
Analysing Mutual Exclusion
using Process Algebra with Signals

Victor Dyseryn, Rob van Glabbeek & Peter Höfner

Ecole Polytechnique, Paris, France

Data61, CSIRO, Sydney, Australia

University of New South Wales, Sydney, Australia

September 2017

Overview

What makes a mutual exclusion protocol correct?

Do correct mutual exclusion protocols exists?

Can a correct mutual exclusion protocol be modelled in standard
process algebras like CCS?

Which minimal extension of CCS do we need?

Overview

What makes a mutual exclusion protocol correct?

Do correct mutual exclusion protocols exists?

Can a correct mutual exclusion protocol be modelled in standard
process algebras like CCS?

Which minimal extension of CCS do we need?

Overview

What makes a mutual exclusion protocol correct?

Do correct mutual exclusion protocols exists?

Can a correct mutual exclusion protocol be modelled in standard
process algebras like CCS?

Which minimal extension of CCS do we need?

Overview

What makes a mutual exclusion protocol correct?

Do correct mutual exclusion protocols exists?

Can a correct mutual exclusion protocol be modelled in standard
process algebras like CCS?

Which minimal extension of CCS do we need?

Disclaimer

This talk is about concurrent systems.

We may assume nothing about the relative speed of parallel
components.

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No

No

weak

Yes

No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No

No

weak

Yes

No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No

No

weak

Yes

No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No

No

weak

Yes

No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No

No

weak

Yes

No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes

No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes

No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes
No

no

No
No

yes

Yes

Yes

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS

?

with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

[Van Glabbeek & Hoefner 2015]

What is our memory model?

No
No

weak

Yes
No

default

Peterson (N>2)

Bakery

blocking
write?

strong

Yes
No

no

Peterson

blocking
read?

yes

Yes
No

no

No
No

yes

Yes

Yes

Correctness of Mutex Protocols
Process[i]
repeat forever

enter noncritical section[i]
exit noncritical section[i]

ready[i] := true entry protocol
. . . [trying] (doorway)

enter critical section[i]
exit critical section[i]

. . .
ready[i] := false exit protocol

Correctness properties are quantified over all system runs
(modelled as paths in the labelled trans. system representation).
Safety: There is no run in which enter-crit[i] is followed by
enter-crit[j] without exit-crit[i] in between.
Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].
Weak liveness: In each run ready[i]=true is followed by enter-crit[i].

Correctness of Mutex Protocols
Process[i]
repeat forever

enter noncritical section[i]
exit noncritical section[i]

ready[i] := true entry protocol
. . . [trying] (doorway)

enter critical section[i]
exit critical section[i]

. . .
ready[i] := false exit protocol

Correctness properties are quantified over all system runs
(modelled as paths in the labelled trans. system representation).

Safety: There is no run in which enter-crit[i] is followed by
enter-crit[j] without exit-crit[i] in between.
Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].
Weak liveness: In each run ready[i]=true is followed by enter-crit[i].

Correctness of Mutex Protocols
Process[i]
repeat forever

enter noncritical section[i]
exit noncritical section[i]

ready[i] := true entry protocol
. . . [trying] (doorway)

enter critical section[i]
exit critical section[i]

. . .
ready[i] := false exit protocol

Correctness properties are quantified over all system runs
(modelled as paths in the labelled trans. system representation).
Safety: There is no run in which enter-crit[i] is followed by
enter-crit[j] without exit-crit[i] in between.

Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].
Weak liveness: In each run ready[i]=true is followed by enter-crit[i].

Correctness of Mutex Protocols
Process[i]
repeat forever

enter noncritical section[i]
exit noncritical section[i]

ready[i] := true entry protocol
. . . [trying] (doorway)

enter critical section[i]
exit critical section[i]

. . .
ready[i] := false exit protocol

Correctness properties are quantified over all system runs
(modelled as paths in the labelled trans. system representation).
Safety: There is no run in which enter-crit[i] is followed by
enter-crit[j] without exit-crit[i] in between.
Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].

Weak liveness: In each run ready[i]=true is followed by enter-crit[i].

Correctness of Mutex Protocols
Process[i]
repeat forever

enter noncritical section[i]
exit noncritical section[i]

ready[i] := true entry protocol
. . . [trying] (doorway)

enter critical section[i]
exit critical section[i]

. . .
ready[i] := false exit protocol

Correctness properties are quantified over all system runs
(modelled as paths in the labelled trans. system representation).
Safety: There is no run in which enter-crit[i] is followed by
enter-crit[j] without exit-crit[i] in between.
Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].
Weak liveness: In each run ready[i]=true is followed by enter-crit[i].

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

safety
weak liveness

Peterson

May we
assume

fairness?

safety
liveness

Progress, Justness and Fairness

Progress: Any process in a state that admits a non-blocking action
will eventually perform an action. τ

Justness or local progress: If a combination of components in a
parallel composition is in a state admitting a non-blocking action,
then one (or more) of them will eventually partake in an action.

τ ‖ τ

Weak fairness: If (from some point onwards) a task is enabled
perpetually, then it will eventually occur.

τ
τ

Strong fairness: If (from some point onwards) a task is enabled
infinity often, then it will eventually occur.

Progress, Justness and Fairness

Progress: Any process in a state that admits a non-blocking action
will eventually perform an action. τ

Justness or local progress: If a combination of components in a
parallel composition is in a state admitting a non-blocking action,
then one (or more) of them will eventually partake in an action.

τ ‖ τ

Weak fairness: If (from some point onwards) a task is enabled
perpetually, then it will eventually occur.

τ
τ

Strong fairness: If (from some point onwards) a task is enabled
infinity often, then it will eventually occur.

Progress, Justness and Fairness

Progress: Any process in a state that admits a non-blocking action
will eventually perform an action. τ

Justness or local progress: If a combination of components in a
parallel composition is in a state admitting a non-blocking action,
then one (or more) of them will eventually partake in an action.

τ ‖ τ

Weak fairness: If (from some point onwards) a task is enabled
perpetually, then it will eventually occur.

τ
τ

Strong fairness: If (from some point onwards) a task is enabled
infinity often, then it will eventually occur.

JJ
JT

P

SA

WA

JA

ST

WT

SI

WI

JI

SZ

WZ

SC

WC

JC

SG

WG

Fu

Ex

Pr

Fairness hierarchy

strong fairness

weak fairness

justness

progress

Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].

The stronger our progress/justness/fairness assumption, the fewer
paths counts as runs, and the more likely it is that Liveness holds.

Fairness hierarchy

strong fairness

weak fairness

justness

progress

Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].

The stronger our progress/justness/fairness assumption, the fewer
paths counts as runs, and the more likely it is that Liveness holds.

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS with signals?

What makes a
mutual exclusion
protocol correct?

May we
assume

progress?

safety
weak liveness

No
No

no

Yes
Yes

yes

May we
assume

progress?

safety
liveness

No
No

no

May we
assume

justness?

yes

No
No

no

May we
assume

fairness?

yes

Yes
Yes

yes

?
No/Yes

no

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS with signals?

What makes a
mutual exclusion
protocol correct?

May we
assume

progress?

safety
weak liveness

No
No

no

Yes
Yes

yes

May we
assume

progress?

safety
liveness

No
No

no

May we
assume

justness?

yes

No
No

no

May we
assume

fairness?

yes

Yes
Yes

yes

?
No/Yes

no

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS with signals?

What makes a
mutual exclusion
protocol correct?

May we
assume

progress?

safety
weak liveness

No
No

no

Yes
Yes

yes

May we
assume

progress?

safety
liveness

No
No

no

May we
assume

justness?

yes

No
No

no

May we
assume

fairness?

yes

Yes
Yes

yes

?
No/Yes

no

The problem

ReadyA = false
ReadyB = false
Turn = A

The problem

ReadyA = false
ReadyB = false
Turn = A

The problem

ReadyA = true
ReadyB = false
Turn = A

The problem

ReadyA = true
ReadyB = false
Turn = B

The problem

ReadyA = true
ReadyB = false
Turn = B

The problem

ReadyA = true
ReadyB = true
Turn = B

The problem

ReadyA = true
ReadyB = true
Turn = A

Here B is blocked
But the combination {turn,A} can take
and action so one of them has to take
an action (justness).

The problem

ReadyA = true
ReadyB = true
Turn = A

Here B is blocked
But the combination {turn,A} can take
and action so one of them has to take
an action (justness).

The only possible action is that A reads
turn = A

The problem

ReadyA = true
ReadyB = true
Turn = A

The problem

ReadyA = true
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = false
Turn = A

The problem

ReadyA = false
ReadyB = false
Turn = A

The problem

ReadyA = false
ReadyB = false
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = false
Turn = A

The problem

ReadyA = false
ReadyB = false
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

The problem

ReadyA = false
ReadyB = true
Turn = A

Why is it possible ?

Because A cannot progress by itself,
it must communicate with ReadyA.

The combination {ReadyA,A} can take
an action.

Justness says : at least one of them has
to take an action.

The problem

ReadyA = false
ReadyB = true
Turn = A

Why is it possible ?

Justness says : at least one of
{ReadyA,A} has to take an action.

But in our scenario {ReadyA} takes an
action (communication with B at line m4).

The scenario is just. But liveness fails.

CCS with signals

E ::= 0 | α.P | P + Q | P|Q | P\L | P[f] | A

| E ŝ

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

P
α−→ P ′

P|Q α−→ P ′|Q
P

a−→ P ′, Q
ā−→ Q ′

P|Q τ−→ P ′|Q ′

Q
α−→ Q ′

P|Q α−→ P|Q ′

P
α−→ P ′

P\L α−→ P ′\L
(α, ᾱ 6∈ L)

P
α−→ P ′

P[f]
f (α)−→ P ′[f]

P
α−→ P ′

A
α−→ P ′

(A
def
= P)

P
α−→ P ′

P ŝ
α−→ P ′

(P ŝ)ys Pys

(P t̂)ys

Pys

(P + Q)ys

Qys

(P + Q)ys

Pys

(P|Q)ys

Pys , Q
s−→ Q ′

P|Q τ−→ P|Q ′

P
s−→ P ′, Qys

P|Q τ−→ P ′|Q
Qys

(P|Q)ys

Pys

(P\L)ys
(s 6∈ L)

Pys

P[f]yf (s)

Pys

Ays
(A

def
= P)

CCS with signals

E ::= 0 | α.P | P + Q | P|Q | P\L | P[f] | A | E ŝ

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

P
α−→ P ′

P|Q α−→ P ′|Q
P

a−→ P ′, Q
ā−→ Q ′

P|Q τ−→ P ′|Q ′

Q
α−→ Q ′

P|Q α−→ P|Q ′

P
α−→ P ′

P\L α−→ P ′\L
(α, ᾱ 6∈ L)

P
α−→ P ′

P[f]
f (α)−→ P ′[f]

P
α−→ P ′

A
α−→ P ′

(A
def
= P)

P
α−→ P ′

P ŝ
α−→ P ′

(P ŝ)ys Pys

(P t̂)ys

Pys

(P + Q)ys

Qys

(P + Q)ys

Pys

(P|Q)ys

Pys , Q
s−→ Q ′

P|Q τ−→ P|Q ′

P
s−→ P ′, Qys

P|Q τ−→ P ′|Q
Qys

(P|Q)ys

Pys

(P\L)ys
(s 6∈ L)

Pys

P[f]yf (s)

Pys

Ays
(A

def
= P)

CCS with signals

E ::= 0 | α.P | P + Q | P|Q | P\L | P[f] | A | E ŝ

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

P
α−→ P ′

P|Q α−→ P ′|Q
P

a−→ P ′, Q
ā−→ Q ′

P|Q τ−→ P ′|Q ′

Q
α−→ Q ′

P|Q α−→ P|Q ′

P
α−→ P ′

P\L α−→ P ′\L
(α, ᾱ 6∈ L)

P
α−→ P ′

P[f]
f (α)−→ P ′[f]

P
α−→ P ′

A
α−→ P ′

(A
def
= P)

P
α−→ P ′

P ŝ
α−→ P ′

(P ŝ)ys Pys

(P t̂)ys

Pys

(P + Q)ys

Qys

(P + Q)ys

Pys

(P|Q)ys

Pys , Q
s−→ Q ′

P|Q τ−→ P|Q ′

P
s−→ P ′, Qys

P|Q τ−→ P ′|Q
Qys

(P|Q)ys

Pys

(P\L)ys
(s 6∈ L)

Pys

P[f]yf (s)

Pys

Ays
(A

def
= P)

CCS with signals

E ::= 0 | α.P | P + Q | P|Q | P\L | P[f] | A | E ŝ

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

P
α−→ P ′

P|Q α−→ P ′|Q
P

a−→ P ′, Q
ā−→ Q ′

P|Q τ−→ P ′|Q ′

Q
α−→ Q ′

P|Q α−→ P|Q ′

P
α−→ P ′

P\L α−→ P ′\L
(α, ᾱ 6∈ L)

P
α−→ P ′

P[f]
f (α)−→ P ′[f]

P
α−→ P ′

A
α−→ P ′

(A
def
= P)

P
α−→ P ′

P ŝ
α−→ P ′

(P ŝ)ys Pys

(P t̂)ys

Pys

(P + Q)ys

Qys

(P + Q)ys

Pys

(P|Q)ys

Pys , Q
s−→ Q ′

P|Q τ−→ P|Q ′

P
s−→ P ′, Qys

P|Q τ−→ P ′|Q
Qys

(P|Q)ys

Pys

(P\L)ys
(s 6∈ L)

Pys

P[f]yf (s)

Pys

Ays
(A

def
= P)

Modelling variables in CCSS

TurnA
def
= asgnA

turn . Turn
A + asgnB

turn . Turn
B + nA

turn . Turn
A

TurnA
def
= (asgnA

turn . Turn
A + asgnB

turn . Turn
B) n̂A

turn

Do correct mutual exclusion protocols exists?
and can they be modelled in CCS with signals?

What makes a
mutual exclusion
protocol correct?

Yes
Yes

answer 1

Peterson

May we
assume

fairness?

answer 2

Yes
Yes

yes

?
No

no

What is our memory model?

No
No

weak

Yes
No

default

blocking
write?

strong

Yes
No

no

blocking
read?

yes

Yes
No

no

No
No

yes

Yes

Yes

