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Disclaimer

This talk is about concurrent systems.

We may assume nothing about the relative speed of parallel
components.
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Correctness of Mutex Protocols
Process[i]
repeat forever

enter noncritical section[i]
exit noncritical section[i]

ready[i ] := true entry protocol
. . . [trying] (doorway)

enter critical section[i]
exit critical section[i]

. . .
ready[i ] := false exit protocol

Correctness properties are quantified over all system runs
(modelled as paths in the labelled trans. system representation).
Safety: There is no run in which enter-crit[i] is followed by
enter-crit[j] without exit-crit[i] in between.
Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].
Weak liveness: In each run ready[i ]=true is followed by enter-crit[i].
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Progress, Justness and Fairness

Progress: Any process in a state that admits a non-blocking action
will eventually perform an action. τ

Justness or local progress: If a combination of components in a
parallel composition is in a state admitting a non-blocking action,
then one (or more) of them will eventually partake in an action.

τ ‖ τ

Weak fairness: If (from some point onwards) a task is enabled
perpetually, then it will eventually occur.

τ
τ

Strong fairness: If (from some point onwards) a task is enabled
infinity often, then it will eventually occur.
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Fairness hierarchy

strong fairness

weak fairness

justness

progress

Liveness: In each run exit-noncrit[i] is followed by enter-crit[i].

The stronger our progress/justness/fairness assumption, the fewer
paths counts as runs, and the more likely it is that Liveness holds.
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The only possible action is that A reads
turn = A
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The problem

ReadyA = false
ReadyB = true
Turn = A

Why is it possible ?

Because A cannot progress by itself,
it must communicate with ReadyA.

The combination {ReadyA,A} can take
an action.

Justness says : at least one of them has 
to take an action. 



The problem

ReadyA = false
ReadyB = true
Turn = A

Why is it possible ?

Justness says : at least one of 
{ReadyA,A} has to take an action.

But in our scenario {ReadyA} takes an 
action (communication with B at line m4).

The scenario is just. But liveness fails. 
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α−→ P ′
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Modelling variables in CCSS

TurnA
def
= asgnA

turn . Turn
A + asgnB

turn . Turn
B + nA

turn . Turn
A

TurnA
def
= (asgnA

turn . Turn
A + asgnB

turn . Turn
B) n̂A

turn
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