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“Constrained Horn clauses are a suitable basis for automatic program
verification, i.e., symbolic model checking.” [Bjgrner et al. 2012]

Constrained means truth of formula is relative to a decidable
1st-order background theory (e.g. ZLA).

Example: safety verification
Recursive VT . (Initial(T) = Reach(T))
predicate VZ . (Reach(T) A Trans(z,z’) = Reach(z'))
Query: VZ . (Reach(T) = Safe())

Solve for (unknown) predicate Reach, which defines an inductive
invariant.

Many algorithmic solutions. Examples: CLP (Jaffar et al.); IC3
algorithms (Bradley); lazy annotation (Jaffar, McMillan, etc.).
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Desirable features of Horn clauses

Horn clauses originated from theorem proving in 1lst-order logic.

© Syntactic simplicity eases presentation of proof procedure.
E.g. lst-order resolution: resolvent of two Horn clauses is a Horn
clause.
@ Solving satisfiability of Horn clause fragments is simpler
Logic ‘ Horn ‘ General
Propositional P NP

Bernays-Schonfinkel (3*V*) | DEXPTIME | NEXPTIME
© Horn clauses enjoy least model property:

» useful for model building: as symbolic representation of partial
models (even for non-Horn theories).
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Why constrained Horn clauses (rather than model checking)?

@ Expressivity: Horn constraints can express standard verification
proof rules, and encode safety, liveness, CTL-+FO, and game
solving. [Rybalchenko et al. PLDI12, POPL14]

@ Adoption of standards (i.e. SMT formats and Horn constraints)
promotes

» exchange of software model checking benchmarks

» separation of concerns: let verification-condition generators
worry about specificities of programming languages, whilst
“model checking” is kept purely logical, and hence generic.

@ Extensibility and retargetability of verification tool (chain).

Why higher-order constrained Horn clauses?
The reasons above are just as applicable to higher-order
computation! ... More on this anon.
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Outline

@ Higher-order constrained Horn clauses (HoCHC):
satisfiability and safety problems

© Standard semantics of higher-order logic

© Monotone semantics satisfies least model property

@ Algorithmic solutions of HoOCHC safety problem: 1. via
refinement types

© Automation via prototype tool Horus
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Outline

@ Higher-order constrained Horn clauses (HoCHC): satisfiability and
safety problems
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Working example iter

Higher-order constrained Horn clauses arise naturally as definitions of
inductive invariants of higher-order programs.

Example: safety verification

letadd zy=2+y

letrec iter f s n = if n < 0 then selse f n (iter f s (n— 1))
in An. assert (n < (iter add 0 n))

- (iter f s n) computes fn (f(n—1)(f(n—2)(--(f1s)--+))).
- Thus (iter add O n) =n+(n—1)+---+1+0.

Say the program is safe if assertion is never violated.
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Example: safety verification

let add z y =2+ vy

letrec iter f s n =if n < 0 then selse f n (iter f s (n — 1))
in An. assert (n < (iter add 0 n))

An inductive invariant of a defined function is a relation
overapproximating its input-output graph.

The system below describes the class of all invariants sufficiently
strong to guarantee the assertion:

nyz.(z:x+y:>Addxyz)

stnm.(nSO/\m:sé]te'rfsnm)

Vfsnm.
(n>0/\(5|p.[terfs(n—Z)p/\fnpm):>1terfsnm)

Vnm.([terAddOnméngm)
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Some features of HoCHC

V:L'yz.(z::v+y:>A(lda:yz)
stnm.(nSO/\mzsélterfsnm)
Vfsnm.

(n>0A@p.Iter fs(n—1)pAfnpm)= Iter f s nm)

Vnm.([terAddOnméngm)

- Higher-order “unknown” relation:
Iter : (int — int — int — bool) — int — int — int — bool

- Quantification at higher sort: int — int — int — bool
- Literals headed by variables: f np m
Every model of the system is an invariant witnessing safety of the

program.
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Higher-order constrained Horn clauses (HoCHC): definitions

Relational sorts: ¢ ::= int — bool | int - o | 0 — o’

Fix a sorting A of higher-order relational variables ( “unknowns”)

goal G == A|le|GANG|GVG|3Ixro. G
definite D == true |Vaio. D| DAD |G = X ;... 2,

- A ranges over atoms e.g. Iter f m(n—1)p, fnpr
- (o ranges over constraints e.g. > 3
- X ranges over A e.g. Iter

e Satisfiability Problem: (A, D) is solvable if for all models A of
background theory Th, there is valuation a of A s.t. A,a F D.

e Safety Problem: (A, D, G) is solvable if for all models A of Th,
there is valuation a of A s.it. A,aE D, yet A,a ¥ G.
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Example: an instance of HoCHC safety problem (A, D, G)

(1) Vezyz.(z=z+y= Addzy2)

(2) Vfsnm.(n<0Am=s= Iter f snm)

(3) Vfsnm.
(n>O/\(E|p.[terfs(n—])p/\fnpm):>Iterfsnm)

(4) VYnm. (Iter Add 0 nm = n < m)

- Sorting A of relational variables:
Add : int = int = int — bool
{ Iter : (int — int — int — bool) — int — int — int — bool
- Definite formula D = (1) A (2) A (3).
- Goal formula G = —(4) = 3nm. ((Iter Add 0 n-m) Am < n).
Safety problem (A, D, G) is solvable. l.e. w.r.t. the unique model of

ZLA (. complete theory), there is a valuation satisfying D but
refuting G.
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Definite clauses as logic programs

Systems of definite clauses can be presented (equivalently) in
program form.

Add = M xy z. (z:x+y)
(nSO A mzs)

Iter = Afsnm.
V Ip.0<n A lterfs(n—1)p N fnpm
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Outline

© Standard semantics of higher-order logic
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Standard semantics of higher-order logic
Sorts: o ::= one | bool | int | o7 — 09

Sfone] = {x}
S[bool] = {0,1}
S[int] z
Slor — 03] = S[o1] = S[o2] (all functions)
Syntax: Standard presentation as a simply-typed A-calculus with
logical constants: =, A, V,V,, 3, etc.

- : bool — bool Vs, 3o : (6 — bool) — bool
We write 3,(Az:0. M) as Jx:0. M : bool.
Semantics: completely standard.

Example: A FEs Jz: (int — bool) — bool. G

“There is some predicate x on sets of integers that makes
G true in A"
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Failure of least model property in standard semantics!
Counterexample:
P : ((one — bool) — bool) — bool
() : one — bool

Vz : (one — bool) — bool. (z @ = P z)

Theorem

Satisfiable systems of higher-order constrained Horn clauses do not
necessarily possess (unique) least models.

(Least with respect to inclusion of relations.)
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Vz.(z @ = P z) has two minimal models (=valuations) o &

P : ((one — bool) — bool) — bool Q) : one — bool
S[one] == {*}
S[one — bool] == { {x 0}, {x—1}}
—— T

S[(one — bool) — bool] :=

{{1:2} et R ee s {;:é}}

id cst0 cstl neg

Q) = — BQ) = +
a(P)(id) = 0 B(P)(id) 1
a(P)(estd) = 0 B(P)(cst0) = 0
a(P)(estl) = 1 B(P)(cstl) = 1
a(P)(neg) = 1 B(P)(neg) = 0
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Outline

e Monotone semantics satisfies least model property

Luke Ong (University of Oxford) Higher-order Constrained Horn Clauses IFIP WG2.2 Sep 2017 17 / 41



Monotone semantics of higher-order logic

Interpret — as the monotone function space.

M(int] = Z (ordered discretely)
M{[bool] = lattice {0,1} (or {f,t}) with 0 C 1
Moy — 03] = M]Jo1] =m M[os] (monotone fns)

Example: A Foq Jz: (int — bool) — bool . G

“There is some monotone predicate x on sets of integers
that makes G true in A."

In monotone semantics, satisfiable Horn clauses have least models
(because “immediate consequence operator” is monotone) and
constructible by Knaster-Tarski.
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Examples

M(int — bool] All sets of integers

M((int — bool) — bool]  All upward-closed (w.r.t. C)
sets of sets of integers

M{[((int — bool) — bool) — bool] All upward-closed sets of
upward-closed sets of
sets of integers

Counter-intuitive (?) Take x : (int — bool) — bool.
z— {{1}} ¥ Jy:(int — bool). 3z :int. (zy Ayz)
(" valuation is invalid: {{1}} & M{[(int — bool) — bool])
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Luke Ong (University of Oxford)

Each is good for something

Standard Semantics

@ Completely standard sat-
isfiability problem (modulo
background theory) in higher-
order logic.

@ No least model.

Monotone Semantics

® Bespoke

problem with a
class of models.

satisfiability
restricted

@ Least model arising in the
usual way.

Can we have the best of both worlds?
l.e. can we specify problems in standard semantics, but solve /

compute in monotone semantics?

Higher-order Constrained Horn Clauses
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Standard and monotone semantics are equivalent for the
HoCHC Satisfiability Problem

We can have the best of both worlds!

Theorem (Model correspondence)

Given a clause (set) H, H is satisfiable in the standard
semantics iff H is satisfiable in the monotone semantics.
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Proof idea

For each sort of relations p, monotone and standard semantics are
locked in two-sided Galois connections:

S[e] —L<——» M(p] <lj*:> S[el

Standard Monotone Standard

Define, by recursion over sorts:

Ibool(b) = b Jbool(b) = b
lint—p(r) = l,or Jintosp(r) = Jyor
|p1—>pz (T> = |,02 oro Lp1 Jp1—>p2 (T) = J,02 oro Up1
where

- U, is the right adjoint of J,, i.e., uniquely determined by: for all a,b
J,aCb & aCU,b

- L, is the left adjoint of I,
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Standard and monotone semantics are equivalent also for
HoCHC Safety Problem

Theorem (Equivalence / Inter-reducibility)
For all A, D and GG, T.F.A.E.

(i) HoCHC Safety Problem (A, D,G) in standard semantics is
solvable

(i) HoCHC Safety Problem (A, D,G) in monotone semantics is
solvable

(iii) In all models of the background theory, the least valuation
M(D] invalidates G (i.e. M[G](M[D]) =0).

Thus: we can specify problems using the standard semantics, and
then solve in the monotone semantics.
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Outline

@ Algorithmic solutions of HoCHC safety problem: 1. via refinement
types
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Refinement types as higher-order invariants

Solving HoCHC problems is about finding (higher-order) symbolic
models. Models are valuations.

R: ((int - bool) » bool) - bool

Symbolic model:
Af.(Vg. fg=>0x.gx=>¢)=>¢)=>x

Dependent refinement type:

f:(g: (x:int > bool{¢p)) — bool(y)) — bool{y)

Dependency — “f : :T; — T5" means: for each a : T}, the value of
f a has type Ty[a/x].
Refinement — “b : bool ()" means: b= ¢
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Dependent refinement types: syntax and semantics

T = bool{y) | zint — T | Ty — T

Refinement at bool: ¢ is a 1st-order formula of constraint language
Dependence at int: x can occur freely in T

Order-ideal semantics: Given a valuation « of int-sorted
vars:

[int](a) :=Z
[bool(@)](e) = {f, [¢l(a)}
[z:int = T)(«) = Hd € Z.[T)(alx — d])
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Examples of refinement type

|dea: [bool{p)](«) is downward closure of value of (.

1. [bool{z < )]({x +— 1, y — 2}) = {f, t}

Fact: b € [bool(p)](a) & akFb= ¢
2. A function type.

[x:int — bool{p)]
= [[n € Z.[bool{p[n / z])]
{f|VneZ.fn e [bool{pln/z])]}
{fIvneZ. (fn=¢n/z])}
= {f|Vz:int.(fz=p)}
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Decidable judgement: ' -G : T

- Type environment I': finite map from variables to refinement types
- Goal term G subterm of body of Horn clause
- T refinement type

Intuition:

' G : bool{yp)

In symbolic model T" (i.e. models satisfying T"), truth of G is
bounded above by constraint ¢ (or “G implies ¢").

Thus ¢ is an over-approximation of G, which may have higher-order
subterms.
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Some proof rules of typing judgements

(TConstraint) v Fm

' ¢ : bool{p)

[z ok G bool(p)

TExi
(TEXISts) 4 G bool (1)

ThE =1

x:intEG:T
I'F Azint. G : z:int = T

(TAbsl)

PFG.aint> T TEN:int
TAppl
(TAppl) [+ G N : T[N/q]

Fl_GITl I—Tlng

(TSub) TFG:T,

(Nothing surprising here.)
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Subtyping judgement: 77 C T;

Subtyping, C, captures implication in the background theory Th.

“bool(p) € bool(g) \ME e =)

=T, E T,
F z:iint — T C x:int — T

FTTETY  FL,ET,
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Reducing HoCHC to 1st-order Horn constraints

Theorem (Soundness)
IfT'EFG:T thenT'EG:T.

A sound approach to solving HoCHC
Given HoCHC safety problem (A, D, G):

o If there is a type environment T" (that refines A) such that
FD:T'and I' - G : bool(false), then for each model A of
background theory, M[I'] is a valuation that satisfies D but
refutes G.

@ Typability of clauses, I' = GG : T, is reducible to 1st-order
constrained Horn clause solving. This is more or less standard.

The method is incomplete.
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Working example revisited
From safety verification problem:

letadd zy=2+y
letrec iter f s n = if n < 0 then selse f n (iter f s (n— 1))
in An. assert (n < (iter add 0 n))

obtain HoCHC safety problem:

mez.(z:x+y:>z4ddxyz)
stnm.(ng()/\m:s#[terfsnm)
Vfsnm.

(n>0A@p.Iter fs(n—1)pAfnpm)= Iter f snm)

Ynm. (]ter Add 0 nm=n< m)

Goal clause: G = dmn . (Iter Add 0 nm) An>m

Task (type checking): Find I's.t. = D : T" and I' = G : bool(false).
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Working example problem: a solution

Model = valuation, here expressed as refinement type assignment
Add — z:int — yiint — z:int — bool(z =z + y)

Iter — (xint — yint — z:int — bool(0 <z = y < 2)) —
siint — n:int — m:int — bool(0 < s = n < m)
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For example...

T int
n:int
Add : (x:int > «- > bool(z = x + y))

Iter : (x:int > - 5 boo{0 < x=>y<z)) > >boo{l0<m=>n<r)

I
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F'F>:(xiint> y:int > bool{x >y)) Tk n:int

['F>n: (y:int = bool(n > y)) F'Fr:int

['-n>r:booln>r)
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T; = (x:int & - 2 bool{0 < x>y < z)) > m:int > - > boo{l0 <m=>n<r)

['FAdd : (x:int > -+ - bool(z = x + y))

FHIter:Ty T FAdd : (x:int— - >bool(0<x=y<2z))

[+ Iter Add : x:int - --- > bool{0 < x =y < z)

['Iter Add Onr : bool{n <r)
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A : VXY .bool(X) = bool{Y) — bool{X AY)

'A:bool{n <r)—booliln >7r) »boolln <rAn>r)

' (terAddOnr)A(n>r) :boo{ln<rAn>r)

'+ (Iter Add Onr) A (n > 1) : bool{false)
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Type inference: how to grow a symbolic model

R : (int — bool) — bool

1. From higher-order relational vars: { S - int — (int — bool)

2. Create refinement template:

r— R : (xz:int — bool(Z; z)) — bool(Zs)
| S:ysint = (z:int — bool(Z5 z y))

3. Check that type environment I" is a model.
4. Except, whenever forced to check the validity of an implication:

ThE Zsnz= Zz

bool(Z3 n z) C bool(Z; z) (Sub-Bool)

add clause 'Zsn z = Z; 2’ to the (1st-order) Horn constraint system.
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Outline

© Automation via prototype tool Horus
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Prototype tool for solving HoOCHC safety problem: Horus

Web interface to Horus: http://mjolnir.cs.ox.ac.uk/horus

Tests
Verification problems taken from MoCHi test suite (Kobayashi et al.
PLDI'11) but rexpressed as HoCHC safety problems.
In all the examples (without local assertations), except neg:
@ Horus takes around 0.01s to transform the system of clauses and

@ /3 takes around 0.02s to solve the transfromed 1st-order system.

Example. In Problem mc91, we verify: M (n) = 91 for all n < 101.

https://github.com/penteract/HigherOrderHornRefinement
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http://mjolnir.cs.ox.ac.uk/horus
https://github.com/penteract/HigherOrderHornRefinement

Further directions

Related work: see paper on arXiv.

relative completeness? problem reduction?

SN N

Higher-order program Higher-order First-order constrained
safety problem constrained Horn Horn clause problem
clause problem

© Other approaches to reduce HoCHC problems to 1st-order
problems (e.g. via Reynolds’ defunctionalisation)

@ Adequacy of HoCHC for safety verification of higher-order
programs in general (cf. Blass & Gurevich)
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