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“Constrained Horn clauses are a suitable basis for automatic program
verification, i.e., symbolic model checking.” [Bjørner et al. 2012]

Constrained means truth of formula is relative to a decidable
1st-order background theory (e.g. ZLA).

Example: safety verification

Recursive
predicate

{
∀x .

(
Initial(x) ⇒ Reach(x)

)
∀x .

(
Reach(x) ∧ Trans(x, x′) ⇒ Reach(x′)

)
Query: ∀x .

(
Reach(x)⇒ Safe(x)

)
Solve for (unknown) predicate Reach, which defines an inductive
invariant.

Many algorithmic solutions. Examples: CLP (Jaffar et al.); IC3
algorithms (Bradley); lazy annotation (Jaffar, McMillan, etc.).
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Desirable features of Horn clauses

Horn clauses originated from theorem proving in 1st-order logic.

1 Syntactic simplicity eases presentation of proof procedure.
E.g. 1st-order resolution: resolvent of two Horn clauses is a Horn
clause.

2 Solving satisfiability of Horn clause fragments is simpler

Logic Horn General

Propositional P NP
Bernays-Schönfinkel (∃∗ ∀∗) DEXPTIME NEXPTIME

3 Horn clauses enjoy least model property:
I useful for model building: as symbolic representation of partial

models (even for non-Horn theories).
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Why constrained Horn clauses (rather than model checking)?

1 Expressivity: Horn constraints can express standard verification
proof rules, and encode safety, liveness, CTL+FO, and game
solving. [Rybalchenko et al. PLDI12, POPL14]

2 Adoption of standards (i.e. SMT formats and Horn constraints)
promotes

I exchange of software model checking benchmarks
I separation of concerns: let verification-condition generators

worry about specificities of programming languages, whilst
“model checking” is kept purely logical, and hence generic.

3 Extensibility and retargetability of verification tool (chain).

Why higher-order constrained Horn clauses?
The reasons above are just as applicable to higher-order
computation! ... More on this anon.
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Outline

1 Higher-order constrained Horn clauses (HoCHC):
satisfiability and safety problems

2 Standard semantics of higher-order logic

3 Monotone semantics satisfies least model property

4 Algorithmic solutions of HoCHC safety problem: 1. via
refinement types

5 Automation via prototype tool Horus
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Working example iter

Higher-order constrained Horn clauses arise naturally as definitions of
inductive invariants of higher-order programs.

Example: safety verification

let add x y = x + y
letrec iter f s n = if n ≤ 0 then s else f n (iter f s (n − 1 ))

in λn. assert
(
n ≤ (iter add 0 n)

)
- (iter f s n) computes f n

(
f (n− 1) (f (n− 2) (· · · (f 1 s) · · · ))

)
.

- Thus (iter add 0 n) = n+ (n− 1) + · · ·+ 1 + 0.

Say the program is safe if assertion is never violated.
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Example: safety verification

let add x y = x + y
letrec iter f s n = if n ≤ 0 then s else f n (iter f s (n − 1 ))

in λn. assert
(
n ≤ (iter add 0 n)

)
An inductive invariant of a defined function is a relation
overapproximating its input-output graph.

The system below describes the class of all invariants sufficiently
strong to guarantee the assertion:

∀x y z .
(
z = x+ y ⇒ Add x y z

)
∀f s nm .

(
n ≤ 0 ∧m = s⇒ Iter f s n m

)
∀f s nm .(

n > 0 ∧ (∃p. Iter f s (n − 1 ) p ∧ f n p m)⇒ Iter f s n m
)

∀nm .
(
Iter Add 0 n m ⇒ n ≤ m

)
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Some features of HoCHC

∀x y z .
(
z = x+ y ⇒ Add x y z

)
∀f s nm .

(
n ≤ 0 ∧m = s⇒ Iter f s n m

)
∀f s nm .(

n > 0 ∧ (∃p. Iter f s (n − 1 ) p ∧ f n p m)⇒ Iter f s n m
)

∀nm .
(
Iter Add 0 n m ⇒ n ≤ m

)
- Higher-order “unknown” relation:

Iter : (int→ int→ int→ bool)→ int→ int→ int→ bool

- Quantification at higher sort: int→ int→ int→ bool

- Literals headed by variables: f n p m

Every model of the system is an invariant witnessing safety of the
program.
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Higher-order constrained Horn clauses (HoCHC): definitions

Relational sorts: σ ::= int→ bool | int→ σ | σ → σ′

Fix a sorting ∆ of higher-order relational variables (“unknowns”)

goal G ::= A | ϕ | G ∧G | G ∨G | ∃x:σ. G
definite D ::= true | ∀x:σ. D | D ∧D | G⇒ X x1 ... xn

- A ranges over atoms e.g. Iter f m (n − 1 ) p, f n p r
- ϕ ranges over constraints e.g. x > 3
- X ranges over ∆ e.g. Iter

Satisfiability Problem: 〈∆, D〉 is solvable if for all models A of
background theory Th, there is valuation α of ∆ s.t. A, α � D.

Safety Problem: 〈∆, D,G〉 is solvable if for all models A of Th,
there is valuation α of ∆ s.t. A, α � D, yet A, α 2 G.
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Example: an instance of HoCHC safety problem 〈∆, D,G〉

(1) ∀x y z .
(
z = x+ y ⇒ Add x y z

)
(2) ∀f s nm .

(
n ≤ 0 ∧m = s⇒ Iter f s n m

)
(3) ∀f s nm .(

n > 0 ∧ (∃p. Iter f s (n − 1 ) p ∧ f n p m)⇒ Iter f s n m
)

(4) ∀nm .
(
Iter Add 0 n m ⇒ n ≤ m

)
- Sorting ∆ of relational variables:{

Add : int→ int→ int→ bool
Iter : (int→ int→ int→ bool)→ int→ int→ int→ bool

- Definite formula D = (1) ∧ (2) ∧ (3).
- Goal formula G = ¬(4) = ∃nm .

(
(Iter Add 0 n m) ∧m < n

)
.

Safety problem 〈∆, D,G〉 is solvable. I.e. w.r.t. the unique model of
ZLA (∵ complete theory), there is a valuation satisfying D but
refuting G.
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Definite clauses as logic programs

Systems of definite clauses can be presented (equivalently) in
program form.

Add = λx y z.
(
z = x + y

)
Iter = λf s nm .

 (
n ≤ 0 ∧ m = s

)
∨ ∃p . 0 < n ∧ Iter f s (n − 1 ) p ∧ f n p m
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Standard semantics of higher-order logic

Sorts: σ ::= one | bool | int | σ1 → σ2

SJoneK := {?}
SJboolK := {0, 1}
SJintK := Z

SJσ1 → σ2K := SJσ1K⇒ SJσ2K (all functions)

Syntax: Standard presentation as a simply-typed λ-calculus with
logical constants: ¬,∧,∨,∀σ, ∃σ, etc.

¬ : bool→ bool ∀σ, ∃σ : (σ → bool)→ bool

We write ∃σ(λx:σ.M ) as ∃x:σ.M : bool.

Semantics: completely standard.

Example: A �S ∃x : (int→ bool)→ bool . G

“There is some predicate x on sets of integers that makes
G true in A.”
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Failure of least model property in standard semantics!

Counterexample:{
P : ((one→ bool)→ bool)→ bool
Q : one→ bool

∀x : (one→ bool)→ bool .
(
x Q ⇒ P x

)
Theorem
Satisfiable systems of higher-order constrained Horn clauses do not
necessarily possess (unique) least models.

(Least with respect to inclusion of relations.)
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∀x. (x Q ⇒ P x ) has two minimal models (=valuations) α & β

P : ((one→ bool)→ bool)→ bool Q : one→ bool

SJoneK := {?}
SJone→ boolK :=

{
{? 7→ 0}︸ ︷︷ ︸
−

, {? 7→ 1}︸ ︷︷ ︸
+

}
SJ(one→ bool)→ boolK :={ {

− 7→ 0
+ 7→ 1

}
︸ ︷︷ ︸

id

,

{
− 7→ 0
+ 7→ 0

}
︸ ︷︷ ︸

cst0

,

{
− 7→ 1
+ 7→ 1

}
︸ ︷︷ ︸

cst1

,

{
− 7→ 1
+ 7→ 0

}
︸ ︷︷ ︸

neg

}

α(Q) = −
α(P )(id) = 0

α(P )(cst0) = 0
α(P )(cst1) = 1
α(P )(neg) = 1

β(Q) = +
β(P )(id) = 1

β(P )(cst0) = 0
β(P )(cst1) = 1
β(P )(neg) = 0

Luke Ong (University of Oxford) Higher-order Constrained Horn Clauses IFIP WG2.2 Sep 2017 16 / 41



Outline

1 Higher-order constrained Horn clauses (HoCHC): satisfiability and
safety problems

2 Standard semantics of higher-order logic

3 Monotone semantics satisfies least model property

4 Algorithmic solutions of HoCHC safety problem: 1. via refinement
types

5 Automation via prototype tool Horus

Luke Ong (University of Oxford) Higher-order Constrained Horn Clauses IFIP WG2.2 Sep 2017 17 / 41



Monotone semantics of higher-order logic

Interpret → as the monotone function space.

MJintK := Z (ordered discretely)
MJboolK := lattice {0, 1} (or {f, t}) with 0 v 1

MJσ1 → σ2K := MJσ1K⇒mMJσ2K (monotone fns)

Example: A �M ∃x : (int→ bool)→ bool . G

“There is some monotone predicate x on sets of integers
that makes G true in A.”

In monotone semantics, satisfiable Horn clauses have least models
(because “immediate consequence operator” is monotone) and
constructible by Knaster-Tarski.
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Examples

MJint→ boolK All sets of integers

MJ(int→ bool)→ boolK All upward-closed (w.r.t. ⊆)
sets of sets of integers

MJ((int→ bool)→ bool)→ boolK All upward-closed sets of
upward-closed sets of
sets of integers

Counter-intuitive (?) Take x : (int→ bool)→ bool.

x 7→ {{1}} 2 ∃y : (int→ bool) . ∃z : int .
(
x y ∧ y z

)
(∵ valuation is invalid: {{1}} 6∈ MJ(int→ bool)→ boolK)

Luke Ong (University of Oxford) Higher-order Constrained Horn Clauses IFIP WG2.2 Sep 2017 19 / 41



Each is good for something

Standard Semantics Monotone Semantics

© Completely standard sat-
isfiability problem (modulo
background theory) in higher-
order logic.

§ Bespoke satisfiability
problem with a restricted
class of models.

§ No least model. © Least model arising in the
usual way.

Can we have the best of both worlds?
I.e. can we specify problems in standard semantics, but solve /
compute in monotone semantics?
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Standard and monotone semantics are equivalent for the
HoCHC Satisfiability Problem

We can have the best of both worlds!

Theorem (Model correspondence)

Given a clause (set) H, H is satisfiable in the standard
semantics iff H is satisfiable in the monotone semantics.
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Proof idea
For each sort of relations ρ, monotone and standard semantics are
locked in two-sided Galois connections:

SJρK −−−→−→←−−−−
Lρ

Iρ
MJρK −−−−→←←−−−−

Jρ

Uρ

SJρK

Standard Monotone Standard

Define, by recursion over sorts:

Ibool(b) := b
Iint→ρ(r) := Iρ ◦ r

Iρ1→ρ2(r) := Iρ2 ◦ r ◦ Lρ1

Jbool(b) := b
Jint→ρ(r) := Jρ ◦ r

Jρ1→ρ2(r) := Jρ2 ◦ r ◦ Uρ1

where
- Uρ is the right adjoint of Jρ, i.e., uniquely determined by: for all a, b

Jρ a ⊆ b ⇔ a ⊆ Uρ b

- Lρ is the left adjoint of Iρ
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Standard and monotone semantics are equivalent also for
HoCHC Safety Problem

Theorem (Equivalence / Inter-reducibility)

For all ∆, D and G, T.F.A.E.

(i) HoCHC Safety Problem 〈∆, D,G〉 in standard semantics is
solvable

(ii) HoCHC Safety Problem 〈∆, D,G〉 in monotone semantics is
solvable

(iii) In all models of the background theory, the least valuation
MJDK invalidates G (i.e. MJGK(MJDK) = 0).

Thus: we can specify problems using the standard semantics, and
then solve in the monotone semantics.
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Refinement types as higher-order invariants

Solving HoCHC problems is about finding (higher-order) symbolic
models. Models are valuations.

Dependency – “f : x:T1 → T2” means: for each a : T1, the value of
f a has type T2[a/x].
Refinement – “b : bool〈ϕ〉” means: b⇒ ϕ
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Dependent refinement types: syntax and semantics

T := bool〈ϕ〉 | x:int→ T | T1 → T2

Refinement at bool: ϕ is a 1st-order formula of constraint language
Dependence at int: x can occur freely in T

Order-ideal semantics: Given a valuation α of int-sorted
vars:

JintK(α) := Z

Jbool〈ϕ〉K(α) := {f, JϕK(α)}
Jx:int→ T K(α) :=

∏
d ∈ Z . JT K(α[x 7→ d])
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Examples of refinement type

Idea: Jbool〈ϕ〉K(α) is downward closure of value of ϕ.

1. Jbool〈x ≤ y〉K({x 7→ 1, y 7→ 2}) = {f, t}

Fact: b ∈ Jbool〈ϕ〉K(α) ⇔ α � b⇒ ϕ

2. A function type.

Jx:int→ bool〈ϕ〉K
=
∏
n ∈ Z . Jbool〈ϕ[n / x ]〉K

= {f | ∀n ∈ Z . f n ∈ Jbool〈ϕ[n / x ]〉K}
= {f | ∀n ∈ Z . (f n⇒ ϕ[n/x])}
= {f | ∀x : int . (f x⇒ ϕ)}
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Decidable judgement: Γ ` G : T

- Type environment Γ: finite map from variables to refinement types
- Goal term G: subterm of body of Horn clause
- T : refinement type

Intuition:

Γ ` G : bool〈ϕ〉

In symbolic model Γ (i.e. models satisfying Γ), truth of G is
bounded above by constraint ϕ (or “G implies ϕ”).

Thus ϕ is an over-approximation of G, which may have higher-order
subterms.
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Some proof rules of typing judgements

(TConstraint) ϕ ∈ Fm
Γ ` ϕ : bool〈ϕ〉

Γ, x : ι ` G : bool〈ϕ〉
(TExists) Th � ϕ⇒ ψ

Γ ` ∃x:ι. G : bool〈ψ〉

Γ, x : int ` G : T
(TAbsI)

Γ ` λx:int.G : x:int→ T

Γ ` G : x:int→ T Γ ` N : int(TAppI)
Γ ` G N : T [N/x]

Γ ` G : T1 ` T1 v T2(TSub)
Γ ` G : T2

(Nothing surprising here.)
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Subtyping judgement: ` T1 v T2

Subtyping, v, captures implication in the background theory Th.

(Th � ϕ⇒ ψ)
` bool〈ϕ〉 v bool〈ψ〉

` T1 v T2
` x:int→ T1 v x:int→ T2

` T ′1 v T1 ` T2 v T ′2
` T1 → T2 v T ′1 → T ′2
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Reducing HoCHC to 1st-order Horn constraints

Theorem (Soundness)

If Γ ` G : T then Γ � G : T .

A sound approach to solving HoCHC

Given HoCHC safety problem 〈∆, D,G〉:
If there is a type environment Γ (that refines ∆) such that
` D : Γ and Γ ` G : bool〈false〉, then for each model A of
background theory, MJΓK is a valuation that satisfies D but
refutes G.

Typability of clauses, Γ ` G : T , is reducible to 1st-order
constrained Horn clause solving. This is more or less standard.

The method is incomplete.
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Working example revisited

From safety verification problem:

let add x y = x + y
letrec iter f s n = if n ≤ 0 then s else f n (iter f s (n − 1 ))

in λn. assert
(
n ≤ (iter add 0 n)

)
obtain HoCHC safety problem:

∀x y z .
(
z = x+ y ⇒ Add x y z

)
∀f s nm .

(
n ≤ 0 ∧m = s⇒ Iter f s n m

)
∀f s nm .(

n > 0 ∧ (∃p. Iter f s (n − 1 ) p ∧ f n p m)⇒ Iter f s n m
)

∀nm .
(
Iter Add 0 n m ⇒ n ≤ m

)
Goal clause: G = ∃mn . (Iter Add 0 n m) ∧ n > m

Task (type checking): Find Γ s.t. ` D : Γ and Γ ` G : bool〈false〉.
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Working example problem: a solution

Model = valuation, here expressed as refinement type assignment


Add 7→ x:int→ y :int→ z :int→ bool〈z = x + y〉

Iter 7→
(
x:int→ y :int→ z :int→ bool〈0 < x ⇒ y < z 〉

)
→

s:int→ n:int→ m:int→ bool〈0 ≤ s ⇒ n ≤ m〉
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Type inference: how to grow a symbolic model

1. From higher-order relational vars:

{
R : (int→ bool)→ bool
S : int→ (int→ bool)

2. Create refinement template:

Γ =

{
R : (x:int→ bool〈Z1 x 〉)→ bool〈Z2 〉
S : y:int→ (x :int→ bool〈Z3 x y〉)

3. Check that type environment Γ is a model.

4. Except, whenever forced to check the validity of an implication:

Th � Z3 n z ⇒ Z1 z (Sub-Bool)
bool〈Z3 n z 〉 v bool〈Z1 z 〉

add clause ‘Z3 n z ⇒ Z1 z’ to the (1st-order) Horn constraint system.
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Prototype tool for solving HoCHC safety problem: Horus

Web interface to Horus: http://mjolnir.cs.ox.ac.uk/horus

Tests
Verification problems taken from MoCHi test suite (Kobayashi et al.
PLDI’11) but rexpressed as HoCHC safety problems.

In all the examples (without local assertations), except neg:

Horus takes around 0.01s to transform the system of clauses and

Z3 takes around 0.02s to solve the transfromed 1st-order system.

Example. In Problem mc91, we verify: M(n) = 91 for all n ≤ 101.

https://github.com/penteract/HigherOrderHornRefinement
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Further directions

Related work: see paper on arXiv.

1 Other approaches to reduce HoCHC problems to 1st-order
problems (e.g. via Reynolds’ defunctionalisation)

2 Adequacy of HoCHC for safety verification of higher-order
programs in general (cf. Blass & Gurevich)
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