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Dynamic power management of a disk drive
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@ What timeout values achieve the minimal long-run average
power consumption?
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CTMC with parametric alarms (1)

“Ordinary” CTMC CTMC with alarms {a;,...,a,}
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CTMC with parametric alarms (2)

@ In CTMC with parametric alarms {as, ..., a,}, the distributions
associated to {ai,...,a,} are not fixed but parameterized by a
single parameter.

@ Restrictions:

@ At most one alarm is active in each state.
@ Each alarm is set in precisely one state.

@ After fixing the parameters, we obtain a fully stochastic CTMC
with alarms.

@ Can we compute parameter values achieving s-optimal
mean-payoff?
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Computing c-optimal parameter values

1. Given a CTMC with parametric alarms and £ > 0, we compute a
discretization constant x > 0 such that s-optimal parameter
values are among the (finitely many) r-discretized values.

2. We construct a semi-Markov decision process M where the
actions correspond to discretized parameter values. Thus, the
original problem reduces to computing an optimal strategy for M.

3. The set of states of M is small but the number of actions is very
large. We employ a symbolic technique which avoids the explicit
construction of these actions.
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Computing e-optimal parameter values (2)

4 4 4 4 4
new new new new new
C=0—0—0—FSE—"0d"
done A done A done A done done A
1 1 1 1 1
sleep | wake,4 | wake,4 | wake,4 | wake, 4
1

| | 1
OO @G - mG s
new new new new new
2 2 2 2 2

() () (»)
@ @
© @5 N(d), ©(d), €(d)

Antonin Kuéera Mean Payoff in CTMC with Alarms IFIP WG 2.2 2017 6 /10




Computing e-optimal parameter values (3)

@ An optimal for M can be computed by strategy iteration.

@ Each action d is ranked by a function F(d) depending on [1(d),
©(d), and €(d). The goal is to find an action with minimal F(d).

@ We express F(d) analytically, compute its derivative, and consider
only a small set of actions close to the local minima of F(d).

@ Applicable to alarms with Dirac (fixed-delay), uniform, and
Weilbull distributions.
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Experiments (disk drive example)

@ We considered N € {2,4,6,8}, e € {0.1,0.01,0.001,0.0005}.

@ The upper and lower bounds for the timeouts were 0.1 and 10
time units, respectively.

@ The required discretization step ranges from 1072° to 10~ 1°.
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Experiments (disk drive example), cont.
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N | e : .
time [s] | time [s] | degree
0.1 0.15 0.24 46
5 0.01 0.15 0.25 46
0.001 0.16 0.28 53
0.0005 0.16 0.33 53
0.1 0.14 0.25 46
4 0.01 0.16 0.25 46
0.001 0.16 0.28 53
0.0005 0.16 0.33 53
0.1 0.16 0.35 46
6 0.01 0.16 0.35 46
0.001 0.17 0.40 53
0.0005 0.18 0.43 53
0.1 0.19 0.35 46
8 0.01 0.19 0.35 46
0.001 0.20 0.43 53
0.0005 0.22 0.44 53
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Limitations, future work

@ Each alarm has to be set in precisely one state. Hence, we cannot

model systems of concurrently running components. POMPD

techniques might help?

@ Other objectives?

@ Multi-criteria parameter optimizations.
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