
Thread-Modular Reasoning 
for Lock-Free Data Structures
Roland Meyer

based on joint work with Lukáš Holík, Tomáš Vojnar, and Sebastian Wolff.

Lock-Free Data Structures

Key Take Aways:

• efficient but complex

• correctness = linearizability

• checking linearizability reduces to reachability

http://www.braunschweig-fotograf.de/mein-braunschweig/

Concept

• avoid locks

➡ critical section cannot exist

• single commands are atomic

➡ compare-and-swap (CAS)

CAS(src, cmp, dst) := atomic {
 if (src != cmp) return false;
 src = dst;
 return true;
}

Example: Treiber’s Stack

push(val):
 node = new Node(val);
 while (true) {
 top = ToS;
 node.next = top;
 if (CAS(ToS, top, node))
 return;
 }

pop():
 while (true) {
 top = ToS;
 if (top == NULL)
 return EMPTY;
 next = top.next;
 if (CAS(ToS, top, next))
 return top.data;
 }

1

ToS

node top

Example: Treiber’s Stack

push(val):
 node = new Node(val);
 while (true) {
 top = ToS;
 node.next = top;
 if (CAS(ToS, top, node))
 return;
 }

pop():
 while (true) {
 top = ToS;
 if (top == NULL)
 return EMPTY;
 next = top.next;
 if (CAS(ToS, top, next))
 return top.data;
 }

1

ToS

nodetop nexttop

pop():
 while (true) {
 top = ToS;
 if (top == NULL)
 return EMPTY;
 next = top.next;
 if (CAS(ToS, top, next))
 return top.data;
 }

1

Example: Treiber’s Stack

push(val):
 node = new Node(val);
 while (true) {
 top = ToS;
 node.next = top;
 if (CAS(ToS, top, node))
 return;
 }

ToS

top next
2

top next
top2 next2

Correctness and Concurrency

• pre/post conditions meaningless
➡ other correctness criteria required

• linearizability
➡ every concurrent run must coincide with a sequential run

➡ most common for lock-free data structures

➡ illusion of sequentiality [Filipović et al. ESOP’09]:

linearizable ⟺ sequential and concurrent implementation 
 are observationally equivalent

Checking Linearizability

• check sequentiality illusion

➡ sufficient: sequence of linearization points is valid [Abdulla et al. TACAS’13] 
(intuitively: linearization point = change of data structure takes effect)

➡ checking linearizability is a reachability problem

() linp(DS) \ sequential(DS) = ?
() linp(DS) \ observer(DS) = ?

() linp(DS) ✓ sequential(DS)

concurrent(DS) |= sequential(DS)

Overview

1. thread-modular reasoning

2. ownership

3. summaries

Thread-Modular Reasoning
[Qadeer, Flanagan SPIN’03]

Key Take Aways:

• compute reachability

• interference is key to scalability

Concept

• view abstraction

➡ split states into set of views

➡ views capture perception of 1 thread (abstract from correlation)

• state exploration

➡ fixed-point computation:

X = X [sequential(X) [interference(X)

2

CAS(ToS, top, next)

ToS

top2 next2

ToS

top1 next1
1

CAS(ToS, top, next)

Example: View Abstraction

Note: both views are equal.

X = X [sequential(X) [interference(X)

ToS

top1 next1

1

CAS(ToS, top, next)

Example: Sequential Step X = X [sequential(X) [interference(X)

No concurrent behavior.

ToS

top1 next1

1

CAS(ToS, top, next)

Example: Interference Step X = X [sequential(X) [interference(X)

2

CAS(ToS, top, next)

ToS

top2 next2
1. combine

next2

ToS

top1 next1
1

CAS(ToS, top, next)

Example: Interference Step

2

CAS(ToS, top, next)

top2

X = X [sequential(X) [interference(X)

1. combine 2. step 3. project

Challenges with Interference

• number of possible combinations is enormous

➡ not all combinations are reasonable

• need pruning to make the approach practical
➡ precision

➡ performance

• pruning must be sound

Pruning Interferences

two types

• matching

➡ Is it possible to combine at all? Skip if not.

• correlation

➡ Which nodes should coincide?

Matching: Complication

• matching gets harder due to finite abstraction

• we use reachability predicates (shape analysis):

• 0-step: =

• 1-step: !

• n-step: ⤏

• unreach: ⋈

ToS

node

// ToS ⤏ NULL
// node ! ToS

ToS

node

Matching: Example

ToS

node

ToS

top next

logical stack
content

Subgraph
isomorphism:
NP-complete!

Correlation: Example

ToS
…

node

…
ToS

top next …
ToS

top2 next2
node1

top2

…
ToS

next2

node1

?? Exponentially many!

Practicality is about Interference

• interference

➡ quadratic in size of state space

• matching

➡ subgraph isomorphism (NP)

• correlation

➡ exponential

poor
scalability

fight imprecision 
(false-positives)

Ownership

Key Take Aways:

• ownership saves the day

• even under explicit memory management

Concept

partition allocated heap into

• owned

➡ exclusive access for a single thread

➡ granted upon allocation

• shared

➡ accessible by every thread

➡ by publishing (e.g. making accessible via shared variables)

Ownership in Thread-Modular Reasoning [Gotsman et al. PLDI’07]

• track ownership

➡ small overhead

• matching

➡ owned cells not contained

• correlation

➡ owned cells not merged with other nodes

Ownership and Correlation

ToS
…

…
ToS

top next …
ToS

top2 next2
node1

top2

…
ToS

next2

node1

??
node
ow
n

node

Ownership in Thread-Modular Reasoning

• helps a lot with

➡ matching

➡ correlation

• makes thread-modular reasoning  
practical

➡ prunes false-positives

Only for garbage
collection (GC)!

What about explicit
memory management

(MM)?

Problem with MM

Ownership does not exist under 
explicit memory management. 

— folklore

• almost true

• indeed no exclusivity ➡ dangling pointers

• we introduced weak ownership in VMCAI’16

Weak Ownership

• write exclusivity

➡ only owners may write

[VMCAI’16]

• no read exclusivity

➡ dangling readers allowed

➡ dangling reads unsafe

➡ only owner may rely on memory contents

…

…

owned
dangling

Weak Ownership in Thread-Modular Reasoning

• track dangling pointers

➡ small overhead

• matching: like normal ownership

• correlation

➡ -owned cells referenced by only via dangling pointers

• dangling write accesses may be unsafe

➡ report as bug

1 2

[VMCAI’16]

MM without 
ownership

MM with 
ownership

Treiber’s stack
944s 25.5s

#116776 #3175

Michael&Scott’s queue
false positive 11700s

> #69000 #19742

Performance Impact [VMCAI’16]

:37

:36

impractical

Accomplishments

• ownership helps with matching and correlation

• low overhead tracking additional info

• deeming unsafe accesses as bugs reflects programming practice

• performance improvements for analysis

• but: not practical yet

➡ interference still computationally complex

Summaries

Key Take Aways:

• copy-and-check blocks

• statelessness

• efficient interference

Observation

• lock-freedom relies on 
copy-and-check blocks

1. create local copy of shared data

2. make changes locally

3. publish changes if copy up-to-date 
or retry otherwise

➡ updates appear atomically

push(val):
 node = new Node(val);
 while (true) {
 top = ToS;
 node.next = top;
 if (CAS(ToS, top, node))
 return;
 }

1
2
3

Insight

So why do interference for all intermediate steps?

➡ instead: apply updates in one shot

➡ potentially unsound: stay tuned

Threads cannot observe the
local behavior of other threads. 

— SAS’17

Example: Summary for pop

 while (true) {

 top = ToS;

 if (top == NULL)

 return

 next = top.next;

 if (CAS(ToS, top, next))

 return

 }

2. remove noise

atomic {

}

1. make atomic

;

;

EMPTY

top.data

 while (true) {

 top = ToS;

 if (top == NULL)

 return;

 next = top.next;

 if (CAS(ToS, top, next))

 return;

 }

2. remove noise

atomic {

}

1. make atomic

3. copy propagation

Example: Summary for pop

ToStop = ;ToSToS

 while (true) {

 if (== NULL)

 return;

 next = .next;

 if (CAS(ToS, , next))

 return;

 }

atomic {

}

1. make atomic

top

top

top

2. remove noise

3. copy propagation

Example: Summary for pop

atomic {

}

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

 while (true) {

 }
5. rewrite CAS

if (CAS(ToS, ToS, ToS.next))

 return;

if (ToS == NULL)

 return;

Example: Summary for pop

atomic {

}

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

5. rewrite CAS
if (CAS(ToS, ToS, ToS.next))

 return;

if (ToS == NULL)

 return;

ToS = ToS.next;

return;

Example: Summary for pop

assume(ToS != NULL);

atomic {

}

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

5. rewrite CAS

if (ToS == NULL)

 return;

ToS = ToS.next;

return;

6. rewrite guard

Example: Summary for pop

assume(ToS != NULL);

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

5. rewrite CAS
ToS = ToS.next;

6. rewrite guard}

atomic {

Example: Summary for pop

• easy to compute
➡ similar for push

• compact form beneficial for analysis 
(and understandability)

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

5. rewrite CAS

6. rewrite guard

assume(ToS != NULL);

ToS = ToS.next;

}

atomic {

Example: Summary for pop

Insight

learn about an object’s state from shared variables (assume); 
and execute atomically

➡ no concurrency:

➡ no interference for summaries needed

Summaries are stateless. 
— SAS’17

Finally an efficient
interference algorithm!

Y

i

summaryi =
X

i

summaryi

top next
1

CAS(ToS, top, next)

Example: New Interference

2
atomic {
 assume(ToS != NULL);
 ToS = ToS.next;
}

ToS

Soundness

• soundness requires summaries to

1. capture all possible effects of the implementation

2. be stateless

• both can be checked on the fixed point

1. for each effect check whether some summary can do it

2. summaries must not rely on uninitialized local variables

Accomplishments

• improved interference

➡ matching: NP ⟹ not needed

➡ correlation: exponential ⟹ constant (one)

➡ interference: quadratic (in fixed-point approximant) ⟹ linear

• sound approach despite unsound abstraction

• works for explicit memory (requires ownership transfer, skipped)

classical summaries

Coarse Stack 0.29s 0.03s

Coarse Queue 0.49s 0.05s

Treiber’s stack 1.99s 0.06s

Michael&Scott’s queue 11.0s 0.39s

DGLM queue 9.56s 0.37s

Performance Impact: GC

:10

:10

:33

:28

:25

classical summaries

Coarse Stack 1.89s 0.19s

Coarse Queue 2.34s 0.98s

Treiber’s stack 25.5s 1.64s

Michael&Scott’s queue 11700s 102s

DGLM queue false-positive violation

Performance Impact: MM

:10

:2

:15

:114

Related Work

Key Take Aways:

• Abdulla et al.

• Vafeiadis et al.

Abdulla et al.

• improve precision of interference

➡ first to make it work for explicit memory management

➡ without weak ownership

• increase threads per view to 2

➡ could restore precision for matching and correlation

• poor scalability due to increased state space

Vafeiadis et al.

• relies on RGSep (separation logic + rely guarantee)

• fixed point:
➡ interference recorded per thread in every step
➡ applied to others in next iteration

• corresponds to learning summaries
➡ no freedom: sound in every step
➡ linear in fixed point (here: linear in program size)

• only considered garbage collection

Future Work

• stateful summaries

• go beyond singly-linked objects

• more benchmarks

F I N

