Barbara Konig

Universitat Duisburg-Essen

Joint work with Filippo Bonchi (Universita di Pisa)
& Sebastian Kiipper (FernUniversitdt Hagen)

TACAS 2017

Overview

© Motivation

© Weighted Automata

© Up-To Techniques

@ Language Equivalence & Inclusion
© Threshold Problem

@ Conclusion

Motivation

Weighted automata are the quantitative variant of
(non-deterministic) finite automata.

Instead of checking whether a work is in the language (0, 1), they
assign to every word a weight, i.e. an element from a given
semiring.

Applications, for instance in natural language processing.

_ Motivation Weighted Automata Up-To Techniques Language Equivalence & Inclusion Threshold Problem Conclusion
Motivation

Efficient techniques for solving problems on weighted automata:

@ Language equivalence
Are the languages accepted by two given automata equal?

@ Language inclusion
Given two automata, does the first automaton assign to each
word weights smaller (or equal) than the weights of the
second automaton?

@ Threshold/Universality
Is the weight of each word above some given threshold T ?

Use so-called up-to techniques (known from process algebra).
“Up-to” is used in the sense of “modulo”.

s LT U e e A e (B e s (Gl il e e e e
Weighted Automaton over a Semiring

We consider weighted automata over arbitrary semirings:

Tuple (S, ®,®,0,1) where
@ S is the carrier set,

e (S,®,0) is a commutative monoid,

e (S,®,1) is a (commutative) monoid,

@ ® distributes over @ and 0 is an annihilator for ®.

@ Arithmetic semiring (reals): (R, +, -,0,1)
@ Tropical semiring: (No U {oco}, min, 4, 00, 0)
e Distributive lattices: (L,U,M, L, T)

s LT U e e A e (B e s (Gl il e e e e
Weighted Automaton over a Semiring

We consider vectors of the form v: X — S, where X is a (finite)
set.

Given an alphabet ¥, a weighted automaton is a triple (X, o, t)
where

e X is a (finite) set of states

@ 0: X — S is the output function.

o T,: X x X =S, a€ X are transition matrices

Weighted Automaton over a Semiring

1 2
tropical semiring Y ={a} T,= 0 1
00 00

1
0= (4) Initial (column) vector i = (0 oo o0)
1

Weighted Automaton over a Semiring

For a given initial vector /, the weight of a word w = a; ... a, is
(W) =i Tay- - T, -0

where - denotes matrix multiplication with @ and ®.
Intuitively:

e for each path corresponding to w, multiply (®) the weights
@ and add (@) the weights for all paths.

[l(aa) = min{0+1+1+1,0+42+1+10+1+0+4
A—>B—>C A—>C—>A A—>B—>B
o0+..,00+...} =3
—— ——

B—... C—...

s LT U e e A e (B e s (Gl il e e e e
Problems for Weighted Automata

For a given initial vector i, the mapping [/]: £* — S is called the
language of i.

@ Language equivalence
Given two initial vectors i1, iz, does [i1] = [i2] hold?

@ Language inclusion
Given an order C and two initial vectors i1, ip, does [i1] C [2]
hold?

@ Threshold/Universality
Given an initial vector i and T € S, does [i] J T hold?

Weighted Automaton over a Semiring

a, l

For the tropical semiring the order is C=>

The automaton satisfies the threshold 3, i.e., every word has at
most weight 3 (path A— B — --- — B — ().

it W frenen U temtes (ogress B s & eisten el ekt Sz
Problems for Weighted Automata

What is known about these problems?

equivalence inclusion threshold
arithmetic P undecidable undecidable (>)
semiring [Tzeng] [Paz]
tropical undecidable undecidable PSPACE-cmpl.
semiring [Krob] [Almagor, Boker,Kupferman]
distr. PSPACE-cmpl. PSPACE-cmpl. PSPACE-cmpl.
lattices [Kupferman, Lustig]

_ it i ftinein Upa Udinfas Legress Bl e & eisten el ekt G
Up-To Techniques for NFAs

These problems are even PSPACE-complete for NFAs (lattice
{0,1}, order C =<).

Although these are fundamental problems for finite automata,
there have only recently been major advances concerning efficiency:

@ Antichain Algorithm [De Wulf,Doyen,Henzinger,Raskin, '06]
@ Simulation Meets Antichains [Abdulla,Chen,Holik,Vojnar, '10]
@ Up-To Techniques [Bonchi,Pous, '13]

Up-To Techniques for NFAs

Find a bisimulation relation R on sets of states such that
@ 51 RS,: the initial state sets are related
@ Whenever X1 R X, then §,(X1) R 64(X2) for a € X (transfer

property)
(02(X): successors of X under a)

@ Whenever X; R X, then XiNF #0 < XoNF £ 0
(one set is accepting iff the other is accepting)

Up-To Techniques for NFAs

)

{x} —2 \{)I’ a >{T} a ,{x,:y} a \»‘.{y,z} am

_ it i ftinein Upa Udinfas Legress Bl e & eisten el ekt G
Up-To Techniques for NFAs

We can already stop at the pair {x, y}, {u, v, w}, since {x} R{u},
{y} R{v,w}and {x,y} = {x} U{y} {u,v,w} = {v} U{v,w}.

In the algorithm above we can write the transfer property as
@ Whenever X1 R Xa, then §,(X1) f(R) 62(X2)

where f(R) is
@ the closure of R under union or
@ the congruence closure c(R) or

e ¢(RU B) where B is a (pre-computed) bisimulation relation.

This is a so-called up-to technique, which has been studied
extensively in process algebra [Milner,Sangiorgi,Pous]

Up-To Techniques for NFAs

Congruence closure ¢(R): closure of R under equivalence and
union

@ For each pair (Z,Z') € R define two rewriting rules
Z—2zZUZ, 72— ZUuZ.

@ A rewriting rule L — R can be applied to X whenever L C X
and then X ~ X U R (X rewrites to X U R).

e X c(R) Y iff X, Y rewrite to the same normal form.

Example:

{x} R{u} generates rules {x} — {x, u}, {u} — {x,u}

{y} R{v,w} generates rules {y} — {y,v,w}, {v,w} — {y,v,w}
{x v}~ {xyup~ {xy, 0, v, wh

{u7 V? W} ~ {X7 u’ v? W} ~ {X7.y’ u’ v’ W}

_ it i ftinein Upa Udinfas Legress Bl e & eisten el ekt G
Up-To Techniques for Weighted Automata

We adapt up-to techniques to weighted automata over £-monoids.

An ¢-monoid L is a semiring, where the sum (&) is a join
operation (LJ).
Examples: tropical semiring, distributive lattices

vRw v c(R) w
v c(R) w ve(R) v w ¢(R) v
uc(R)v ve(R)w ve(R) w
G o0 R onn EEsEl

vi ¢(R) vi w2 c(R) V5
vilwva ¢(R) v UV

Up-To Techniques for Weighted Automata

We use a rewriting algorithm to decide c(R), which is in general
infinite:

@ For each pair (v,v') € R, define two rewriting rules
vis vV, vV vV,

@ A rewriting rule ¢ — r can be applied to w whenever
s®/fC wforsomes €L and then w~ wls®r.

Better: w ~ w U (£ = w) ® r where
= w=|{xeLl|x®¢LC w} (residuation)

@ v1 ¢(R) vy iff vq, v5 rewrite to the same normal form.

_ it i ftinein Upa Udinfas Legress Bl e & eisten el ekt G
Up-To Techniques for Weighted Automata

Example for the tropical semiring (join LI is min, order C=2>)

R=1(3)- ()
@) (e

e Rule application to v = (%): ¢ — v =3 and

()<t (3o () -)

@ Relation:

Up-To Techniques for Weighted Automata

Prove that
ev~w = ve(R)w.
@ Whenever v c(R) w, v can be rewritten to a vector larger (or
equal) than w.
@ Rewriting is confluent.
@ Rewriting terminates: this holds for

o the tropical semiring
(natural numbers: Dickson’s lemma; reals: more complex
proof)

o distributive lattices, under certain conditions

Language Equivalence for Weighted Automata

HKC (i1, ip) — Language Equivalence Check

(1
(2)
(3)

(3.
(3.
(3.
(3.

(3.

(4)

R is empty; todo is empty;
insert (i,k) into todo;
while todo is not empty do
1) extract (v{,v5) from todo;
2) if (v{,v}) € c(R) then continue;
3) if v-o0#vj-0 then return false ;
4) for all a€ex,

insert (vj-T, v5-T,) into todo;
5) insert (v{,v}) into R;
return ftrue;

HKC: Hopcroft-Karp with Congruence Closure

C LT U e e A e (e g s (e Al o e e e
Language Inclusion for Weighted Automata

The algorithm can be adapted for language inclusion checks:

@ Check v{ -0 [Z vj -0 instead of v{ -0 # v} - 0

e Compute p(R) (precongruence closure instead of congruence

closure)
Remove symmetry rule and replace reflexivity rule by
vC Vv
v p(R) v/

Use a similar rewriting algorithm to decide p(R).

e Additional optimization: replace p(R) by p(RU S) where S is
a pre-computed simulation relation

Language Inclusion for Weighted Automata

HKP’ (i1, i) — Language Inclusion Check

(1) R is empty; todo is empty;
(2) insert (i1,i2) into todo;
(3) while todo is not empty do
(3.1) extract (v{,v5) from todo;
(3.2) if (vj,v5)€p(RUS) then continue;
(3.3) if vj-0ZVvj-0 then return false ;
(3.4) for all acex,

insert (vj-T, v5-T,) into todo;
(3.5) insert (v,v) into R;
(4) return true;

Threshold Problem for Weighted Automata

For the threshold problem we concentrate on the tropical semiring

In order to show that the weights of all words are at most T for a
given automaton:
@ Perform a language inclusion check with the following
automaton, using the up-to technique:

a,0
()5

@ In order to speed up termination replace all weights > T by
oo (abstraction A, this is sound!)

i i ftgnee U temts (e Bt s & s el Pl s
Threshold Problem for Weighted Automata

ABK(/) — Naive Algorithm (Threshold)

(1
(2)
(3)

(3.
(3.
(3.
(3.

(3.

(4)

todo :={i} ;

P:=0 ;

while todo is not empty do

1) extract v from todo ;

2) if ve P then continue ;

3) if v-o«£ T then return false ;

4) for all a€X insert A(v-T,)
into todo ;

5) insert v into P ;

return ftrue ;

ABK: Almagor, Boker, Kupferman

Threshold Problem for Weighted Automata

Example, where we have an exponential gain in the number of
steps with the up-to technique:

Output weight is always 0, transition weight is always 1
Initial weight for x, y is 0, for all other states co

No threshold T is respected (a word of length m has weight m)

Threshold Problem for Weighted Automata

For ABK (naive algorithm), the runtime is exponential:

@ every word w up to length n produces a different weight
vector.

e For w with |w| = m state x; has weight m iff the i-last letter

of the word is a, similarly state y; has weight m iff the i-last
letter is b.

Weights for aab:

x|l fylnlw|y|wnl|. |
3Toc(3[3 o] [3]3

i i ftgnee U temts (e Bt s & s el Pl s
Threshold Problem for Weighted Automata

With HKP’ (up-to technique):
@ we can deduce that x; is simulated by x and y; is simulated
by y.
@ With the rewriting rules every co-entry in x;, y; is replaced
by m.

The above vector rewrites to:

x| |5 | xs | x| ..

X
373333 |

lylwnlvlwn|wl|. .. |
303333 |

All vectors for words of length m are in the precongruence relation:
we keep only one representative.

Only linearly many words are considered!

i i ftgnee U temts (e Bt s & s el Pl s
Runtime Results on Randomly Generated Automata

We compared the following algorithms

@ HKPj: language inclusion check (up-to) with abstraction and
simulation relation

@ HKP): language inclusion check (up-to) with abstraction,
without simulation relation

@ ABK: naive threshold algorithm

on randomly generated automata

@ Alphabet size between 1 and 5
@ Probability of an edge with weight unequal co: 90%

e If weight unequal co: random weight from {0, ..., 10}

i i ftgnee U temts (e Bt s & s el Pl s
Runtime Results on Randomly Generated Automata

Threshold was respected in 14% of the cases.

We measured runtimes and list the 50%, 90% and 99% percentiles:

@ 50% percentile: median

@ 90% percentile: 90% of the runs were faster and 10% slower
than the given time

@ 99% percentile: analogously

We tested 1000 automata for each class (| X], T)

i i ftgnee U temts (e Bt s & s el Pl s
Runtime Results on Randomly Generated Automata

Runtime (millisec.) Size of relation
(X[, T) | algo || 50% 90% 99% || 50% | 90% | 99%
(3,20) | HKP] 6 65 393 18 70 | 174
HKP4 4 64 466 18 71 192
ABK 5 79 315 55 364 825
(6,20) | HKP; 239 7541 59922 111 589 1681
HKB4 234 7613 60360 111 589 | 1681

ABK 253 16240 103804 702 6140 | 14126
(9,20) | HKP; 3885 168826 874259 407 2347 5086
HKP4 3838 168947 872647 407 2347 5086
ABK 1744 301253 | 1617813 || 2171 | 22713 | 48735
(12,15) | HKP, 5127 363530 | 1971541 423 3001 6743
HKP4 5010 362908 | 1968865 423 3001 6743
ABK 1418 509455 | 2349335 || 1672 | 27225 | 55627
(12,20) | HKP; || 15101 789324 | 3622374 744 4489 9027
HKRy || 15013 787119 | 3623393 744 4489 9027
ABK 4169 | 1385929 | 4773543 || 3297 | 43756 | 80712

i i ftgnee U temts (e Bt s & s el Pl s
Runtime Results on Randomly Generated Automata

Observations:

@ The up-to techniques have an advantage for the higher
percentiles (90%, 99%), the naive technique is better for the
lower percentiles (50%).

@ The up-to techniques always shrink the relation substantially,
the reductions in run-time are less substantial (overhead!).

@ The use of simulation does not help for the randomly
generated automata (since simulation relations are quite
small).

On the other hand they hardly slow down the runtime.

~ Motivation Weighted Automata Up-To Techniques Language Equivalence & Inclusion Threshold Problem Conclusion
Conclusion

Related Work

@ Some existing algorithms for language equivalence for
weighted automata work up-to linear combinations
[Sakarovitch], [Kiefer et al.], but not up-to congruence

e For fields (rings): (v1,v2) € c(R) iff vi — v» is in the subspace
(submodule) generated by {wy — wy | (w1, w) € R}

@ Few papers on language inclusion [Urabe,Hasuo]

@ Up-to techniques for weighted automata have already been
studied in a coalgebraic setting (abstract categorical

framework) [Bonchi et al.], but without algorithms for deciding
up-to congruence and without efficiency considerations

Conclusion

@ Find more efficient algorithms for the congruence check
(rewriting algorithm) and the computation of the simulation
relation

@ More runtime results (with automata arising from case
studies), benchmarks?

@ Further case studies: distributive lattices

	Motivation
	Weighted Automata
	Up-To Techniques
	Language Equivalence & Inclusion
	Threshold Problem
	Conclusion

