Thread-Modular Reasoning
for Lock-Free Data Structures

Roland Meyer
based on joint work with Lukas Holik, Tomas Vojnar, and Sebastian Wolff.

wly&

g‘”’ 2 Technische
5 22 % Universitit
%

)

*¢ Braunschweig

Op 'ﬁ«‘é
SC

L ock-Free Data Structures

Key Take Aways:
- efficient but complex
» correctness = linearizability

» checking linearizabllity reduces to reachability

Concept

avold locks

= critical section cannot exist

single commands are atomic

= compare-and-swap (CAS)

CAS(src, cmp, dst) atomic {
1f (src != cmp) return false;
src = dst;
return true;

Example: Treiber’s Stack

= push(val): pop () :

node = new Node(val); while (true) {
while (true) { top = ToS;

top = ToS; 1f (top == NULL)

node.next = top; return EMPTY;

1f (CAS(ToS, top, node)) next = top.next;

return; 1f (CAS(ToS, top, next))
} return top.data;
'
TOS

(o—(o—([9—

node top

Example: Treiber’s Stack

push(val): prop () :
node = new Node(val); while (true) {
while (true) { top = ToS;
top = ToS; 1f (top == NULL)
node.next = top; return EMPTY;
1f (CAS(ToS, top, node)) next = top.next;
2P return; if (CAS(ToS, top, next))
} return top.data;
'
TOS

(o—(o—([9—

Niooie 8152, o

Example: Treiber’s Stack

push(val):
node

=» pop () :
new Node(wval); while (true) {
while (true) { top = ToS;
top = ToS; 1f (top == NULL)
node.next = top; return EMPTY;
(CAS(ToS, top, node)) next = top.next;
return; I)if (CAS(ToS, top, next))
return top.data;
'
TOS
top 19122, 08 next

top: next:

Correctness and Concurrency

pre/post conditions meaningless

= other correctness criteria required

inearizabllity

= gvery concurrent run must coincide with a sequential run

= Most common for lock-free data structures

= [llusion of sequentiality [Filipovi¢ et al. ESOP’09]:

inearizable <= sequential and concurrent implementation
are observationally equivalent

Checking Linearizability

+ check sequentiality illusion

= gsufficient: sequence of linearization points is valid [Abdulla et al. TACAS’13]
(intuitively: linearization point = change of data structure takes effect)

concurrent(DS) = sequential(DS')
< hlinp(DS) C sequential(DS)

< linp(DS) N sequential(DS) = &
< linp(DS) N observer(DS) =

= checking linearizabillity is a reachability problem

Overview

1. thread-modular reasoning
2. ownership

3. summaries

Thread-Modular Reasoning
[Qadeer, Flanagan SPIN’'03]

Key Take Aways:
» compute reachability

* Interference is key to scalabillity

Concept

- view abstraction

= gplit states into set of views

= views capture perception of 1 thread (abstract from correlation)

- state exploration

= fixed-point computation:

X = X U sequential(X) U interference(X)

Examp\e: View Abstraction X = X U sequential(X) U interference(X)

ToS
.D .D .D Note: both views are equal.)
)
top: nexti

tope2 next,

Examp‘e: Sequeﬂtia‘ Step X = X U sequential(X) U interference(X)

ToS
top: next:

No concurrent behavior.

Examp\e' INnterterence Step X = X U sequential(X) U interference(X)

top: next;
TOS

(U9 o casros, sop, nene

Examp\e: INnterterence Step X = X U sequential(X) U interference(X)

TOS

P CAS(ToS, top, next)
top: next:
top:? next;

Challenges with Interference

number of possible combinations is enormous
= Nnot all combinations are reasonable

need pruning to make the approach practical
= precision

= performance

pruning must be sound

Pruning Interferences

WO types
- matching
= |3 it possible to combine at all? Skip if not.
- correlation

= \/\/hich nodes should coincide?

Matching: Complication

+ matching gets harder due to finite abstraction

+ we use reachability predicates (shape analysis):

+ O-step: = ToS
- N-Step: --» .
TOS

. unreach: X M // ToS -»> NULL
. |] |] |] 1
// node - ToS

node

Matching: Example

Subgraph

Isomorphism:
NP-complete!

node

logical stack
content

Correlation: Example

ToS

node

ToS

top next

node;

Exponentially many!

ToS

Practicality I1s about Interference

+ Interference
= quadratic in size of state space

DOOF *matching

scalabilit
Y = subgraph isomorphism (NP) fight Imprecision

(false-positives)

- correlation

= exponential

‘o]
L

. i O
r’l-o.... o \

P
Ip saves the day
* even under explicit memory management

Key Take Aways
* ownersh

Ownersh

Concept

partition allocated heap into

* owhed
= exclusive access for a single thread

= granted upon allocation

- shared
= accessible by every thread

= Py publishing (e.g. making accessible via shared variables)

Ownership In Thread-Modular Reasoning [Gotsman et al. PLDI’07]

+ track ownership

= small overhead
*matching

= owned cells not contained
+correlation

= owned cells not merged with other nodes

Ownership and Correlation

ToS
.Q,
So—([o)—
node
ToS

top next

Ownership in Thread-Modular Reasoning

+ helps a lot with

= matching Only for garbage
collection (GC)!

= correlation

+ makes thread-modular reasoning

oractical
What about explicit

= prunes false-positives memory management
(MM)?

Problem with MM

Ownership does not exist under
explicit memory management.

— folklore

+almost true
- Indeed no exclusivity = dangling pointers

- we Introduced weak ownership in VMCAI'16

Weak Ownership \VMCAI16]

write exclusivity

= only owners may write sangling owned

NO read exclusivity \“Ew !f/ ‘—"’CE—{:D—» s

= dangling readers allowed
= dangling reads unsafe

= only owner may rely on memory contents

Weak Ownership in Thread-Modular Reasoning VMCA? 16]

- track dangling pointers
= small overhead

- matching: like normal ownership

- correlation

= EP-owned cells referenced by X only via dangling pointers
- dangling write accesses may be unsafe

= report as bug

Performance Impact

[VMCAI'16]
MM without MM with
ownership ownership
944s *:87 25.5s
Treiber’s stack
#116776 W36 #3175

false positive 11700s

Michael&Scott’s queue : :
iImpractical
> #69000 #19742

Accomplishnments

- ownership helps with matching and correlation

+low overhead tracking additional info

+ deeming unsafe accesses as bugs reflects programming practice
- performance improvements for analysis

+ but: not practical yet

= |nterference still computationally complex

Summaries

Key Take Aways:

0
v
O
O
O
A
O
@
e
O

-and

* COpPY

« statelessness

« efficient interference

Observation

- |lock-freedom relies on

copy-and-check blocks push(val):
node = new Node(val);
1. create local copy of shared data while (true) {
(D) top = ToS;
2. make changes locally (@node.next = top;
(3)if (CAS(ToS, top, node))
3. publish changes if copy up-to-date return;
}

or retry otherwise

= updates appear atomically

INnsignt

Threads cannot observe the

local behavior of other threads.
— SAS’17

SO why do interference for all intermediate steps”?
= |nstead: apply updates in one shot

= potentially unsound: stay tuned

Example: Summary for pop

atomic { 1. make atomic

while (true) {

2. remove noise

top = ToS;
1f (top == NULL)
return EMPTY;
next = top.next;
1f (CAS(ToS, top, next))

return top.data;

Example: Summary for pop

atomic { 1. make atomic

while (true) {

— ToS; 2. remove noise

/ \

if (t NULL
Hh(Rop) 3. copy propagation
retu{n;

next = top.n

1f (CAS(ToS, top, next))

return;

Example: Summary for pop

atomic { 1. make atomic

while (true) {

_ T0S; 2. remove noise

/ \

if (t NULL
++ (top) 3. copy propagation
retu{n;

mext| = top.n

1f (CAS(ToS, top, next))

return;

Example: Summary for pop

atomic { 1. make atomic

while (true) {

2. remove noise

if (ToS == NULL) _
3. copy propagation
return;
4. remove noise
1f (CAS(ToS, ToS, ToS.next))

return; 5. rewrite CAS

Example: Summary for pop

atomic { 1. make atomic

2. remove noise

i f S == NULL
(o) 3. copy propagation

Mo S A efiS, ToS.next))
retwmturn; 5. rewrite CAS

return;

Example: Summary for pop

atomic { 1. make atomic

2. remove noise

afs@ffiefTeS NELNYLL) ; :
3. copy propagation
return;
4. remove noise
ToS = ToS.next;

return; 5. rewrite CAS

} 6. rewrite guard

Example: Summary for pop

atomic { 1. make atomic

2. remove noise

assume (ToS != NULL); 3. copy propagation

4. remove nhoise
ToS = ToS.next;
5. rewrite CAS

} 6. rewrite guard

Example: Summary for pop

atomic { 1. make atomic

assume(ToS != NULL); i
2. remove noise

ToS = ToS.next;

}
3. copy propagation

. easy to compute
:
= similar for push
. compact form beneficial for analysis 9. rewrite CAS

(and understandability)

6. rewrite guard

INnsignt

Summaries are stateless.
— SAS’'17

learn about an object’s state from shared variables (assume);
and execute atomically

_ New

= NO CONCUITeNcy: H summary; =) | summary; Finally an efficient 7

. o interference algorithm!
= NO Interference for summaries needed

Example: New Interference

TOS
P atomic {
top next

assume(ToS != NULL);
ToS = ToS.next;

Soundness

* soundness requires summaries to
1. capture all possible effects of the implementation
2. e stateless
+ both can be checked on the fixed point
1. for each effect check whether some summary can do it

2. summaries must not rely on uninitialized local variables

Accomplishnments

+Improved interference

= matching: NP = not needed
= correlation: exponential = constant (one)
= |nterference: quadratic (in fixed-point approximant) = linear

+ sound approach despite unsound abstraction

- works for explicit memory (requires ownership transfer, skipped)

Performance Impact: GC

classical summaries
Coarse Stack 0.29s 0.03s
Coarse Queue 0.49s 0.05s
Treiber’s stack 1.99s 0.06s
Michael&Scott’s queue 11.0s 0.39s
DGLM queue 9.56s 0.37s

Performance Impact: MM

classical summaries
Coarse Stack 1.89s 0.19s
Coarse Queue 2.34s 0.98s
Treiber’s stack 25.5s 1.64s
Michael&Scott’s queue 11700s 102s
DGLM queue false-positive violation

Related Work

Key Take Aways:
» Abdulla et al.

« Vafeladis et al.

Abdulla et al.

+ Improve precision of interference
= first to make It work for explicit memory management
= without weak ownership

+ Increase threads per view to 2
= could restore precision for matching and correlation

+ poor scalability due to increased state space

Vafeladis et al.

relies on RGSep (separation logic + rely guarantee)
- fixed point:
= |Nnterference recorded per thread In every step

= applied to others in next iteration

+corresponds to learning summaries
= Nno freedom: sound In every step
= |inear in fixed point (here: linear in program size)

+only considered garbage collection

Future Work

 stateful summaries
* go beyond singly-linked objects

 more benchmarks

' 9 —oh @ o,
. . - L
',‘,, _ lf.d

o e S P g A -

e —— -
L > !.1 Q.".\' “"’-‘h\l*“—‘.?f..ﬁ-“ - :- E
CeTRT i . e e L iy B P Ly

-

~v_1'_- >
- "n.

o.-* .'- -\...ﬁ - -

_.'*,.“b'-' WS ™ - e o8 - NG ST

- a - 0 - - . _———— "o‘,ta-‘ '):..e.~-

- i ;;i' by u -
~‘ .s -.“ > . »

SR | T GrT e

REad e K

~ ‘“tn‘;\“ - " .
..-.--¢) _f‘.rr'..- v

J [‘o" " :
: > o oh
BRI

