On Higher-Order Program Verification and Two Notions of Higher-Order Model Checking

Naoki Kobayashi University of Tokyo

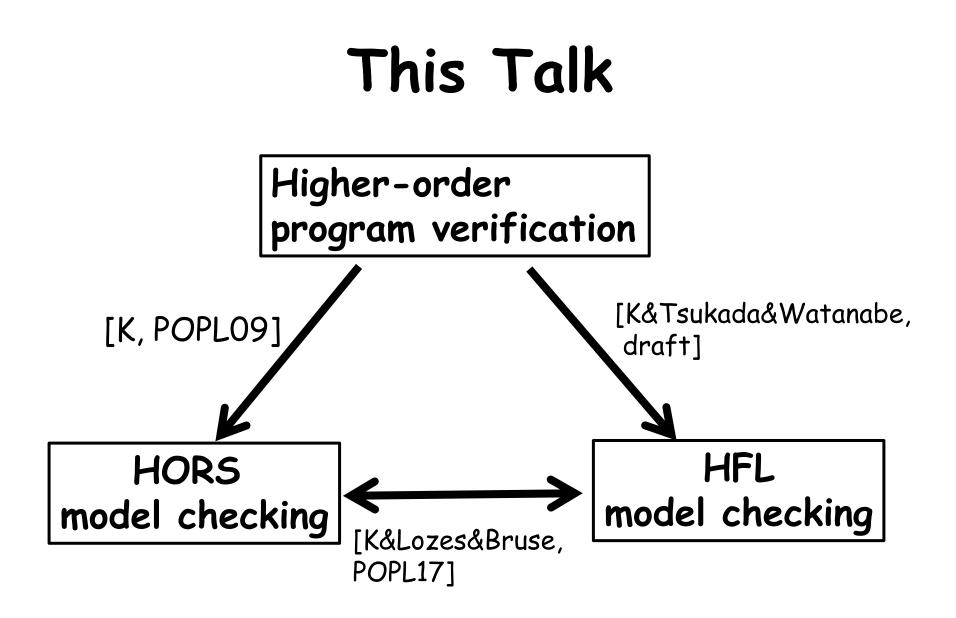
Summaries of papers from POPL09, POPL17 (joint work with Etienne Lozes, Florian Bruse), and more recent work (joint work with Takeshi Tsukada, and Keiichi Watanabe)

Models	Logic
finite state systems	modal μ-calculus

	Models	Logic	
finite state model checking	finite state systems	modal μ-calculus	
HORS model checking [Knapik+ 01; Ong 06]	higher-order recursion schemes (HORS)	modal µ-calculus	
Useful for modeling a certain class of infinite state systems (such as higher-order functional programs)			

	Models	Logic
finite state model checking	finite state systems	modal µ-calculus
HORS model checking [Knapik+ 01; Ong 06]	higher-order recursion schemes (HORS)	modal µ-calculus
HFL model checking [Viswanathan& Viswanathan 04]	finite state systems Useful for describing non-regular properties	

	pplied to verification o higher-order programs [K09][K+11]	
HORS model checking [Knapik+ 01; Ong 06]	higher-order recursion schemes (HORS)	modal µ-calculus
HFL model checking [Viswanathana Viswanathar	finite state systems	higher-order modal fixpoint logic (HFL)
veri	fication of concurrent ems [VV 04][Lange+ 14]	



Outline

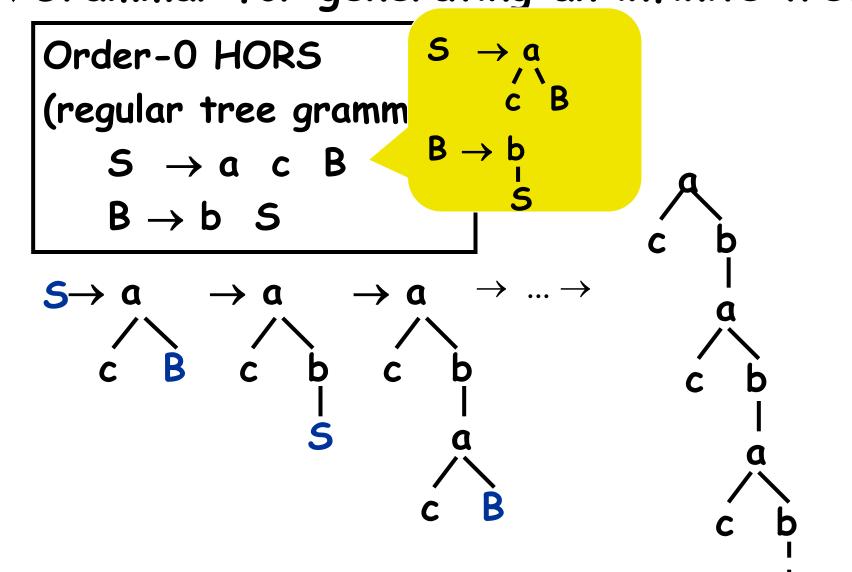
- Reviews of HORS model checking and HFL model checking
 - HORS model checking
 - HFL model checking
- From program verification to HORS model checking
- Conversion between HORS/HFL model checking
- From program verification to HFL model checking
- Conclusion

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

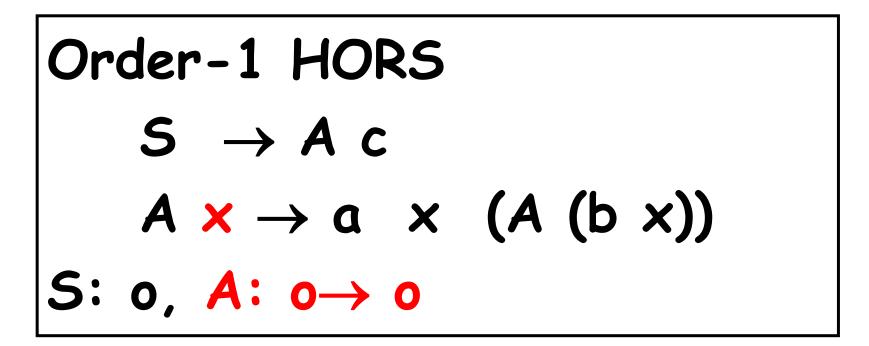
Order-0 HORS
$$S \rightarrow a$$
(regular tree grammar) $C B$ $S \rightarrow a$ $B \rightarrow b$ $B \rightarrow b$ S

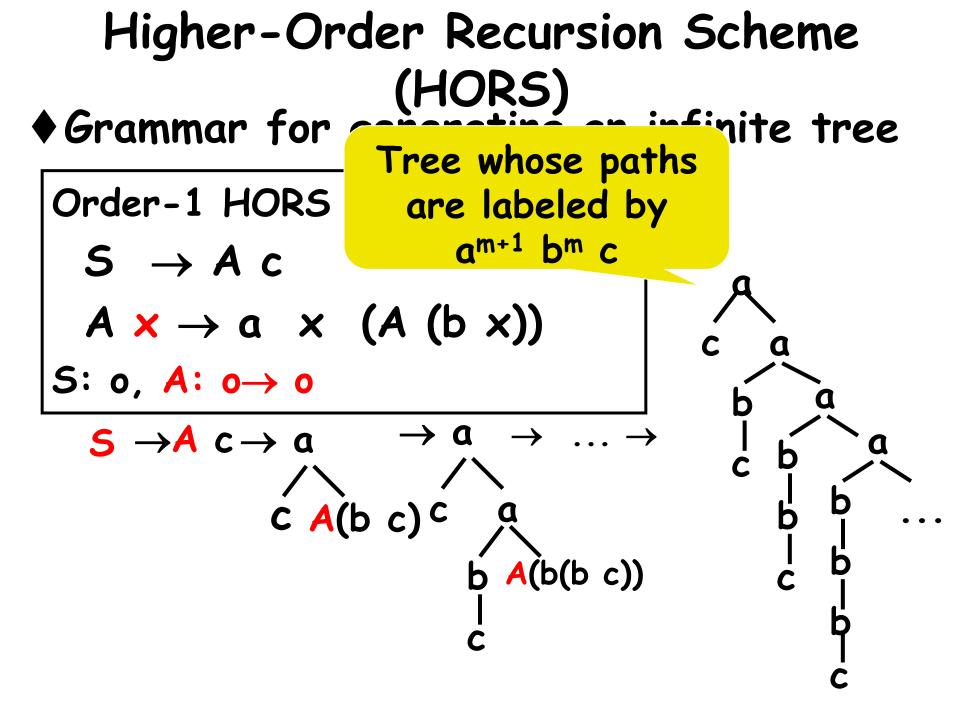
Higher-Order Recursion Scheme (HORS) Grammar for generating an infinite tree



Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree





Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Order-1 HORS $S \rightarrow A c$ $A \times \rightarrow a \times (A (b \times))$ S: o, A: o \rightarrow o HORS \approx Call-by-name simply-typed λ -calculus recursion, tree constructors

HORS Model Checking

Given

G: HORS

 A: alternating parity tree automaton (APT) (a formula of modal μ-calculus or MSO), does A accept Tree(G)?

e.g.

- Does every finite path of Tree(G) end with "c"?

p(X)

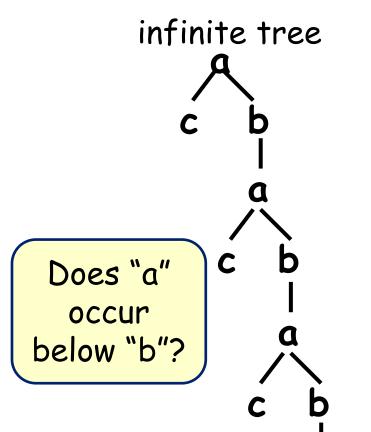
- Does "a" occur below "b" in Tree(G)?

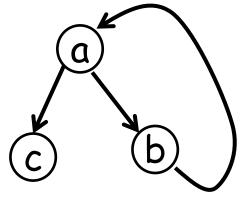
k-EXPTIME-complete [Ong, LICSO6] k (for order-k HORS) but practical algorithms exist

HORS Model Checking as Generalization of Finite State/Pushdown Model Checking

♦ order-0 \approx finite state model checking ♦ order-1 \approx pushdown model checking

 \approx

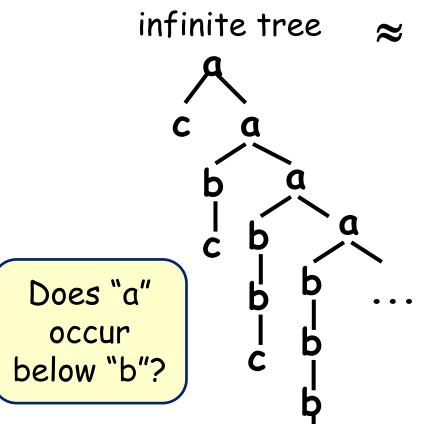


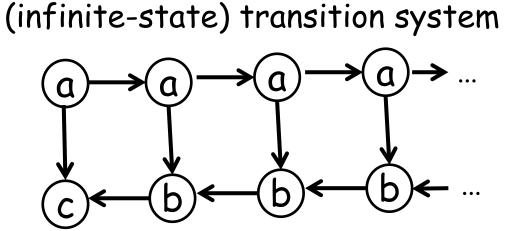


Is there a transition sequence in which "a" occurs after "b"?

HORS Model Checking as Generalization of Finite State/Pushdown Model Checking

♦ order-0 \approx finite state model checking ♦ order-1 \approx pushdown model checking





Is there a transition sequence in which "a" occurs after "b"?

Outline

- Reviews of HORS model checking and HFL model checking
 - HORS model checking
 - HFL model checking
- From program verification to HORS model checking
- Conversion between HORS/HFL model checking
- From program verification to HFL model checking
- Conclusion

Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]

- \blacklozenge Higher-order extension of the modal $\mu\text{-calculus}$
 - ϕ ::= true

Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]

- \blacklozenge Higher-order extension of the modal $\mu\text{-calculus}$
 - ϕ ::= true
 - $\varphi_1 \land \varphi_2$ $\varphi_1 \lor \varphi_2$ φ must hold after a **[α]**φ ϕ may hold after a **<α>**φ predicate variable X μ**Χ^κ.**φ least fixpoint ν**Χ^κ.**φ greatest fixpoint λ**Χ**^κ. φ (higher-order) predicate application $\varphi_1 \varphi_2$ $\kappa ::= \bullet \mid \kappa_1 \rightarrow \kappa_2$

Selected Typing Rules for HFL

 $\Gamma \vdash \mathsf{true:} \bullet$

$$\Gamma \vdash \varphi : \bullet \qquad \Gamma \vdash \psi : \bullet$$

Г, Х:к ⊢Х:к

$$\Gamma \vdash \lambda X. \varphi \colon \kappa_1 \to \kappa_2$$

$$\frac{\Gamma \vdash \varphi \colon \kappa_1 \to \kappa_2 \quad \Gamma \vdash \psi \colon \kappa_1}{\Gamma \vdash \varphi \: \psi \colon \kappa_2}$$

Semantics

 $[\phi]_{\tau}$: the set of states that satisfy ϕ $L \models \phi \Leftrightarrow s_{init} \in [\phi]_{\emptyset}$ (s_{init}: initial state of L) $[\mathsf{true}]_{\mathsf{T}} = \mathsf{States} \qquad [\varphi \land \psi]_{\mathsf{T}} = [\varphi]_{\mathsf{T}} \land [\psi]_{\mathsf{T}}$ $[\phi \lor \psi]_T = [\phi]_T \cup [\psi]_T$ $[[\alpha] \phi]_{T} = \{ s \mid \forall t. (s \rightarrow_{\alpha} t \text{ implies } t \in [\phi]_{I}) \}$ $[\langle \alpha \rangle \phi]_{I} = \{ s \mid \exists t.(s \rightarrow_{\alpha} t \text{ and } t \in [\phi]_{I}) \}$ $[\mu X^{\kappa}.\phi]_{I} = \mathsf{lfp}(\lambda x \in [\kappa].[\phi]_{I\{X=x\}})$ $[vX^{\kappa}.\phi]_{I} = gfp(\lambda x \in [\kappa].[\phi]_{I\{X=x\}})$ [•] = 2^{States} $[\kappa_1 \rightarrow \kappa_2] = \{ f \in [\kappa_1] \rightarrow [\kappa_2] \\ | f: monotonic \}$ $[\lambda X^{\kappa}.\phi]_{T} = \lambda X \in [\kappa].[\phi]_{I\{X=x\}}$ $[\phi \ \psi]_{I} = [\phi]_{I} [\psi]_{I} \qquad [X]_{T} = I(X)$

Example

- $(\mu F^{\bullet \rightarrow \bullet} . \lambda X . \lambda Y . (X \land Y) \lor F (\langle a \rangle X) (\langle b \rangle Y)) P Q$
- = $(P \land Q) \lor$ $(\mu F^{\bullet \rightarrow \bullet} \land X \land \lambda Y \land (X \land Y) \lor$ $F(\langle a \rangle X)(\langle b \rangle Y)) (\langle a \rangle P)(\langle b \rangle Q)$
- = (P∧Q) ∨ (<a>P∧Q) ∨ (<a><a>P∧Q) ∨ ...

For some n, $\langle a \rangle^n P$ and $\langle b \rangle^n Q$ hold bⁿ

an

HFL Model Checking

Given

- L: (finite-state) labeled transition system
- φ: HFL formula,
- does L satisfy $\phi?$

e.g.
$$L \models \phi$$
 for:

L:

φ: (μF.λX.λY. (X∧Y) ∨ F (<a>X) (Y)) (<c>true) (<d>true)

HES (Hierarchical Equation Systems) Representation of HFL Formulas

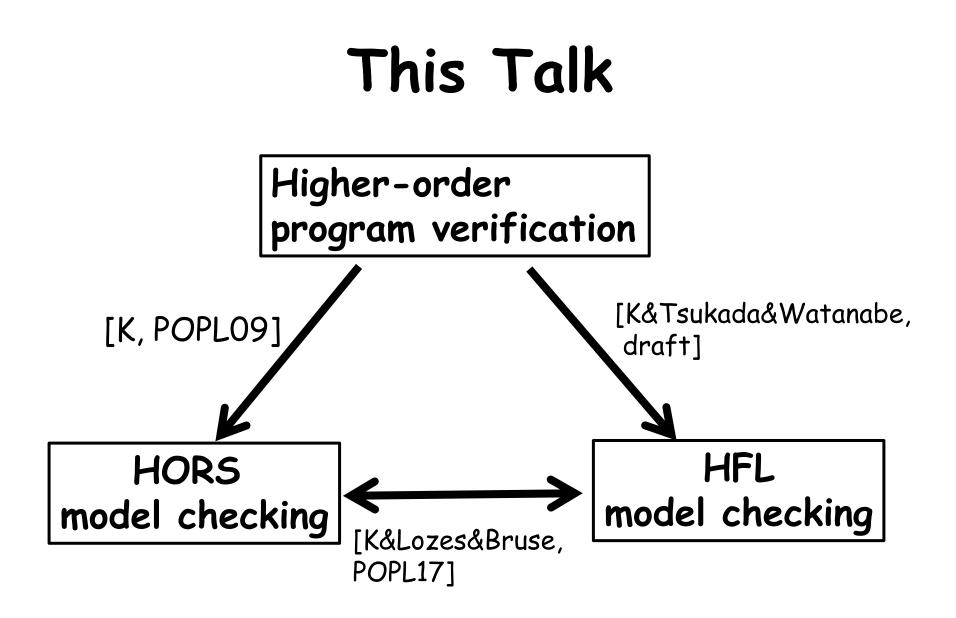
$$X_1 =_{\alpha 1} \varphi_1; \ldots; X_n =_{\alpha n} \varphi_n$$
$$(\alpha_i \in \{\mu, \nu\})$$

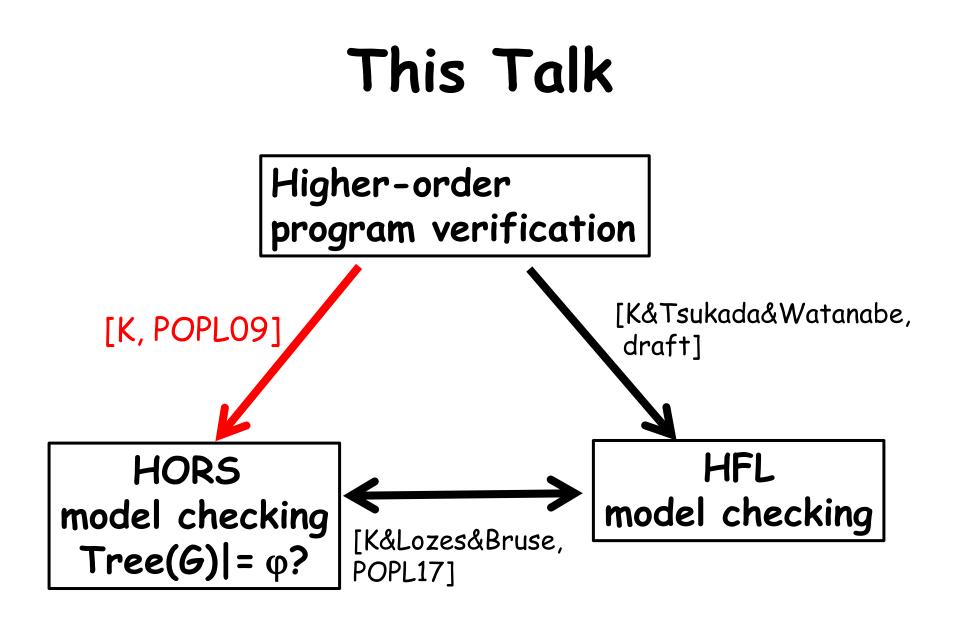
Example: HFL: vX.µY.(<a>X v Y) (there exists a path (b*a)⁽¹⁾) HES: X=_v Y; Y=_µ <a>X v Y

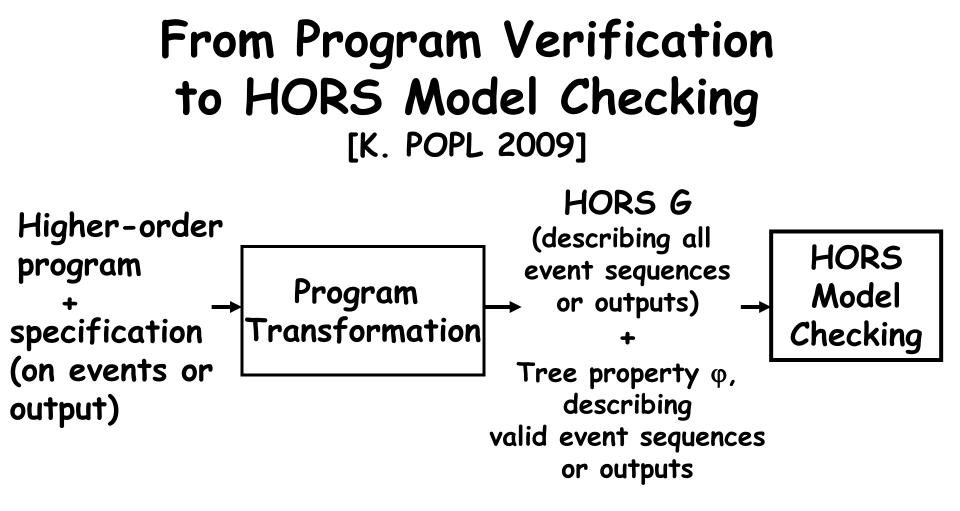
HORS vs HFL model checking

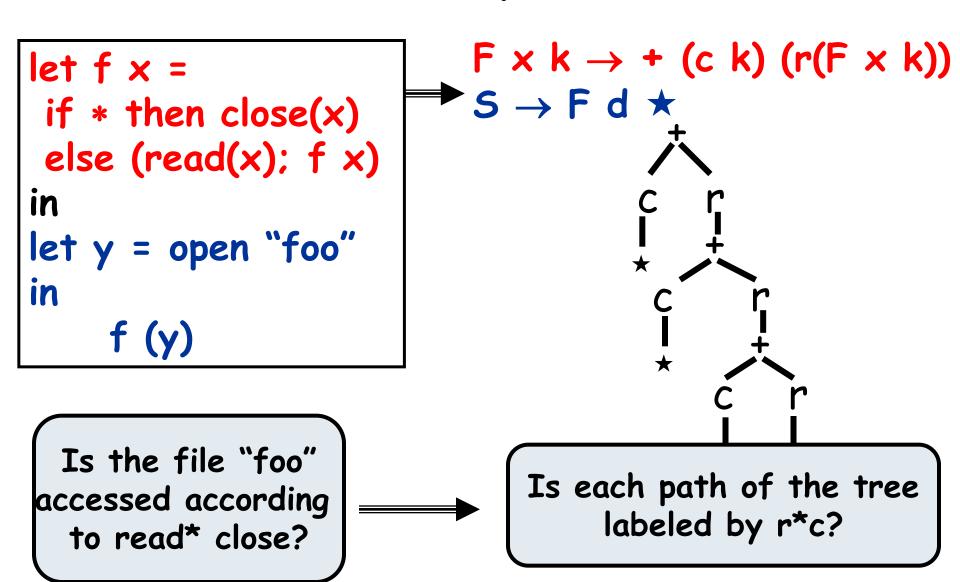
	Model	Spec.	complexity	Applications
HORS model checking	HORS	APT	k-EXPTIME complete (for order-k HORS)	Automated verification of functional programs [K 09][K+11]
HFL model checking	LTS	HFL	k-EXPTIME complete (for order-k HFL)	Assume-guarantee reasoning [VV 04] Process equivalence checking [Lange+ 14]

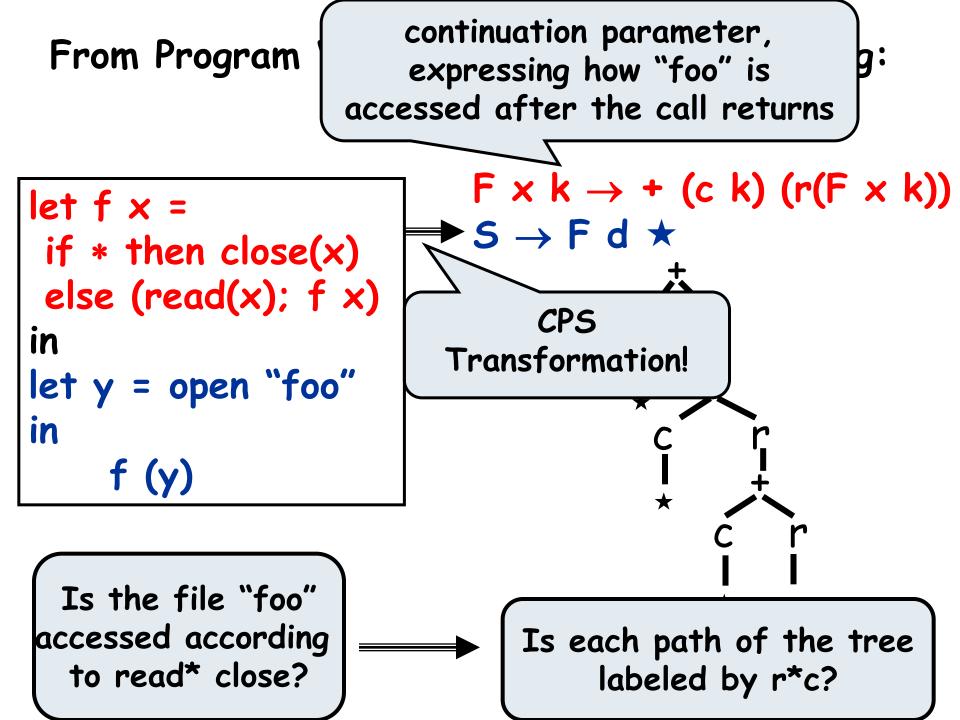
APT: alternating parity tree automaton LTS: finite-state labeled transition system

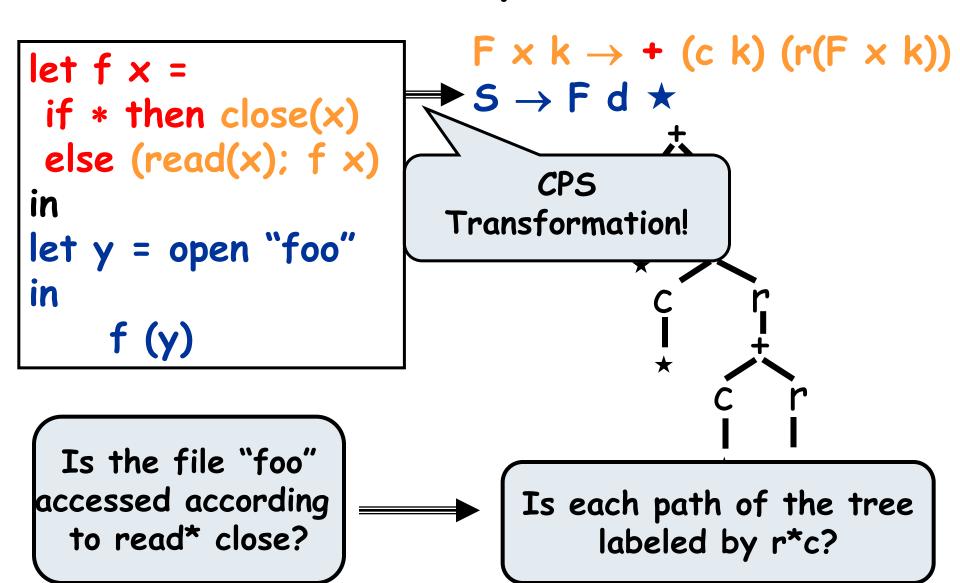


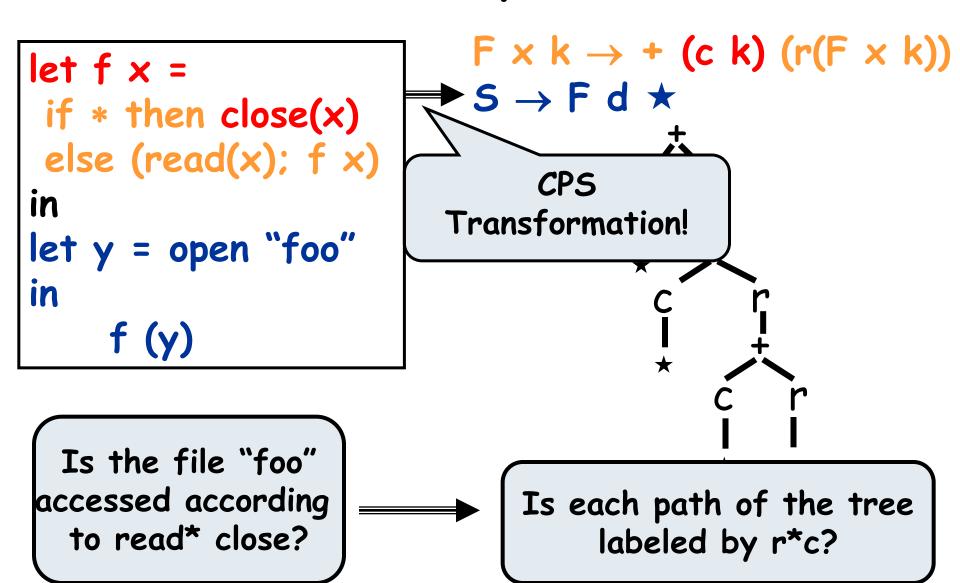


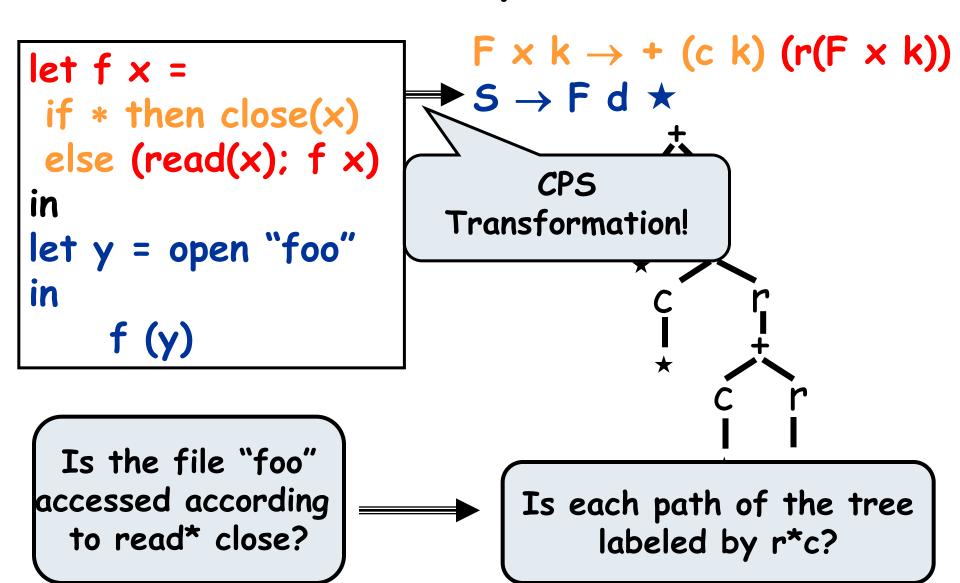


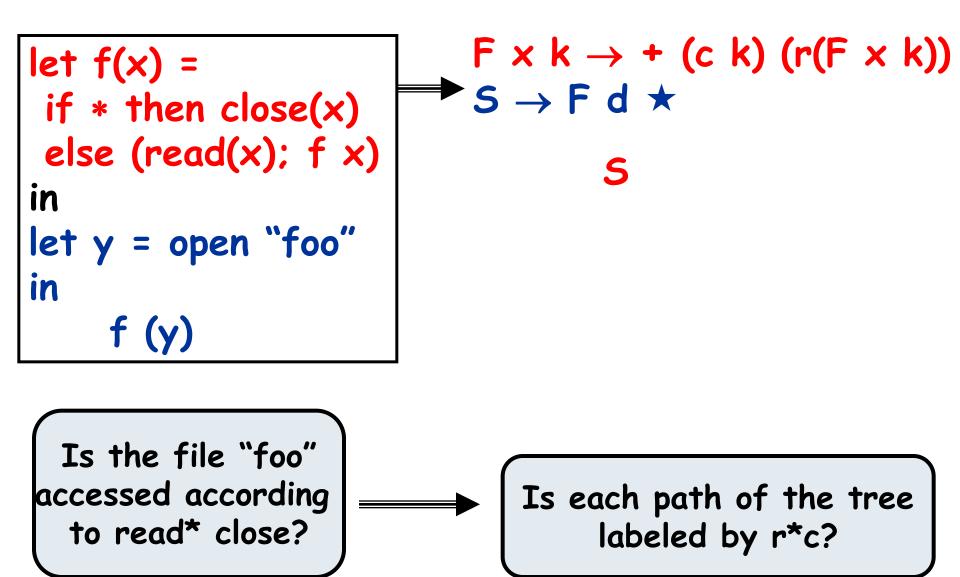


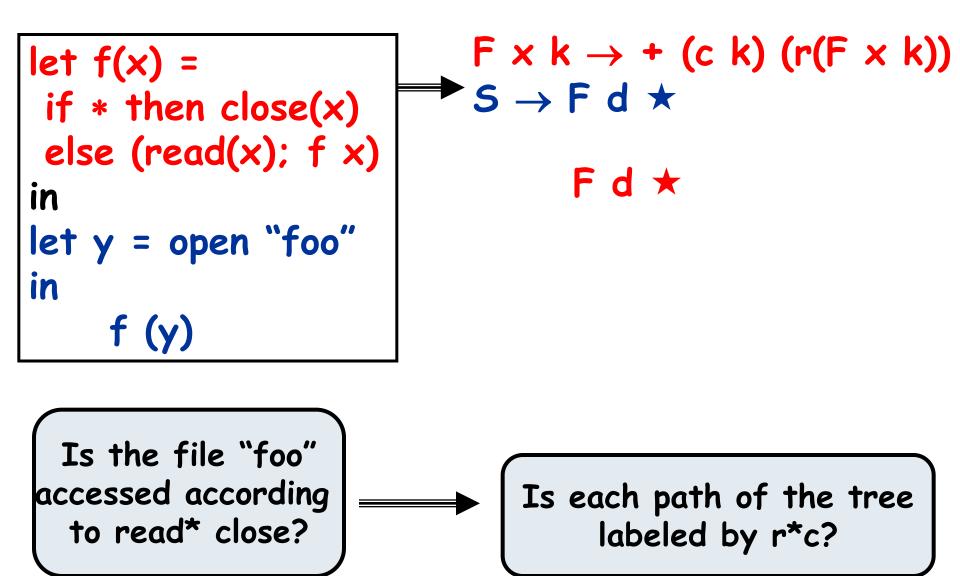


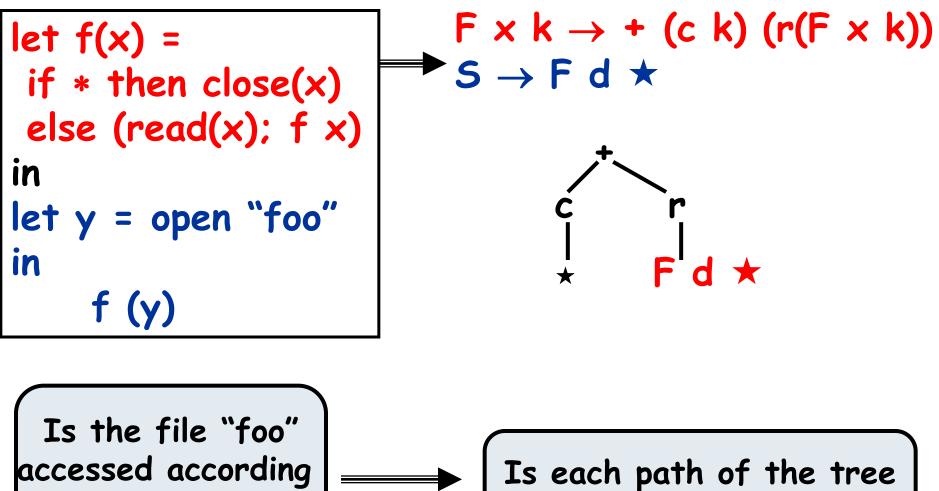






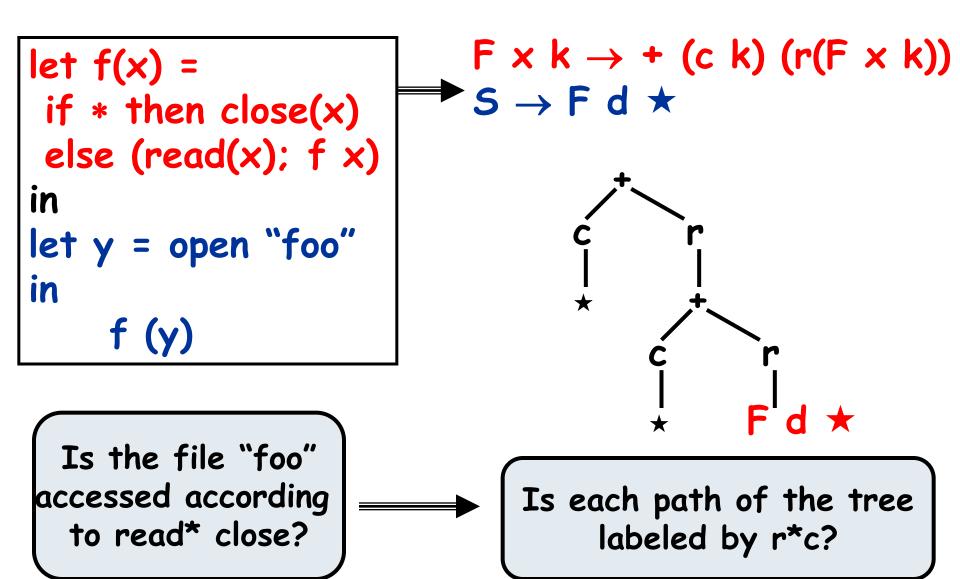




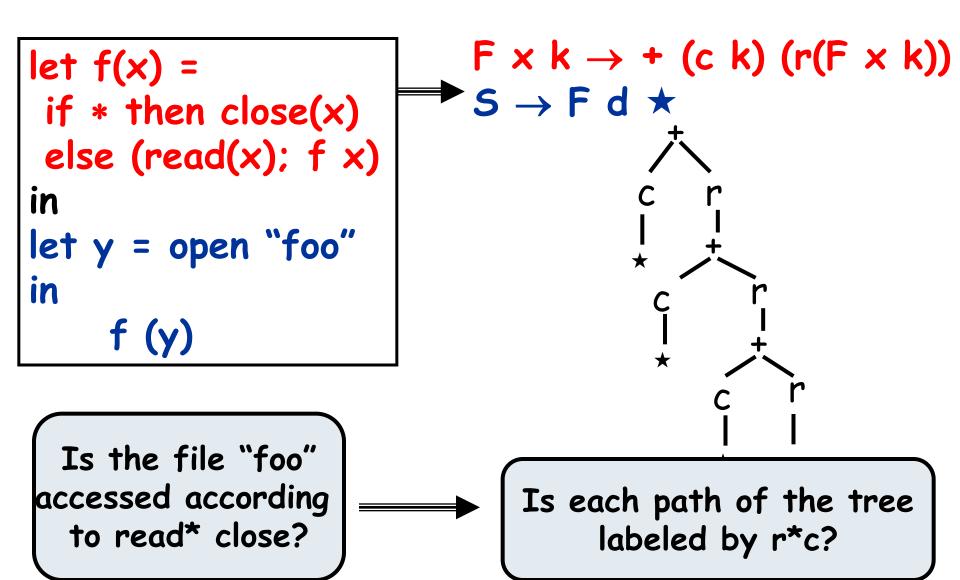


labeled by r*c?

accessed according to read* close?

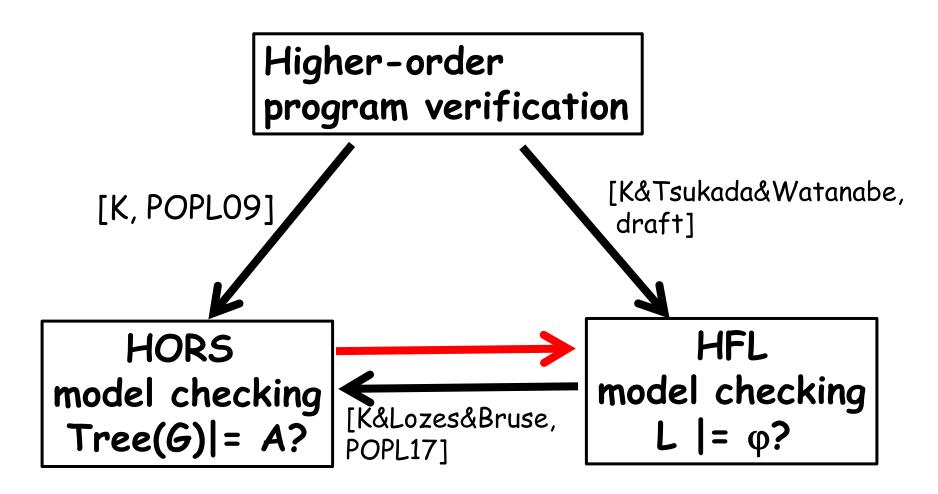


From Program Verification to Model Checking: Example



Tool demonstration: MoCHi [K&Sato&Unno, 2011] (a software model checker for a subset of functional programming language OCaml)

HORS vs HFL model checking



From HORS to HFL model checking

- Input:
 - HORS G
 - Parity tree automaton A (with largest priority p)
- ♦ Output:
 - LTS LA
 - HFL formula $\phi_{G,p}$

such that Tree(G) $\models A$ iff $L_A \models \phi_{G,p}$ Intuition:

- L_A simulates the transitions of A
- $\phi_{G,p}$ describes "L_A has transitions corresponding to an accepting run of A over Tree(G)"

From HORS to HFL model checking

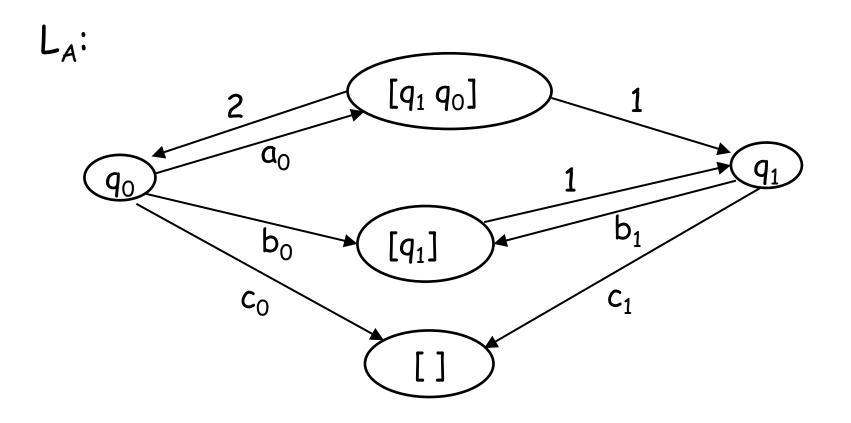
- Input:
 - HORS G
 - Parity tree automaton A (with largest priority p)
- ♦ Output:
 - LTS LA
 - HFL formula $\phi_{G,p}$

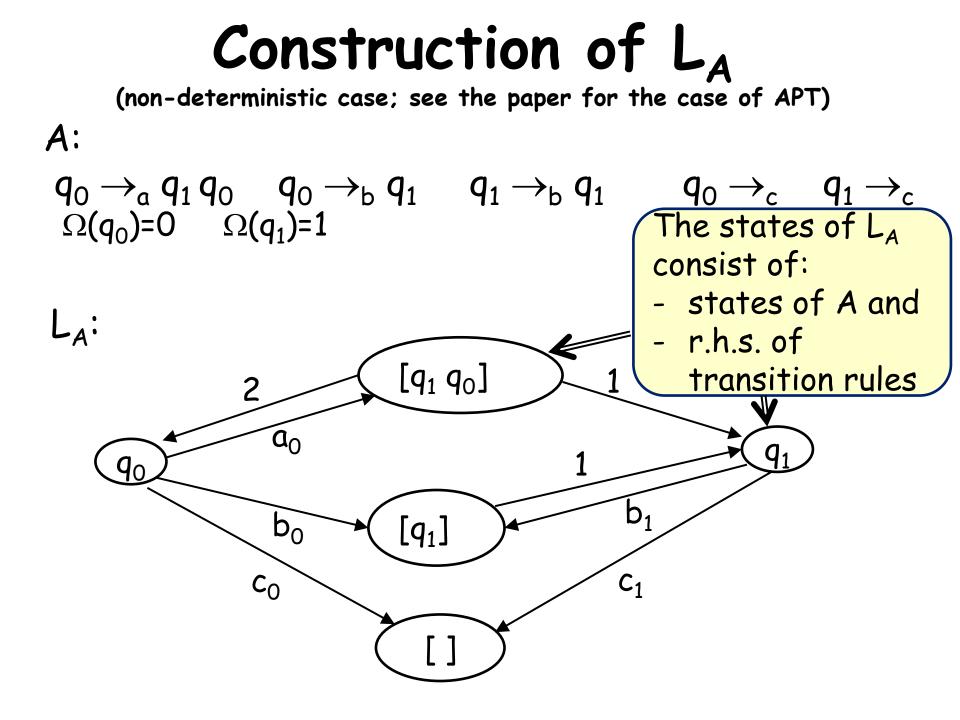
such that Tree(G) $\models A$ iff $L_A \models \phi_{G,p}$ Intuition:

- L_A simulates the transitions of A
- $\phi_{G,p}$ describes "L_A has transitions corresponding to an accepting run of A over Tree(G)"

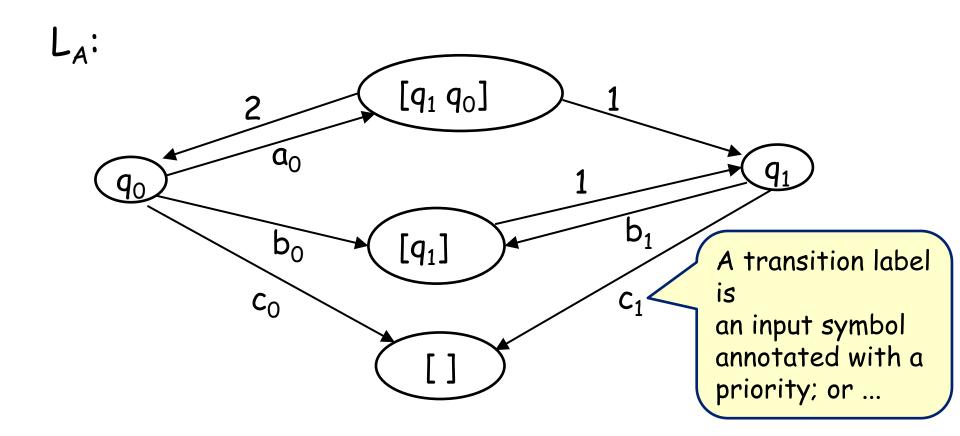
Construction of L_A (non-deterministic case; see the paper for the case of APT) A:

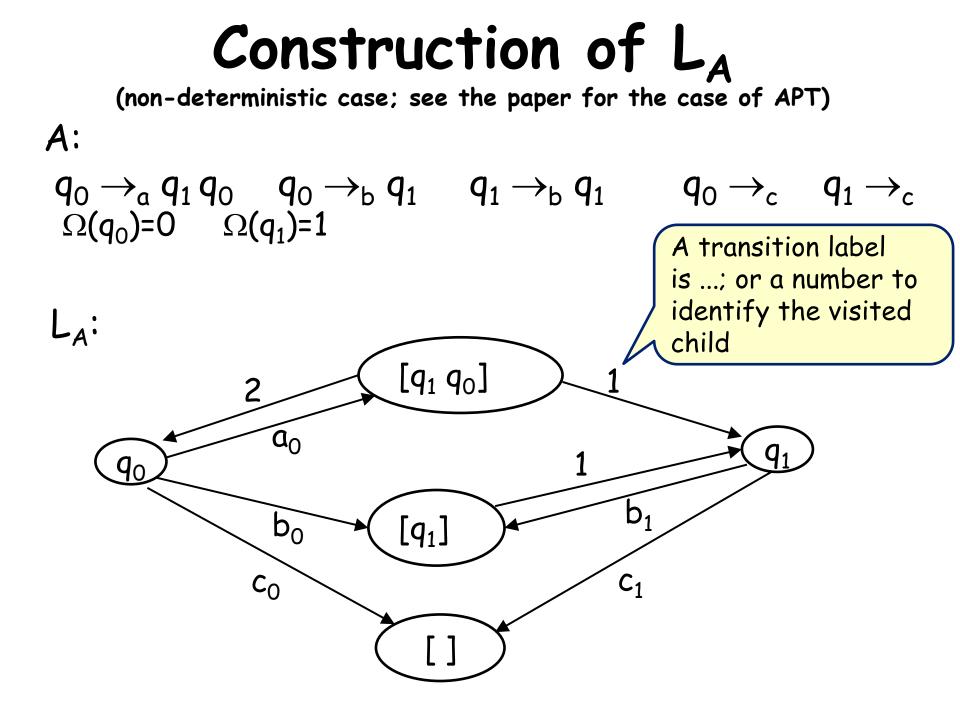
 $\begin{array}{cccc} q_0 \rightarrow_a q_1 q_0 & q_0 \rightarrow_b q_1 & q_1 \rightarrow_b q_1 & q_0 \rightarrow_c & q_1 \rightarrow_c \\ \Omega(q_0) = 0 & \Omega(q_1) = 1 \end{array}$





Construction of L_A (non-deterministic case; see the paper for the case of APT) A: $q_0 \rightarrow_a q_1 q_0 \quad q_0 \rightarrow_b q_1 \quad q_1 \rightarrow_b q_1 \quad q_0 \rightarrow_c \quad q_1 \rightarrow_c$ $\Omega(q_0)=0 \quad \Omega(q_1)=1$





Outline

- Reviews of HORS model checking and HFL model checking
- From HORS to HFL model checking
 - construction of L_A
 - construction of $\varphi_{G,p}$
 - case p=0
 - general case
- From HFL to HORS model checking
- Type system for HFL model checking
- Conclusion

From trees to HFL formulas

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

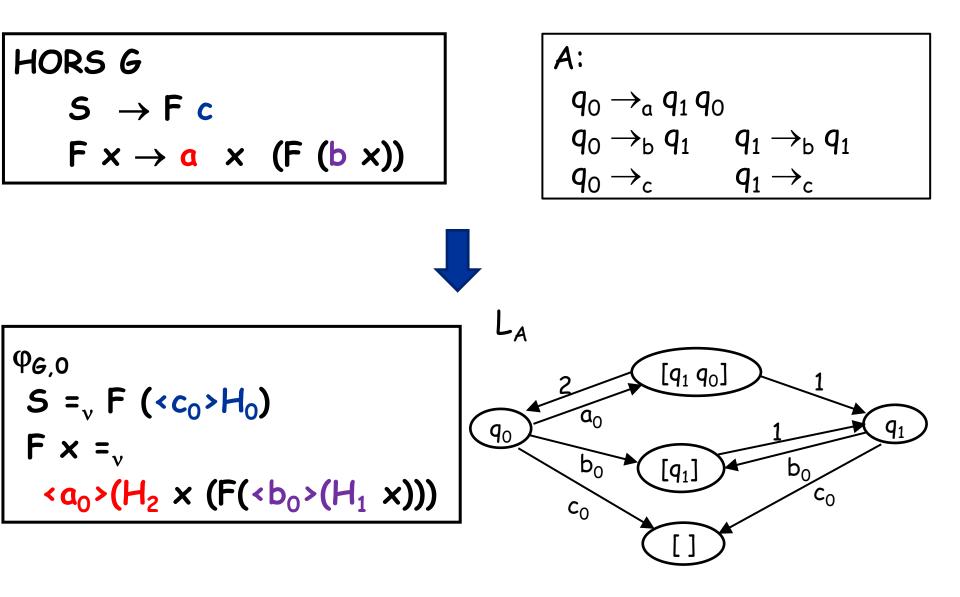
 $\varphi_a c (b c) =$ $\langle a_0 \rangle$ "can visit 1st and 2nd children with states satisfying φ_c and φ_{bc} respectively" = $\langle a_0 \rangle (\langle 1 \rangle \phi_c \land \langle 2 \rangle \phi_b_c)$ $= \langle a_0 \rangle (H_2 \phi_c \phi_b c)$ $[q_1 q_0]$ \mathbf{a}_{0} \mathbf{q}_0 b_0 b_0 $[q_1]$ $(H_n X_1 \dots X_n \stackrel{\text{def}}{=} < 1 > X_1 \land \dots < n > X_n)$ c_0 **c**₀ 3

From trees to HFL formulas

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

 $\varphi_a c (b c) =$ $\langle a_0 \rangle$ "can visit 1st and 2nd children with states satisfying φ_c and φ_{bc} respectively" = $\langle a_0 \rangle (\langle 1 \rangle \phi_c \land \langle 2 \rangle \phi_b \rangle)$ = $\langle a_0 \rangle (H_2 \phi_c \phi_{bc})$ $= \langle a_0 \rangle (H_2 (\langle c_0 \rangle H_0))$ $[q_1 q_0]$ $(< b_0 > H_1 (< c_0 > H_0)))$ \mathbf{a}_0 **q**0 b_0 b_0 $[q_1]$ $(H_n X_1 \dots X_n^{def} < 1 > X_1 \land \dots < n > X_n)$ C_{\cap} **c**₀ 3

From HORS to HFL



Outline

- Reviews of HORS model checking and HFL model checking
- From HORS to HFL model checking
 - construction of L_A
 - construction of $\varphi_{G,p}$
 - case p=0
 - general case
- From HFL to HORS model checking
- Type system for HFL model checking
- Conclusion

Difference from the special case

Replicate each non-terminal/argument for each priority (to translate parity condition to a proper nesting of least/greatest fixpoints)

HORS G:
$$S \rightarrow F c$$

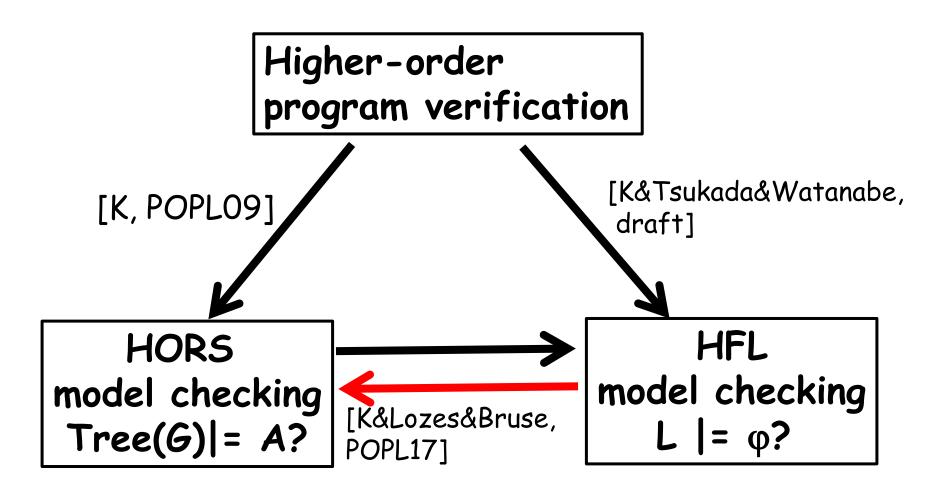
 $F \times \rightarrow a \times (F (b \times))$
HFL $\varphi_{G,1}$
 $S^{1} =_{\mu} F^{0} (\langle c_{0} \rangle H_{0}) (\langle c_{1} \rangle H_{0});$
 $F^{1} \times^{0} \times^{1} =_{\mu} \langle a_{0} \rangle (H_{2} \times^{1} \times^{1} (F^{0}(\langle b_{1} \rangle (H_{1} \times^{1} \times^{1}))) (F^{1}(\langle b_{1} \rangle (H_{1} \times^{1} \times^{1}));$
 $S^{0} =_{\nu} F^{0} (\langle c_{0} \rangle H_{0}) (\langle c_{1} \rangle (H_{0});$
 $F^{0} \times^{0} \times^{1} =_{\nu} ...$

Correctness of Translation

Theorem: Tree(G) |= A if and only if L_A |= φ_{G,p}

order(L_A)=order(G) | L_A | is polynomial in |A| | $\varphi_{G,p}$ | is polynomial in |G|, p

HORS vs HFL model checking



From HFL to HORS model checking

- Input:
 - LTS L
 - HFL formula $\boldsymbol{\phi}$
- ♦ Output:
 - HORS $G_{\phi,c}$
 - APT AL

such that L $\models \phi$ iff $\textbf{G}_{\phi,c} \models \textbf{A}_L$ for sufficiently large c Intuition:

- $G_{\phi,c}$ generates tree representation of the formula equivalent to ϕ , obtained by unfolding fixpoint formulas sufficiently many times
- A_L accepts trees representing valid formulas

HFL-to-HORS Translation: Overview

- $F X =_{v} \varphi$
 - Remove fixpoint operators by finite unfoldings (cf. Kleene fixpoint theorem)
- $F^{(c)} X = [F^{(c-1)}/F]\phi ; ...; F^{(1)} X = [F^{(0)}/F]\phi; F^{(0)} X = true$

Convert it to HORS, which generates the tree representation of the formula

$F^{(c)} X \rightarrow [F^{(c-1)}/F] \varphi'; \dots; F^{(1)} X \rightarrow [F^{(0)}/F] \varphi'; F^{(0)} X \rightarrow true$

Parameterize F by a number, and implement numbers (up to k^{n}_{2}) as functions (cf. [Jones01])

F m X \rightarrow if (Zero? m) true ([F (m-1)/F] ϕ ')

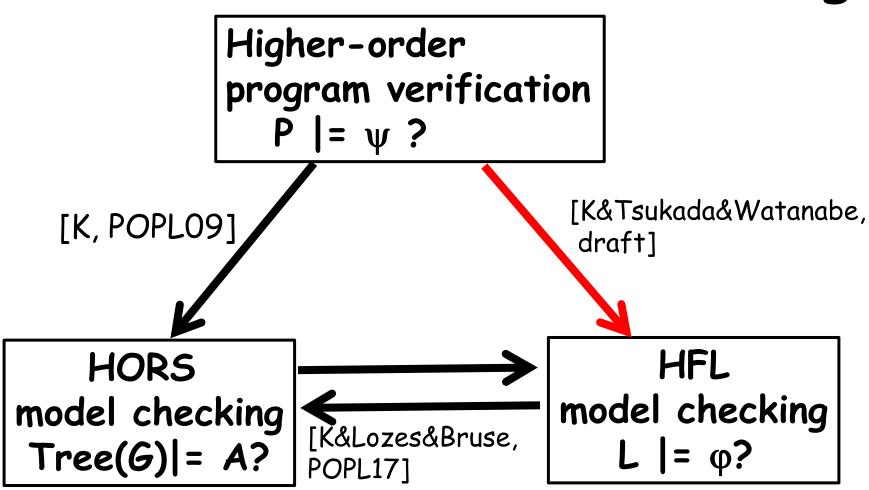
Correctness of Translation

♦ Theorem:

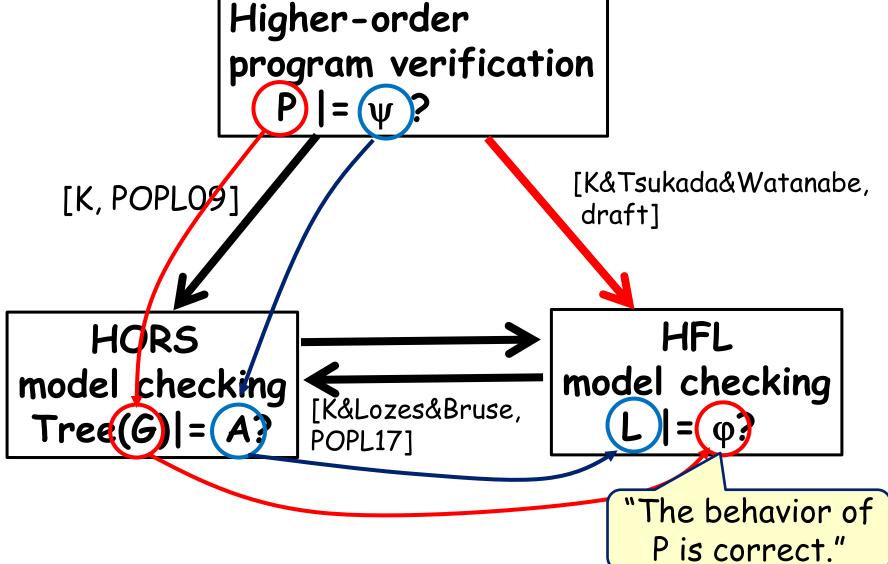
L |=
$$\varphi$$

if and only if
 $G_{\varphi,|L|}$ |= A_L

HORS vs HFL model checking

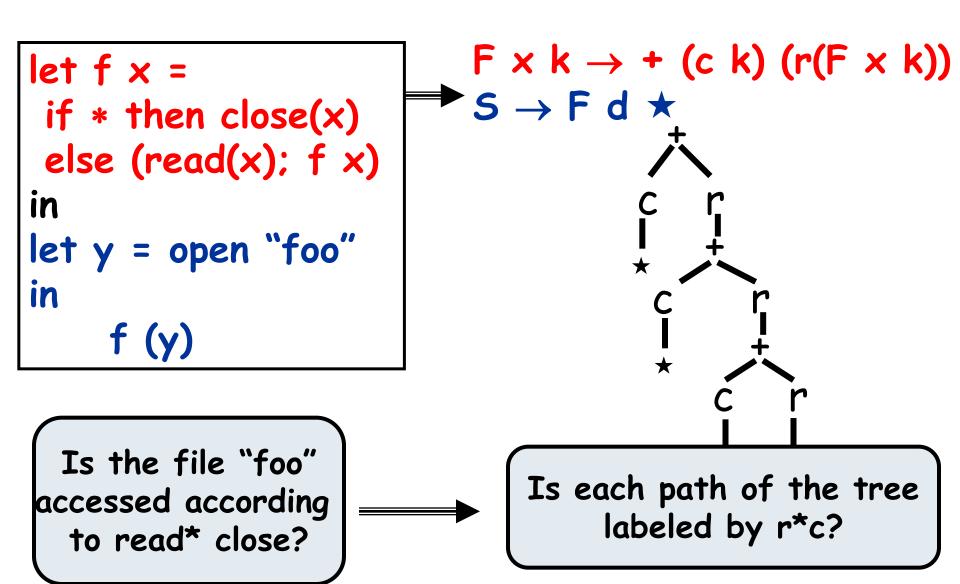


Higher-order

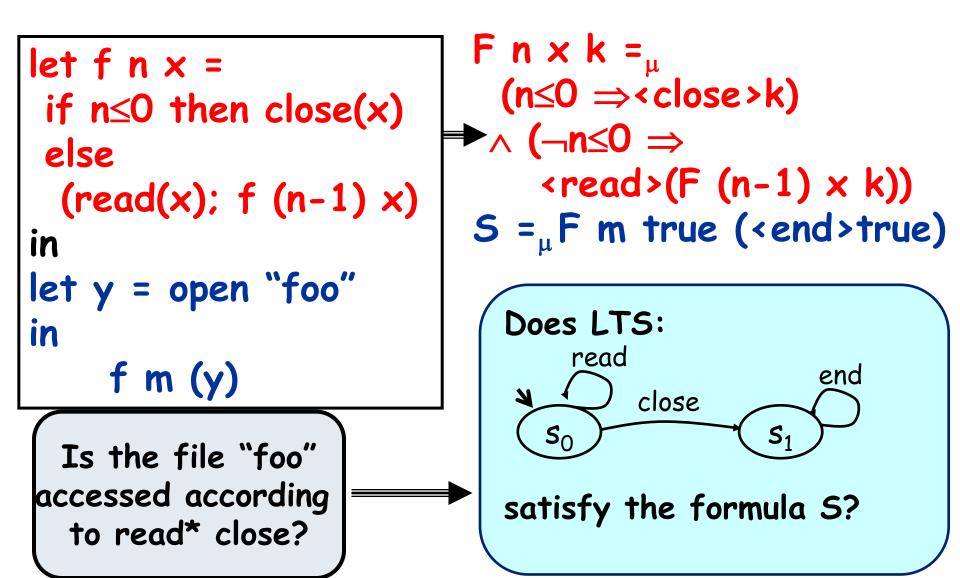


From Program Verification to HFL Model Checking: Example F x k =, <close>k let f x = \wedge (<read>(F x k)) if * then close(x) S = F true (<end>true) else (read(x); f x) in let y = open "foo" in Does LTS: f (y) read end close **S**₀ S₁ Is the file "foo" accessed according satisfy the formula S? to read* close?

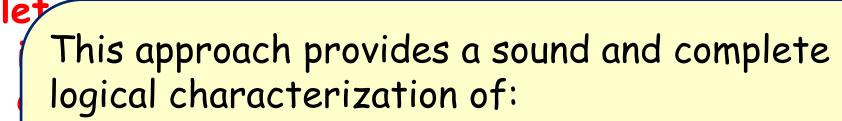
From Program Verification to HORS Model Checking



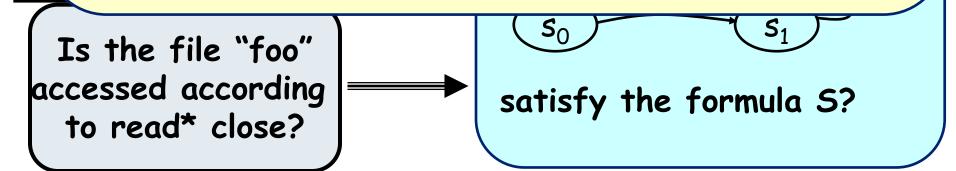
From Program Verification to extended HFL Model Checking



From Program Verification to extended HFL Model Checking



- reachability problem
- termination problem
- linear/branching-time temporal properties
 for higher-order functional programs with infinite data



From Termination Verification to extended HFL Model Checking

let sum n k = if n≤0 then k 0 else sum (n-1) λ r.k(r+n) in sum m (λ x.()) Termination: ($\mu \text{ sum.}\lambda n.\lambda k.$ ($n \le 0 \Rightarrow k 0$) ($n > 0 \Rightarrow \text{sum}(n-1)\lambda r.k(r+n)$)) m ($\lambda x.true$)

Non-Termination: (v sum. λ n. λ k. (n \leq 0 \wedge k 0) \vee (n>0 \wedge sum(n-1) λ r.k(r+n))) m (λ x.false)

Related Work

From HORS to HFL model checking:

 Reduction from HORS model checking to nested least/greatest fixedpoint computation [Salvati&Walukiewicz, CSL15]

From program verification to HFL model checking:

- program verification via:
 - (Constraint) Horn clauses
 [Bjorner, Gurfinkel, McMillan, Rybalchenko, Unno, ...]
 - Higher-order constraint Horn clauses
 [Burn, Ong&Ramsay 2017]

Can be viewed as a restriction to the fragment of HFL without fixpoint alternation and modal operators

Conclusion

Revealed close relationships among:

- program verification
- HFL/HORS model checking
- Reduction from program verification to HFL model checking provides a new, uniform approach to verification of infinite-data higher-order programs

Future work:

 development of extended HFL model checkers (cf. recent integration of Horn clause solvers into SMT solvers)