor Fusion.
- Data Driven Modeling.

Semantics of conditioning is very tricky. [Heunen et al. LICS 2017]

Challenge #2: Scalable Analysis

Uncertainty reasoning for large programs.

- Biological Systems
- Protein Folding
- Large Cyber-Physical Systems.

Challenge #3: Symbolic Domains

- Incorporate Booleans, Graphs and other domains.
- Common in randomized algorithms.
- Benefit by careful mechanization.
- Application areas:
 - Dynamics on graphs and social networks.
 - Graph rewriting systems (Graph Grammars).
 - Self-assembling systems.

Thank You

This work was supported by the US National Science Foundation (NSF) under Award # 1320069 and # 1646556.

All opinions expressed are those of the authors and not necessarily of the NSF.