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Lock-Free Data Structures

Key Take Aways:


• efficient but complex


• correctness = linearizability


• checking linearizability reduces to reachability

http://www.braunschweig-fotograf.de/mein-braunschweig/



Concept

• avoid locks 

➡ critical section cannot exist 

• single commands are atomic 

➡ compare-and-swap (CAS)

CAS(src, cmp, dst) := atomic {
    if (src != cmp) return false;
    src = dst;
    return true;
}



Example: Treiber’s Stack

push(val):
 node = new Node(val);
 while (true) {
     top = ToS;
     node.next = top;
     if (CAS(ToS, top, node))
         return;
 }

pop():
 while (true) {
     top = ToS;
     if (top == NULL)
         return EMPTY;
     next = top.next;
     if (CAS(ToS, top, next))
         return top.data;
 }
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pop():
 while (true) {
     top = ToS;
     if (top == NULL)
         return EMPTY;
     next = top.next;
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Example: Treiber’s Stack

push(val):
 node = new Node(val);
 while (true) {
     top = ToS;
     node.next = top;
     if (CAS(ToS, top, node))
         return;
 }
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Correctness and Concurrency

• pre/post conditions meaningless 
➡ other correctness criteria required 

• linearizability 
➡ every concurrent run must coincide with a sequential run 

➡ most common for lock-free data structures 

➡ illusion of sequentiality [Filipović et al. ESOP’09]: 

linearizable ⟺ sequential and concurrent implementation 
     are observationally equivalent



Checking Linearizability

• check sequentiality illusion 

➡ sufficient: sequence of linearization points is valid [Abdulla et al. TACAS’13] 
(intuitively: linearization point = change of data structure takes effect)

➡ checking linearizability is a reachability problem

() linp(DS ) \ sequential(DS ) = ?
() linp(DS ) \ observer(DS ) = ?

() linp(DS ) ✓ sequential(DS )

concurrent(DS ) |= sequential(DS )



Overview

1. thread-modular reasoning 

2. ownership 

3. summaries



Thread-Modular Reasoning 
[Qadeer, Flanagan SPIN’03]

Key Take Aways:


• compute reachability


• interference is key to scalability



Concept

• view abstraction 

➡ split states into set of views 

➡ views capture perception of 1 thread (abstract from correlation) 

• state exploration 

➡ fixed-point computation:

X = X [ sequential(X) [ interference(X)
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Example: View Abstraction

Note: both views are equal.

X = X [ sequential(X) [ interference(X)



ToS

top1 next1
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CAS(ToS, top, next)

Example: Sequential Step X = X [ sequential(X) [ interference(X)

No concurrent behavior.



ToS

top1 next1
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Example: Interference Step X = X [ sequential(X) [ interference(X)
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Example: Interference Step
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X = X [ sequential(X) [ interference(X)

1. combine 2. step 3. project



Challenges with Interference

• number of possible combinations is enormous 

➡ not all combinations are reasonable 

• need pruning to make the approach practical 
➡ precision 

➡ performance 

• pruning must be sound



Pruning Interferences

two types 

• matching 

➡ Is it possible to combine at all? Skip if not. 

• correlation 

➡ Which nodes should coincide?



Matching: Complication

• matching gets harder due to finite abstraction 

• we use reachability predicates (shape analysis): 

• 0-step:  = 

• 1-step:  ! 

• n-step:  ⤏ 

• unreach:  ⋈

ToS

node

// ToS  ⤏ NULL
// node ! ToS

ToS

node



Matching: Example

ToS

node

ToS

top next

logical stack 
content

Subgraph 
isomorphism: 
NP-complete!



Correlation: Example
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?? Exponentially many!



Practicality is about Interference

• interference 

➡ quadratic in size of state space 

• matching 

➡ subgraph isomorphism (NP) 

• correlation 

➡ exponential

poor 
scalability

fight imprecision 
(false-positives)



Ownership

Key Take Aways:


• ownership saves the day


• even under explicit memory management



Concept

partition allocated heap into 

• owned 

➡ exclusive access for a single thread 

➡ granted upon allocation 

• shared 

➡ accessible by every thread 

➡ by publishing (e.g. making accessible via shared variables)



Ownership in Thread-Modular Reasoning [Gotsman et al. PLDI’07]

• track ownership 

➡ small overhead 

• matching  

➡ owned cells not contained 

• correlation 

➡ owned cells not merged with other nodes



Ownership and Correlation
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Ownership in Thread-Modular Reasoning

• helps a lot with 

➡ matching 

➡ correlation 

• makes thread-modular reasoning  
practical 

➡ prunes false-positives

Only for garbage 
collection (GC)!

What about explicit 
memory management 

(MM)?



Problem with MM

Ownership does not exist under 
explicit memory management. 

— folklore

• almost true 

• indeed no exclusivity  ➡ dangling pointers 

• we introduced weak ownership in VMCAI’16



Weak Ownership

• write exclusivity 

➡ only owners may write

[VMCAI’16]

• no read exclusivity 

➡ dangling readers allowed 

➡ dangling reads unsafe 

➡ only owner may rely on memory contents

…

…

owned
dangling



Weak Ownership in Thread-Modular Reasoning

• track dangling pointers 

➡ small overhead 

• matching: like normal ownership 

• correlation 

➡          -owned cells referenced by           only via dangling pointers 

• dangling write accesses may be unsafe 

➡ report as bug

1 2

[VMCAI’16]



MM without 
ownership

MM with 
ownership

Treiber’s stack
944s 25.5s

#116776 #3175

Michael&Scott’s queue
false positive 11700s

> #69000 #19742

Performance Impact [VMCAI’16]

:37

:36

impractical



Accomplishments

• ownership helps with matching and correlation 

• low overhead tracking additional info 

• deeming unsafe accesses as bugs reflects programming practice 

• performance improvements for analysis 

• but: not practical yet 

➡ interference still computationally complex



Summaries

Key Take Aways:


• copy-and-check blocks


• statelessness


• efficient interference



Observation

• lock-freedom relies on 
copy-and-check blocks  

1. create local copy of shared data 

2. make changes locally 

3. publish changes if copy up-to-date 
or retry otherwise 

➡ updates appear atomically

push(val):
 node = new Node(val);
 while (true) {
     top = ToS;
     node.next = top;
     if (CAS(ToS, top, node))
         return;
 }

1
2
3



Insight

So why do interference for all intermediate steps? 

➡ instead: apply updates in one shot 

➡ potentially unsound: stay tuned

Threads cannot observe the 
local behavior of other threads. 

— SAS’17



Example: Summary for pop

    while (true) {

        top = ToS;

        if (top == NULL)

            return

        next = top.next;

        if (CAS(ToS, top, next))

            return

    }

2. remove noise

atomic {

}

1. make atomic

;

;

EMPTY

top.data



    while (true) {

        top = ToS;

        if (top == NULL)

            return;

        next = top.next;

        if (CAS(ToS, top, next))

            return;

    }

2. remove noise

atomic {

}

1. make atomic

3. copy propagation

Example: Summary for pop



ToStop =    ;ToSToS

    while (true) {

       

        if (    == NULL)

            return;

        next =    .next;

        if (CAS(ToS,    , next))

            return;

    }

atomic {

}

1. make atomic

top

top

top

2. remove noise

3. copy propagation

Example: Summary for pop



atomic {

}

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

    while (true) {

       

    

   

       

  

 

    }
5. rewrite CAS

if (CAS(ToS, ToS, ToS.next))

    return;

if (ToS == NULL)

    return;

Example: Summary for pop



atomic {

}

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

5. rewrite CAS
if (CAS(ToS, ToS, ToS.next))

    return;

if (ToS == NULL)

    return;

ToS = ToS.next;

return;

Example: Summary for pop



assume(ToS != NULL);

atomic {

}

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

5. rewrite CAS

if (ToS == NULL)

    return;

ToS = ToS.next;

return;

6. rewrite guard

Example: Summary for pop



assume(ToS != NULL);

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

5. rewrite CAS
ToS = ToS.next;

6. rewrite guard}

atomic {

Example: Summary for pop



• easy to compute 
➡ similar for push 

• compact form beneficial for analysis 
(and understandability)

1. make atomic

2. remove noise

3. copy propagation

4. remove noise

5. rewrite CAS

6. rewrite guard

assume(ToS != NULL);

ToS = ToS.next;

}

atomic {

Example: Summary for pop



Insight

learn about an object’s state from shared variables (assume); 
and execute atomically 

➡ no concurrency:  

➡ no interference for summaries needed

Summaries are stateless. 
— SAS’17

Finally an efficient 
interference algorithm!

Y

i

summaryi =
X

i

summaryi



top next
1

CAS(ToS, top, next)

Example: New Interference

2
atomic {
   assume(ToS != NULL);
   ToS = ToS.next;
}

ToS



Soundness

• soundness requires summaries to 

1. capture all possible effects of the implementation 

2. be stateless 

• both can be checked on the fixed point 

1. for each effect check whether some summary can do it 

2. summaries must not rely on uninitialized local variables



Accomplishments

• improved interference  

➡ matching: NP ⟹ not needed 

➡ correlation: exponential ⟹ constant (one) 

➡ interference: quadratic (in fixed-point approximant) ⟹ linear 

• sound approach despite unsound abstraction 

• works for explicit memory (requires ownership transfer, skipped)



classical summaries

Coarse Stack 0.29s 0.03s

Coarse Queue 0.49s 0.05s

Treiber’s stack 1.99s 0.06s

Michael&Scott’s queue 11.0s 0.39s

DGLM queue 9.56s 0.37s

Performance Impact: GC

:10

:10

:33

:28

:25



classical summaries

Coarse Stack 1.89s 0.19s

Coarse Queue 2.34s 0.98s

Treiber’s stack 25.5s 1.64s

Michael&Scott’s queue 11700s 102s

DGLM queue false-positive violation

Performance Impact: MM

:10

:2

:15

:114



Related Work

Key Take Aways:


• Abdulla et al.


• Vafeiadis et al.



Abdulla et al.

• improve precision of interference 

➡ first to make it work for explicit memory management 

➡ without weak ownership 

• increase threads per view to 2 

➡ could restore precision for matching and correlation 

• poor scalability due to increased state space



Vafeiadis et al.

• relies on RGSep (separation logic + rely guarantee) 

• fixed point: 
➡ interference recorded per thread in every step 
➡ applied to others in next iteration 

• corresponds to learning summaries 
➡ no freedom: sound in every step 
➡ linear in fixed point (here: linear in program size) 

• only considered garbage collection



Future Work

• stateful summaries


• go beyond singly-linked objects


• more benchmarks
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