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Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 
Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 

HORS 
≈ 

Call-by-name simply-typed λ-calculus 
+ 

recursion, tree constructors 



HORS Model Checking 

 
 e.g. 
  - Does every finite path of Tree(G) end with “c”? 
  - Does “a” occur below “b” in Tree(G)? 

Given 
   G:  HORS 
   A:  alternating parity tree automaton (APT) 
       (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 

k-EXPTIME-complete [Ong, LICS06]        
(for order-k HORS) 

but practical algorithms exist    

      p(x) 
     2 
   .. 
  2 
2 
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Higher-Order Modal Fixpoint Logic 
(HFL) [Viswanathan&Viswanathan 04] 

 Higher-order extension of the modal µ-calculus 
 ϕ ::= true 
        ϕ1 ∧ ϕ2 

        ϕ1 ∨ ϕ2 
        [a]ϕ     ϕ  must hold after a 
        <a>ϕ                  ϕ  may hold after a 
        X               predicate variable 
        µXκ.ϕ                   least fixpoint 
           νXκ.ϕ   greatest fixpoint 
           λXκ. ϕ                  (higher-order) predicate 
       ϕ1 ϕ2  application 
 κ ::=  | κ1→κ2 

 



Selected Typing Rules for HFL 

 
   Γ, X:κ ┝ X:κ  

 
   Γ, X:κ1  ┝ ϕ:κ2  

−−−−−−−−−−−−−−−−−−  
 Γ┝ λX.ϕ: κ1 → κ2  

 

 
   Γ┝ ϕ: κ1 → κ2   Γ┝ ψ: κ1   
−−−−−−−−−−−−−−−−−−−−−−−−  

 Γ┝ ϕ ψ: κ2  
 

 
   Γ, X:κ  ┝ ϕ:κ  

−−−−−−−−−−−−−−−−−−  
 Γ┝ µX.ϕ: κ  

 

 
   Γ ┝ true:   

 
   Γ ┝ ϕ:   

−−−−−−−−−−−−−−−−−−  
 Γ┝ [a]ϕ:   

  
   Γ┝ ϕ:    Γ┝ ψ:    

−−−−−−−−−−−−−−−−−−−−−−−−  
 Γ┝ ϕ ∧ψ:  

 



Semantics 
[ϕ]I: the set of states that satisfy ϕ 
  L |=ϕ  sinit∈[ϕ]∅  (sinit: initial state of L)         
[true]I ＝ States      [ϕ∧ψ]I= [ϕ]I ∩ [ψ]I        
[ϕ∨ψ]I= [ϕ]I ∪ [ψ]I 
[ [α] ϕ ]I= {s | ∀t.(s →α t implies t∈ [ϕ]I)} 
[<α> ϕ ]I = {s | ∃t.(s →α t and t∈ [ϕ]I)} 
[µXκ.ϕ]I = lfp(λx∈[κ].[ϕ]I{X=x} ) 
[νXκ.ϕ]I = gfp (λx∈[κ].[ϕ]I{X=x} ) 
 

 

[λXκ.ϕ]I  = λx∈[κ].[ϕ]I{X=x}  

[ϕ ψ]I= [ϕ]I [ψ]I      [X]I ＝ I(X) 
 

 
 
 

[] = 2States 

[κ1→κ2] = {f∈ [κ1] → [κ2]  
                | f: monotonic}  



Example 

(µF→→.λX.λY. (X∧Y) ∨ F (<a>X) (<b>Y)) P Q 
= (P∧Q) ∨  
   (µF→→.λX.λY. (X∧Y) ∨ 
                     F(<a>X)(<b>Y)) (<a>P)(<b>Q) 
= (P∧Q) ∨ (<a>P∧<b>Q) ∨ (<a><a>P∧<b><b>Q) ∨ ... 
 
For some n, <a>n P and <b>n Q hold 
 

P 

Q 

an 

bn 



HFL Model Checking 

 
 e.g.  L |= ϕ for: 

      L:  

Given 
 L: (finite-state) labeled transition system 
 ϕ:  HFL formula, 
does L satisfy ϕ? 

a 

b 
d c 

ϕ: (µF.λX.λY. (X∧Y)  
    ∨ F (<a>X) (<b>Y))  
    (<c>true)  (<d>true) 
 



HES (Hierarchical Equation Systems) 
Representation of HFL Formulas 
X1 =α1 ϕ1; ...; Xn =αn ϕn 

(αi∈ {µ, ν} ) 
 
Example: 
  HFL:  νX.µY.(<a>X ∨ <b>Y) 
         (there exists a path (b*a)ω ) 

  HES:  X=ν Y; Y=µ <a>X ∨ <b>Y 



HORS vs HFL model checking 
Model Spec.  complexity Applications 

HORS 
model 

checking 
HORS APT 

k-EXPTIME 
complete 

(for order-k  
HORS) 

Automated 
verification of 

functional 
programs 

[K 09][K+11]... 

HFL 
model 

checking 
LTS HFL 

k-EXPTIME 
complete 

(for order-k HFL) 

Assume-guarantee 
reasoning [VV 04] 

Process equivalence 
checking [Lange+ 14] 

APT: alternating parity tree automaton 
LTS: finite-state labeled transition system 
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From Program Verification 
to HORS Model Checking 

[K. POPL 2009] 

Program  
Transformation 

Higher-order 
program 
  + 
specification 
(on events or  
output) 

HORS G 
(describing all  
event sequences 

or outputs) 
+ 

Tree property ϕ, 
describing 

valid event sequences 
or outputs 

HORS 
Model 

Checking 



From Program Verification to Model Checking:  
Example 

let f x =  
 if ∗ then close(x)  
 else (read(x); f x) 
in 
let y = open “foo” 
in 
     f (y) 
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Tool demonstration: 
MoCHi 

[K&Sato&Unno, 2011] 
(a software model checker  
for a subset of functional 

programming language OCaml) 
 



HORS vs HFL model checking 

Higher-order  
program verification 

HORS  
model checking 
Tree(G)|= A? 

HFL 
model checking 

L |= ϕ?  

[K, POPL09] 

[K&Lozes&Bruse,  
POPL17] 

[K&Tsukada&Watanabe,  
 draft] 



From HORS to HFL model checking 
Input: 

– HORS G 
– Parity tree automaton A (with largest priority p) 

Output: 
– LTS LA 

– HFL formula ϕG,p 

such that  Tree(G) |= A  iff  LA |= ϕG,p 
Intuition: 
  - LA simulates the transitions of A 
  - ϕG,p describes “LA has transitions corresponding  
     to an accepting run of A over Tree(G)” 
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Construction of LA 
(non-deterministic case; see the paper for the case of APT) 

A: 
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- states of A and 
- r.h.s. of 

transition rules 
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Construction of LA 
(non-deterministic case; see the paper for the case of APT) 

A: 
 q0 →a q1 q0    q0 →b q1       q1 →b q1       q0 →c      q1 →c 
  Ω(q0)=0     Ω(q1)=1  

LA: 

q0 
q1 

[q1 q0] 
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[ ] 
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A transition label 
is ...; or a number to 
identify the visited 
child 
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 Conclusion 



From trees to HFL formulas 

ϕa c (b c) =  
 <a0> “can visit 1st and 2nd children with states  
         satisfying ϕc and ϕb c respectively” 
= <a0>(<1>ϕc ∧<2>ϕb c) 
= <a0>(H2  ϕc  ϕb c) 
 
 
 
(Hn X1 ... Xn = <1>X1∧...<n>Xn) 

ϕT: “the current state has transitions 
     corresponding to an accepting run for T”  

q0 q1 

[q1 q0] 

[q1] 

[ε] 

a0 

b0 b0 

c0 
c0 

2 

1 

1 

def 



From trees to HFL formulas 

ϕa c (b c) =  
 <a0> “can visit 1st and 2nd children with states  
         satisfying ϕc and ϕb c respectively” 
= <a0>(<1>ϕc ∧<2>ϕb c) 
= <a0>(H2  ϕc  ϕb c) 
= <a0>(H2 (<c0>H0)  
           (<b0>H1 (<c0>H0)))  
 
(Hn X1 ... Xn = <1>X1∧...<n>Xn) 

ϕT: “the current state has transitions 
     corresponding to an accepting run for T”  

q0 q1 

[q1 q0] 

[q1] 

[ε] 
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b0 b0 

c0 
c0 
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1 

def 



From HORS to HFL  
HORS G 
    S  → F c 
    F x → a  x  (F (b x)) 

ϕG,0 
 S =ν F (<c0>H0) 
 F x =ν  
  <a0>(H2 x (F(<b0>(H1 x))) 

A: 
  q0 →a q1 q0     
  q0 →b q1       q1 →b q1        
  q0 →c             q1 →c 

LA 

q0 q1 

[q1 q0] 

[q1] 

[ ] 

a0 

b0 b0 

c0 
c0 

2 

1 

1 
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 Type system for HFL model checking 
 Conclusion 



Difference from the special case 
 Replicate each non-terminal/argument for each 

priority (to translate parity condition to a proper 
nesting of least/greatest fixpoints) 

HORS G:  S  → F c 
            F x → a  x  (F (b x)) 

HFL ϕG,1 
  S1 =µ F0 (<c0>H0) (<c1>H0); 
  F1 x0 x1 =µ <a0>(H2 x1 x1  
                     (F0(<b1>(H1 x1 x1))) (F1(<b1>H1 x1 x1)); 
  S0 =ν F0 (<c0>H0) (<c1>H0); 
  F0 x0 x1 =ν  ... 



Correctness of Translation 

Theorem: 
     Tree(G) |= A 
    if and only if 
     LA |= ϕG,p 
 
order(LA)=order(G) 
|LA| is polynomial in |A| 
|ϕG,p| is polynomial in |G|, p 

 



HORS vs HFL model checking 

Higher-order  
program verification 

HORS  
model checking 
Tree(G)|= A? 

HFL 
model checking 

L |= ϕ?  

[K, POPL09] 

[K&Lozes&Bruse,  
POPL17] 

[K&Tsukada&Watanabe,  
 draft] 



From HFL to HORS model checking 
 Input: 

– LTS L 
– HFL formula ϕ 

Output: 
– HORS Gϕ,c 

– APT AL 
such that L |= ϕ iff Gϕ,c |= AL for sufficiently large c 

Intuition: 
  - Gϕ,c  generates tree representation of the formula 
    equivalent to ϕ, obtained by unfolding fixpoint 
    formulas sufficiently many times 

  - AL accepts trees representing valid formulas 
 



HFL-to-HORS Translation: Overview 
F X =ν ϕ  

Remove fixpoint operators by finite unfoldings 
(cf. Kleene fixpoint theorem) 

F(c) X=[F(c-1)/F]ϕ ;...;F(1) X=[F(0)/F] ϕ;F(0) X=true 
Convert it to HORS, which generates the tree 
representation of the formula 

F(c) X→[F(c-1)/F]ϕ’;...; F(1) X→[F(0)/F] ϕ’; F(0) X→true 

F m X→ if (Zero? m) true ([F (m-1) /F]ϕ’) 

Parameterize F by a number, and implement  
numbers (up to         ) as functions (cf. [Jones01])  

      n 
     2 
   .. 
  2 
2 



Correctness of Translation 

Theorem: 
     L |= ϕ 
    if and only if 
     Gϕ,|L| |= AL 
 
  order(Gϕ,|L|) = order(L) 
 |Gϕ,|L|| is polynomial in |ϕ| and |L| 
  |AL| is polynomial in |L| 
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HORS vs HFL model checking 
Higher-order  
program verification 
   P |= ψ ? 

HORS  
model checking 
Tree(G)|= A? 

HFL 
model checking 

L |= ϕ?  

[K, POPL09] 

[K&Lozes&Bruse,  
POPL17] 

[K&Tsukada&Watanabe,  
 draft] 

“The behavior of 
P is correct.” 



From Program Verification  
to HFL Model Checking: Example 

let f x =  
 if ∗ then close(x)  
 else (read(x); f x) 
in 
let y = open “foo” 
in 
     f (y) 

Is the file “foo” 
accessed according  

to read* close? 

F x k =ν <close>k 
          ∧ (<read>(F x k)) 
S =ν F true (<end>true) 

Does LTS: 
 
 
 
satisfy the formula S? 
    
 

s0 s1 

close 
read end 



From Program Verification  
to HORS Model Checking 

let f x =  
 if ∗ then close(x)  
 else (read(x); f x) 
in 
let y = open “foo” 
in 
     f (y) 

c 
+ 

+ 

c 
+ 

c 
... 

r 

r 

r 

 

 

 Is the file “foo” 
accessed according  

to read* close? 
Is each path of the tree 

labeled by r*c? 

F x k → + (c k) (r(F x k)) 
S → F d  



From Program Verification  
to extended HFL Model Checking 

let f n x =  
 if n≤0 then close(x)  
 else  
  (read(x); f (n-1) x) 
in 
let y = open “foo” 
in 
     f m (y) 

Is the file “foo” 
accessed according  

to read* close? 

F n x k =µ  
   (n≤0 ⇒<close>k) 
 ∧ (¬n≤0 ⇒ 
    <read>(F (n-1) x k)) 
S =µ F m true (<end>true) 
 

Does LTS: 
 
 
 
satisfy the formula S? 
    
 

s0 s1 

close 
read end 



From Program Verification  
to extended HFL Model Checking 

let f n x =  
 if n≤0 then close(x)  
 else  
  (read(x); f (n-1) x) 
in 
let y = open “foo” 
in 
     f m (y) 

Is the file “foo” 
accessed according  

to read* close? 

F n x k =µ  
   (n≤0 ⇒<close>k) 
 ∧ (¬n≤0 ⇒ 
    <read>(F (n-1) x k)) 
S =µ F m true (<end>true) 
 

Does LTS: 
 
 
 
satisfy the formula S? 
    
 

s0 s1 

close 
read end 

This approach provides a sound and complete 
logical characterization of: 
- reachability problem  
- termination problem 
- linear/branching-time temporal properties 
for higher-order functional programs with 
infinite data 



From Termination Verification 
to extended HFL Model Checking 

let sum n k =  
 if n≤0 then k 0  
 else  
  sum (n-1) λr.k(r+n) 
in sum m (λx.()) 

Termination: 
 (µ sum.λn.λk. 
   (n≤0⇒k 0)∧ 
   (n>0⇒sum(n-1) λr.k(r+n))) 
 m (λx.true) 
 

Non-Termination: 
 (ν sum.λn.λk. 
   (n≤0∧k 0)∨ 
   (n>0∧ sum(n-1) λr.k(r+n))) 
 m (λx.false) 
 



Related Work 
 From HORS to HFL model checking: 

– Reduction from HORS model checking to  
nested least/greatest fixedpoint computation 
[Salvati&Walukiewicz, CSL15]  

 From program verification to HFL model 
checking: 
– program verification via: 

• (Constraint) Horn clauses  
[Bjorner, Gurfinkel, McMillan, Rybalchenko, Unno, ...] 

• Higher-order constraint Horn clauses  
[Burn, Ong&Ramsay 2017] 

  Can be viewed as a restriction to the fragment  
  of HFL without fixpoint alternation and modal operators 

 



Conclusion 
 Revealed close relationships among: 

– program verification 
– HFL/HORS model checking 

 Reduction from program verification to HFL 
model checking provides a new, uniform 
approach to verification of infinite-data 
higher-order programs 

 Future work:  
– development of extended HFL model checkers 

(cf. recent integration of Horn clause solvers 
into SMT solvers) 
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