
On Higher-Order Program Verification
and Two Notions of

Higher-Order Model Checking

Naoki Kobayashi
University of Tokyo

Summaries of papers from POPL09,
POPL17 (joint work with

Etienne Lozes, Florian Bruse), and
more recent work (joint work with Takeshi Tsukada,

and Keiichi Watanabe)

Two Notions of
Higher-Order Model Checking

Models Logic
finite state

model checking finite state systems modal
µ-calculus

Two Notions of
Higher-Order Model Checking

Models Logic
finite state

model checking finite state systems modal
µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

Useful for modeling a certain class of
infinite state systems

(such as higher-order functional programs)

Models Logic
finite state

model checking finite state systems modal
µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems
higher-order

modal fixpoint
logic (HFL)

Useful for describing
non-regular properties

Two Notions of
Higher-Order Model Checking

Models Logic
finite state

model checking finite state systems modal
µ-calculus

HORS
model checking

[Knapik+ 01; Ong 06]

higher-order
recursion schemes

(HORS)

modal
µ-calculus

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems
higher-order

modal fixpoint
logic (HFL)

Applied to verification of
higher-order programs

[K09][K+11]...

verification of concurrent
systems [VV 04][Lange+ 14]

Two Notions of
Higher-Order Model Checking

This Talk

Higher-order
program verification

HORS
model checking

HFL
model checking

[K, POPL09]

[K&Lozes&Bruse,
POPL17]

[K&Tsukada&Watanabe,
 draft]

Outline
 Reviews of HORS model checking and HFL

model checking
– HORS model checking
– HFL model checking

 From program verification to HORS model
checking

 Conversion between HORS/HFL model checking
 From program verification to HFL model

checking
 Conclusion

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-0 HORS
(regular tree grammar)
 S → a c B
 B → b S

S → a
 c B
B → b
 S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-0 HORS
(regular tree grammar)
 S → a c B
 B → b S

 → a

c B c b

→ a

S

c b

→ a

a

c B

 → ... →

c b

a

c b

a

c b

a

S

S → a
 c B
B → b
 S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

→A c

c A(b c)

→ a

 → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths
are labeled by

am+1 bm c

S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

HORS
≈

Call-by-name simply-typed λ-calculus
+

recursion, tree constructors

HORS Model Checking

 e.g.
 - Does every finite path of Tree(G) end with “c”?
 - Does “a” occur below “b” in Tree(G)?

Given
 G: HORS
 A: alternating parity tree automaton (APT)
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

but practical algorithms exist

 p(x)
 2
 ..
 2
2

HORS Model Checking as Generalization
of Finite State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking

c b

a

c b

a

c b

a
infinite tree

a

c b

transition system ≈

Does “a”
occur

below “b”?
Is there a transition

sequence in which
“a” occurs after “b”?

HORS Model Checking as Generalization
of Finite State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking
 infinite tree (infinite-state) transition system ≈

Does “a”
occur

below “b”?

Is there a transition
sequence in which

“a” occurs after “b”?

c a
a

b
c

a
b
b
c

a
b
b
b

...

a

c b

a

b

a

b

a ...

...

Outline
 Reviews of HORS model checking and HFL

model checking
– HORS model checking
– HFL model checking

 From program verification to HORS model
checking

 Conversion between HORS/HFL model checking
 From program verification to HFL model

checking
 Conclusion

Higher-Order Modal Fixpoint Logic
(HFL) [Viswanathan&Viswanathan 04]

 Higher-order extension of the modal µ-calculus
 ϕ ::= true
 ϕ1 ∧ ϕ2

 ϕ1 ∨ ϕ2
 [a]ϕ ϕ must hold after a
 <a>ϕ ϕ may hold after a
 X propositional variable
 µX.ϕ least fixpoint
 νX.ϕ greatest fixpoint

Higher-Order Modal Fixpoint Logic
(HFL) [Viswanathan&Viswanathan 04]

 Higher-order extension of the modal µ-calculus
 ϕ ::= true
 ϕ1 ∧ ϕ2

 ϕ1 ∨ ϕ2
 [a]ϕ ϕ must hold after a
 <a>ϕ ϕ may hold after a
 X predicate variable
 µXκ.ϕ least fixpoint
 νXκ.ϕ greatest fixpoint
 λXκ. ϕ (higher-order) predicate
 ϕ1 ϕ2 application
 κ ::=  | κ1→κ2

Selected Typing Rules for HFL

 Γ, X:κ ┝ X:κ

 Γ, X:κ1 ┝ ϕ:κ2

−−−−−−−−−−−−−−−−−−
 Γ┝ λX.ϕ: κ1 → κ2

 Γ┝ ϕ: κ1 → κ2 Γ┝ ψ: κ1
−−−−−−−−−−−−−−−−−−−−−−−−

 Γ┝ ϕ ψ: κ2

 Γ, X:κ ┝ ϕ:κ

−−−−−−−−−−−−−−−−−−
 Γ┝ µX.ϕ: κ

 Γ ┝ true: 

 Γ ┝ ϕ: 

−−−−−−−−−−−−−−−−−−
 Γ┝ [a]ϕ: 

 Γ┝ ϕ:  Γ┝ ψ: 

−−−−−−−−−−−−−−−−−−−−−−−−
 Γ┝ ϕ ∧ψ: 

Semantics
[ϕ]I: the set of states that satisfy ϕ
 L |=ϕ  sinit∈[ϕ]∅ (sinit: initial state of L)
[true]I ＝ States [ϕ∧ψ]I= [ϕ]I ∩ [ψ]I
[ϕ∨ψ]I= [ϕ]I ∪ [ψ]I
[[α] ϕ]I= {s | ∀t.(s →α t implies t∈ [ϕ]I)}
[<α> ϕ]I = {s | ∃t.(s →α t and t∈ [ϕ]I)}
[µXκ.ϕ]I = lfp(λx∈[κ].[ϕ]I{X=x})
[νXκ.ϕ]I = gfp (λx∈[κ].[ϕ]I{X=x})

[λXκ.ϕ]I = λx∈[κ].[ϕ]I{X=x}

[ϕ ψ]I= [ϕ]I [ψ]I [X]I ＝ I(X)

[] = 2States

[κ1→κ2] = {f∈ [κ1] → [κ2]
 | f: monotonic}

Example

(µF→→.λX.λY. (X∧Y) ∨ F (<a>X) (Y)) P Q
= (P∧Q) ∨
 (µF→→.λX.λY. (X∧Y) ∨
 F(<a>X)(Y)) (<a>P)(Q)
= (P∧Q) ∨ (<a>P∧Q) ∨ (<a><a>P∧Q) ∨ ...

For some n, <a>n P and n Q hold

P

Q

an

bn

HFL Model Checking

 e.g. L |= ϕ for:

 L:

Given
 L: (finite-state) labeled transition system
 ϕ: HFL formula,
does L satisfy ϕ?

a

b
d c

ϕ: (µF.λX.λY. (X∧Y)
 ∨ F (<a>X) (Y))
 (<c>true) (<d>true)

HES (Hierarchical Equation Systems)
Representation of HFL Formulas
X1 =α1 ϕ1; ...; Xn =αn ϕn

(αi∈ {µ, ν})

Example:
 HFL: νX.µY.(<a>X ∨ Y)
 (there exists a path (b*a)ω)

 HES: X=ν Y; Y=µ <a>X ∨ Y

HORS vs HFL model checking
Model Spec. complexity Applications

HORS
model

checking
HORS APT

k-EXPTIME
complete

(for order-k
HORS)

Automated
verification of

functional
programs

[K 09][K+11]...

HFL
model

checking
LTS HFL

k-EXPTIME
complete

(for order-k HFL)

Assume-guarantee
reasoning [VV 04]

Process equivalence
checking [Lange+ 14]

APT: alternating parity tree automaton
LTS: finite-state labeled transition system

This Talk

Higher-order
program verification

HORS
model checking

HFL
model checking

[K, POPL09]

[K&Lozes&Bruse,
POPL17]

[K&Tsukada&Watanabe,
 draft]

This Talk

Higher-order
program verification

HORS
model checking
Tree(G)|= ϕ?

HFL
model checking

[K, POPL09]

[K&Lozes&Bruse,
POPL17]

[K&Tsukada&Watanabe,
 draft]

From Program Verification
to HORS Model Checking

[K. POPL 2009]

Program
Transformation

Higher-order
program
 +
specification
(on events or
output)

HORS G
(describing all
event sequences

or outputs)
+

Tree property ϕ,
describing

valid event sequences
or outputs

HORS
Model

Checking

From Program Verification to Model Checking:
Example

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r





 Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

continuation parameter,
expressing how “foo” is

accessed after the call returns

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

S

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

F d 

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

F d 

+
c



r

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

+
c



r

+

F d 

c



r

From Program Verification to Model Checking:
Example

let f(x) =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r





 Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

Tool demonstration:
MoCHi

[K&Sato&Unno, 2011]
(a software model checker
for a subset of functional

programming language OCaml)

HORS vs HFL model checking

Higher-order
program verification

HORS
model checking
Tree(G)|= A?

HFL
model checking

L |= ϕ?

[K, POPL09]

[K&Lozes&Bruse,
POPL17]

[K&Tsukada&Watanabe,
 draft]

From HORS to HFL model checking
Input:

– HORS G
– Parity tree automaton A (with largest priority p)

Output:
– LTS LA

– HFL formula ϕG,p

such that Tree(G) |= A iff LA |= ϕG,p
Intuition:
 - LA simulates the transitions of A
 - ϕG,p describes “LA has transitions corresponding
 to an accepting run of A over Tree(G)”

From HORS to HFL model checking
Input:

– HORS G
– Parity tree automaton A (with largest priority p)

Output:
– LTS LA

– HFL formula ϕG,p

such that Tree(G) |= A iff LA |= ϕG,p
Intuition:
 - LA simulates the transitions of A
 - ϕG,p describes “LA has transitions corresponding
 to an accepting run of A over Tree(G)”

Construction of LA
(non-deterministic case; see the paper for the case of APT)

A:
 q0 →a q1 q0 q0 →b q1 q1 →b q1 q0 →c q1 →c
 Ω(q0)=0 Ω(q1)=1

LA:

q0
q1

[q1 q0]

[q1]

[]

a0

b0
b1

c0 c1

2

1

1

Construction of LA
(non-deterministic case; see the paper for the case of APT)

A:
 q0 →a q1 q0 q0 →b q1 q1 →b q1 q0 →c q1 →c
 Ω(q0)=0 Ω(q1)=1

LA:

q0
q1

[q1 q0]

[q1]

[]

a0

b0
b1

c0 c1

2

1

1

The states of LA
consist of:
- states of A and
- r.h.s. of

transition rules

Construction of LA
(non-deterministic case; see the paper for the case of APT)

A:
 q0 →a q1 q0 q0 →b q1 q1 →b q1 q0 →c q1 →c
 Ω(q0)=0 Ω(q1)=1

LA:

q0
q1

[q1 q0]

[q1]

[]

a0

b0
b1

c0 c1

2

1

1

A transition label
is
an input symbol
annotated with a
priority; or ...

Construction of LA
(non-deterministic case; see the paper for the case of APT)

A:
 q0 →a q1 q0 q0 →b q1 q1 →b q1 q0 →c q1 →c
 Ω(q0)=0 Ω(q1)=1

LA:

q0
q1

[q1 q0]

[q1]

[]

a0

b0
b1

c0 c1

2

1

1

A transition label
is ...; or a number to
identify the visited
child

Outline
 Reviews of HORS model checking and HFL

model checking
 From HORS to HFL model checking

– construction of LA

– construction of ϕG,p
• case p=0
• general case

 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

From trees to HFL formulas

ϕa c (b c) =
 <a0> “can visit 1st and 2nd children with states
 satisfying ϕc and ϕb c respectively”
= <a0>(<1>ϕc ∧<2>ϕb c)
= <a0>(H2 ϕc ϕb c)

(Hn X1 ... Xn = <1>X1∧...<n>Xn)

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

q0 q1

[q1 q0]

[q1]

[ε]

a0

b0 b0

c0
c0

2

1

1

def

From trees to HFL formulas

ϕa c (b c) =
 <a0> “can visit 1st and 2nd children with states
 satisfying ϕc and ϕb c respectively”
= <a0>(<1>ϕc ∧<2>ϕb c)
= <a0>(H2 ϕc ϕb c)
= <a0>(H2 (<c0>H0)
 (<b0>H1 (<c0>H0)))

(Hn X1 ... Xn = <1>X1∧...<n>Xn)

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

q0 q1

[q1 q0]

[q1]

[ε]

a0

b0 b0

c0
c0

2

1

1

def

From HORS to HFL
HORS G
 S → F c
 F x → a x (F (b x))

ϕG,0
 S =ν F (<c0>H0)
 F x =ν
 <a0>(H2 x (F(<b0>(H1 x)))

A:
 q0 →a q1 q0
 q0 →b q1 q1 →b q1
 q0 →c q1 →c

LA

q0 q1

[q1 q0]

[q1]

[]

a0

b0 b0

c0
c0

2

1

1

Outline
 Reviews of HORS model checking and HFL

model checking
 From HORS to HFL model checking

– construction of LA

– construction of ϕG,p
• case p=0
• general case

 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

Difference from the special case
 Replicate each non-terminal/argument for each

priority (to translate parity condition to a proper
nesting of least/greatest fixpoints)

HORS G: S → F c
 F x → a x (F (b x))

HFL ϕG,1
 S1 =µ F0 (<c0>H0) (<c1>H0);
 F1 x0 x1 =µ <a0>(H2 x1 x1
 (F0(<b1>(H1 x1 x1))) (F1(<b1>H1 x1 x1));
 S0 =ν F0 (<c0>H0) (<c1>H0);
 F0 x0 x1 =ν ...

Correctness of Translation

Theorem:
 Tree(G) |= A
 if and only if
 LA |= ϕG,p

order(LA)=order(G)
|LA| is polynomial in |A|
|ϕG,p| is polynomial in |G|, p

HORS vs HFL model checking

Higher-order
program verification

HORS
model checking
Tree(G)|= A?

HFL
model checking

L |= ϕ?

[K, POPL09]

[K&Lozes&Bruse,
POPL17]

[K&Tsukada&Watanabe,
 draft]

From HFL to HORS model checking
 Input:

– LTS L
– HFL formula ϕ

Output:
– HORS Gϕ,c

– APT AL
such that L |= ϕ iff Gϕ,c |= AL for sufficiently large c

Intuition:
 - Gϕ,c generates tree representation of the formula
 equivalent to ϕ, obtained by unfolding fixpoint
 formulas sufficiently many times

 - AL accepts trees representing valid formulas

HFL-to-HORS Translation: Overview
F X =ν ϕ

Remove fixpoint operators by finite unfoldings
(cf. Kleene fixpoint theorem)

F(c) X=[F(c-1)/F]ϕ ;...;F(1) X=[F(0)/F] ϕ;F(0) X=true
Convert it to HORS, which generates the tree
representation of the formula

F(c) X→[F(c-1)/F]ϕ’;...; F(1) X→[F(0)/F] ϕ’; F(0) X→true

F m X→ if (Zero? m) true ([F (m-1) /F]ϕ’)

Parameterize F by a number, and implement
numbers (up to) as functions (cf. [Jones01])

 n
 2
 ..
 2
2

Correctness of Translation

Theorem:
 L |= ϕ
 if and only if
 Gϕ,|L| |= AL

 order(Gϕ,|L|) = order(L)
 |Gϕ,|L|| is polynomial in |ϕ| and |L|
 |AL| is polynomial in |L|

HORS vs HFL model checking
Higher-order
program verification
 P |= ψ ?

HORS
model checking
Tree(G)|= A?

HFL
model checking

L |= ϕ?

[K, POPL09]

[K&Lozes&Bruse,
POPL17]

[K&Tsukada&Watanabe,
 draft]

HORS vs HFL model checking
Higher-order
program verification
 P |= ψ ?

HORS
model checking
Tree(G)|= A?

HFL
model checking

L |= ϕ?

[K, POPL09]

[K&Lozes&Bruse,
POPL17]

[K&Tsukada&Watanabe,
 draft]

“The behavior of
P is correct.”

From Program Verification
to HFL Model Checking: Example

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

Is the file “foo”
accessed according

to read* close?

F x k =ν <close>k
 ∧ (<read>(F x k))
S =ν F true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1

close
read end

From Program Verification
to HORS Model Checking

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r





 Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

From Program Verification
to extended HFL Model Checking

let f n x =
 if n≤0 then close(x)
 else
 (read(x); f (n-1) x)
in
let y = open “foo”
in
 f m (y)

Is the file “foo”
accessed according

to read* close?

F n x k =µ
 (n≤0 ⇒<close>k)
 ∧ (¬n≤0 ⇒
 <read>(F (n-1) x k))
S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1

close
read end

From Program Verification
to extended HFL Model Checking

let f n x =
 if n≤0 then close(x)
 else
 (read(x); f (n-1) x)
in
let y = open “foo”
in
 f m (y)

Is the file “foo”
accessed according

to read* close?

F n x k =µ
 (n≤0 ⇒<close>k)
 ∧ (¬n≤0 ⇒
 <read>(F (n-1) x k))
S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1

close
read end

This approach provides a sound and complete
logical characterization of:
- reachability problem
- termination problem
- linear/branching-time temporal properties
for higher-order functional programs with
infinite data

From Termination Verification
to extended HFL Model Checking

let sum n k =
 if n≤0 then k 0
 else
 sum (n-1) λr.k(r+n)
in sum m (λx.())

Termination:
 (µ sum.λn.λk.
 (n≤0⇒k 0)∧
 (n>0⇒sum(n-1) λr.k(r+n)))
 m (λx.true)

Non-Termination:
 (ν sum.λn.λk.
 (n≤0∧k 0)∨
 (n>0∧ sum(n-1) λr.k(r+n)))
 m (λx.false)

Related Work
 From HORS to HFL model checking:

– Reduction from HORS model checking to
nested least/greatest fixedpoint computation
[Salvati&Walukiewicz, CSL15]

 From program verification to HFL model
checking:
– program verification via:

• (Constraint) Horn clauses
[Bjorner, Gurfinkel, McMillan, Rybalchenko, Unno, ...]

• Higher-order constraint Horn clauses
[Burn, Ong&Ramsay 2017]

 Can be viewed as a restriction to the fragment
 of HFL without fixpoint alternation and modal operators

Conclusion
 Revealed close relationships among:

– program verification
– HFL/HORS model checking

 Reduction from program verification to HFL
model checking provides a new, uniform
approach to verification of infinite-data
higher-order programs

 Future work:
– development of extended HFL model checkers

(cf. recent integration of Horn clause solvers
into SMT solvers)

	On Higher-Order Program Verification�and Two Notions of �Higher-Order Model Checking
	Two Notions of �Higher-Order Model Checking
	Two Notions of �Higher-Order Model Checking
	スライド番号 4
	スライド番号 5
	This Talk
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	HORS Model Checking
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	HORS Model Checking as Generalization of Finite State/Pushdown Model Checking
	Outline
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Selected Typing Rules for HFL
	Semantics
	Example
	HFL Model Checking
	HES (Hierarchical Equation Systems) Representation of HFL Formulas
	HORS vs HFL model checking
	This Talk
	This Talk
	From Program Verification�to HORS Model Checking�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	Tool demonstration:�MoCHi�[K&Sato&Unno, 2011]�(a software model checker �for a subset of functional programming language OCaml)�
	HORS vs HFL model checking
	From HORS to HFL model checking
	From HORS to HFL model checking
	Construction of LA�(non-deterministic case; see the paper for the case of APT)
	Construction of LA�(non-deterministic case; see the paper for the case of APT)
	Construction of LA�(non-deterministic case; see the paper for the case of APT)
	Construction of LA�(non-deterministic case; see the paper for the case of APT)
	Outline
	From trees to HFL formulas
	From trees to HFL formulas
	From HORS to HFL
	Outline
	Difference from the special case
	Correctness of Translation
	HORS vs HFL model checking
	From HFL to HORS model checking
	HFL-to-HORS Translation: Overview
	Correctness of Translation
	HORS vs HFL model checking
	HORS vs HFL model checking
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HORS Model Checking
	From Program Verification �to extended HFL Model Checking
	From Program Verification �to extended HFL Model Checking
	From Termination Verification�to extended HFL Model Checking
	Related Work
	Conclusion

